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Abstract: An ever-growing population together with globally depleting water resources pose im-
mense stresses for water supply systems. Desalination technologies can reduce these stresses by
generating fresh water from saline water sources. Reverse osmosis (RO), as the industry leading
desalination technology, typically involves a complex network of membrane modules that separate
unwanted particles from water. The optimal design and operation of these complex RO systems
can be computationally expensive. In this work, we present a modeling and optimization strategy
for addressing the optimal operation of an industrial-scale RO plant. We employ a feed-forward
artificial neural network (ANN) surrogate modeling representation with rectified linear units as
activation functions to capture the membrane behavior accurately. Several ANN set-ups and surro-
gate models are presented and evaluated, based on collected data from the H2Oaks RO desalination
plant in South-Central Texas. The developed ANN is then transformed into a mixed-integer linear
programming formulation for the purpose of minimizing energy consumption while maximizing
water utilization. Trade-offs between the two competing objectives are visualized in a Pareto front,
where indirect savings can be uncovered by comparing energy consumption for an array of water
recoveries and feed flows.

Keywords: neural network modeling; surrogate modeling; reverse osmosis; mixed-integer linear
programming

1. Introduction

Due to a worldwide growing population the demand for water is ever-increasing,
leading to global water scarcity that is not only driven by water quantity, but also by water
quality issues [1]. The water supply systems are further stressed by climate change together
with increased intensification of agriculture, industrialization, and water withdrawal [2–5],
challenging the “clean accessible water for all” UN Sustainable Development Goal for
2030 [6].

Such stresses imply that conventional water sources are no longer sufficient to meet
human water demands, especially in water-scarce regions [7]. Desalination is one of the
technologies which can help overcome this challenge, since fresh or potable water can be
obtained from available saline water sources [8,9]. Generally, desalination technologies can
be classified based on either membrane processes or thermal separation [10]. The latter
are highly energy-intensive and characterized by high capital and operational costs, due
to their dependency on thermal energy, mainly produced from fossil fuels. On the other
hand, membrane-based desalination processes are regarded as the most promising and
practical desalination technologies, due to their high process energy efficiency [11]. Among
membrane processes, reverse osmosis (RO) desalination is the industry leader constituting
69% of the worldwide installed desalination capacity, equalling 65.5 M m3

day of produced
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fresh water [12]. Nevertheless, RO still remains an energy intensive process requiring
process optimization, to minimize energy consumption [13,14].

The operation and design of brackish water reverse osmosis (BWRO) desalination
plants has already been studied in the literature [11]. Ruiz-Garcia et al. for example
evaluated operational windows of two BWRO systems based on hydrochemical fluctua-
tions in well groundwater and derived optimal operational points in terms of minimum
specific energy consumption and maximum water recovery [15]. Li studied the optimal
operation of a BWRO desalination plant based on a constrained nonlinear optimization
model resulting in a 10% energy consumption reduction while the same permeate flows
are being maintained [16]. Further, Fellaou et al. analyzed the exergy of a full-scale BWRO
desalination plant to analyze the performance of the main plant components to ultimately
determine inefficiencies within the plant [17]. Additionally, Patel et al. used a rigorous
system-scale RO model to determine the specific energy consumption and energy efficiency
of the RO process over a wide range of brackish water conditions [18]. Kotb et al. optimized
several multi-stage RO system arrangements identifying the cost minimizing operational
parameters [19]. On the other hand, Sassi and Mujtaba combined the solution-diffusion
model with film theory to derive a nonlinear optimization framework which minimizes the
specific energy consumption of the RO system at fixed permeate output and quality based
on operational parameters [20].

Generally, the optimization of RO systems requires modeling the mass transfer of the
employed membrane modules [21], which may result in a complex mathematical model if
first order principles are employed [22–24]; often a computationally expensive task [25].
Data-driven surrogate models can be utilized to capture the complex mass transfer behavior
of membrane systems [26], utilizing machine learning (ML) methods [27]. ML can be
classified into unsupervised and supervised learning, the difference between the two being
that the former is used to analyze data with no apparent input-output connection, whereas
the latter is used to obtain functions mapping an explicit input-output structure within
the data [28]. Within supervised learning, the utilization of feed-forward artificial neural
networks (ANNs) has been very popular [29], since ANNs have excellent approximation
capabilities [30]. Given a sufficient number of neurons in only one hidden layer, ANNs can
virtually approximate any function of interest to any degree of accuracy [31].

ANNs have already been applied to RO membranes and processes to analyze their
respective performance [32–35]. Libotean et al. for example utilized an ANN surrogate
model approach to estimate RO plant performance with applications in operational diag-
nostics [36]. Choi et al. employed surrogate models to analyze the long-term performance
of full-scale RO desalination plants [37]. Sivanantham et al. modeled and optimized the
rejection of chlorophenol in spiral wound RO modules using ANNs [38]. However, the data
to train the ANN is either derived by model simulation [39,40], experimental single-stage
RO membrane data points [41] or water sampling [42].

Furthermore, ANNs can be used for the operation optimization of membrane-based
desalination systems, enabling effective decision making and better design [43,44]. Madaeni
et al. modeled three RO systems with the aid of an ANN to forecast performance degrada-
tion optimizing the operating conditions [45]. Farsi and Rosen performed a multi-objective
optimization case study based on an ANN for a geothermal desalination system to evaluate
the trade-off between exergy efficiency and process cost [46]. Nazif et al. optimized the
operation of a RO system to reduce fouling, increase membrane life span, and minimize sys-
tem cost using an ANN [47]. Soleimani et al. employed an ANN to derive Pareto-optimal
solutions for maximizing the permeate output and minimizing the fouling resistance for
membrane separation of wastewater [48].

To generate sustainable solutions for RO systems it is vital to consider the system
implications to resources other than water, including energy and food, referred to as
food-energy-water nexus (FEWN) [49–52] when optimizing the system. Namany et al.
optimized the FEWN for various food security scenarios realizing that the utilization
of RO reduces the environmental impact of solutions [53]. Tsolas et al. investigated a
network representation-based graphical approach to the energy-water nexus incorporating
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reverse osmosis desalination systems [54]. Apart from that, Elmaadawy et al. designed
a renewable energy system to meet the electrical load demand of a large-scale reverse
osmosis desalination plant [55].

In this work, we employ a feed-forward ANN to approximate the energy consumption
of an industrial-scale RO plant. We use hourly measured industrial-scale RO plant data,
representing one and a half years of plant operation, to train and analyze several ANN set-
ups and other surrogate models to comprehensively describe the complete plant behavior.
A multi-objective optimization study is employed, where sustainability considerations are
systematically taken into account to evaluate the trade-off between permeate production
and energy consumption.

The remainder of this paper is structured as follows: The next section introduces
the RO desalination plant under investigation, describes the obtained data and states the
problem definition. In Section 3, all surrogate models are presented, and various ANN set-
ups evaluated. Then, in Section 4, the optimization model is derived using a mixed-integer
linear reformulation of all developed neural networks. Subsequently, the optimization
model is used for minimizing the RO plant’s energy consumption, as well as for multi-
objective optimization to analyze the trade-offs between energy consumption and purified
water production. Lastly, Section 5 concludes this work.

2. RO Plant Description and Problem Definition

The San Antonio Water System (SAWS) H2Oaks Desalination plant is located in
Elmendorf, Texas, just South of San Antonio, Texas. It draws water from the lower Carrizo-
Wilkox Aquifer, which has a total dissolved solids (TDS) concentration of approximately
1300 mg

L [56]. The inorganic composition of the feed water is provided in Table A1 of the
Appendix A. The RO system consists of three stages, four primary RO trains and two
secondary or concentrator RO trains. The first and second stage build the primary RO train,
whereas the third stages can be summarized as the concentrator RO train. The maximum
water recovery of the first stage is WRmax

1 = 56.25%, of the second stage is WRmax
2 = 54.32%

and of the third stage is WRmax
3 = 50%. Therefore the primary RO train has a maximum

water recovery of WRmax
prim = 80%. Overall, this results in a RO plant with a maximum

achievable water recovery of WRmax
sys = 90%. The detailed RO process flow structure is

given in Figure 1. It can be seen that the permeate of two primary RO trains are blended
and used as a feed for the third stage or concentrator RO train. Only pressurization of the
initial feed flow and repressurization of the feed flow of the third stage are taking place.
Further, the Advanced Turbo Turbocharger AT-1500 of Energy Recovery Inc. is used as an
energy recovery device (ERD) in the desalination plant. It is located on the concentrate side
of the third stage. The membrane system of each stage is specified in Figure 1. Throughout
the plant spiral wound membranes BW30-400/34 produced by Dow Filmtec are used. All
available measurement points and their respective type throughout the RO plant are given
in the same figure.

Measurements of all marked points for one and a half years in an hourly frequency
were available (beginning of 2017 to mid 2018), resulting in 14,542 data points for each
parameter. In January 2017, the H2Oaks desalination plant has commenced operation, and
therefore a variety of operating points are captured from 2017 to mid 2018, since the plant
operation was still being tested.The various operational feed flows (e.g., zero feed flow for
maintenance) being tested are presented in Figure 2. Information regarding the maximum
ramp up and ramp down rates was also collected from this set of data, with the maximum
rump up in one hour in 2017 being 97% or 1694.35 m3

h , and the maximum ramp down in

one hour being 49% or 858.53 m3

h .
The concentration of the permeate flows of each stage, the permeate flow of the primary

RO train and the overall permeate concentration have been measured. The first and second
stage consist of four parallel RO flows, whereas the third stage consists of two parallel flows.
For each respective parallel RO flow separate pressure measurements are available. Taking
into account the number of membranes, columns and pressure vessels incorporated in each
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stage, this results roughly in a “4-2-1” RO separation set-up. Only data regarding the feed
flow of the system has been collected. It is important to note that the pressure measurement
of the retentate in the third stage is taking place after the energy recovery device. Also, the
retentate flow of the first stage is the feed flow of the second stage. Table 1 summarizes all
available data. The feed and retentate pressure of the second stage, third parallel flow, are
for example given as Pf ,2,3 and Pr,2,3. The permeate concentration is specified as Cp,stage and
the feed flow as Q f . In addition, measurements regarding the concentration of the permeate
after the primary RO train (Cp,prim,1, Cp,prim,2, Cp,prim,3, Cp,prim,4), as well as measurements
of the overall permeate concentration of the system (Cp,sum) are available. It is worth noting
that conductivity (µS

cm ) is a measure of concentration ( mg
L ) and can be expressed as such [57],

thus the two terms are used interchangeably throughout this work.

Conductivity Measurement Available.

Pressure Measurement Available.

Feed Flowrate Measurment Available.
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Figure 1. RO process overview and available measurements of the H2Oaks Desalination plant.
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Figure 2. Feed flows of the RO plant of the fist six month of the year 2017.
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Table 1. Overview of measured data throughout the RO plant per stage. The pressures were measured
in psi and the feed flow in gal

min . Both have been converted to SI units.

Parameter Stage 1 Stage 2 Stage 3

Feed pressure (bar) Pf ,1,1, Pf ,1,2, Pf ,1,3, Pf ,1,4 Pf ,2,1, Pf ,2,2, Pf ,2,3, Pf ,2,4 Pf ,3,1, Pf ,3,2
Retentate pressure (bar) Pr,2,1, Pr,2,2, Pr,2,3, Pr,2,4 Pr,3,1, Pr,3,2

Permeate Conductivity (µS
cm ) Cp,1,1, Cp,1,2, Cp,1,3, Cp,1,4 Cp,2,1, Cp,2,2, Cp,2,3, Cp,2,4 Cp,3,1, Cp,3,2

Feed flow ( m3

h ) Q f

Thus, in this work, we present a framework for the optimal operation of industrial-
scale RO desalination plants, using plant data to derive optimized process parameter results,
with the goal of minimizing the overall energy consumption of the RO system. To do so,
the obtained data is analyzed to derive linear surrogate models for all possible process
parameters. If the dependencies between parameters are non-linear, ANNs with rectified
linear units (ReLU) as activation functions are introduced to capture the observed behavior
adequately. Then, the derived surrogate models can be reformulated as one mixed-integer
linear programming (MILP) problem to optimize the energy consumption of the plant. The
optimization model can further be modified to obtain Pareto-optimal solutions regarding
the energy consumption minimization and the output water maximization. This work
further includes a comparison of various ANN set-ups with changing inputs and outputs
for calculating the overall permeate concentration of the plant. Depending on the research
task at hand, researchers can choose models most tailored to their application.

3. Surrogate Modeling

Using the phenomenological transport equations for RO membranes to derive opera-
tional desalination plant parameters, results in a complex system of equations, which is
computationally expensive to solve, especially within the context of optimization [24,25].
To overcome these drawbacks, linear surrogate models are employed to capture the oper-
ational RO plant behavior. To be more precise, linear correlations for the approximation
of the retentate pressures of each stage and parallel flows have been derived, together
with estimations of the water recovery of each stage. Then, the data has been used for the
training of a feed-forward ANN with ReLUs as activation functions to approximate the
permeate concentrations of each stage with the aim of calculating the overall permeate
concentration of the system. An ANN with ReLUs has been selected since it can be exactly
reformulated as a MILP, facilitating the optimization of the system, as it can be embedded
into optimization formulations and conserve their linearity [58]. For each ANN training
the obtained data has been split at random into a training set (70%), a validation set (15%)
and a testing set (15%) to reduce the possibility of over- and under-fitting [59,60]. To do
so, initially, the ANN is fit to the training data set by adjusting the weights and biases of
all neurons in each hidden layer using the Levenberg-Marquardt algorithm to minimize
the sum of squared errors [61,62]. Then, the fitted model is used for an unbiased evalua-
tion of a second data set called validation, while the model’s hyperparameters are tuned.
Lastly, the final model is used for an unbiased approximation of the independent test data
set [63]. Further, for all following surrogate models each data set has been normalized
between −1 and 1. All reported root mean square error (R) values are referring to the
normalized data and the complete data set under investigation (training, validation and
testing for ANNs). Apart from that, a linearized objective function based on the energy
consumption of the RO system is derived.

3.1. Retentate Pressures

To calculate the retentate pressure of each stage i and parallel flow j a linear correlation
based on the respective feed pressure has been assumed, as summarized in Equation (1).

Pr,i,j = ai,j · Pf ,i,j + bi,j (1)



Membranes 2022, 12, 199 6 of 26

The results of the approximation are summarized in Figures 3–5 for one of the parallel
flows of the first, second and third stage. The remaining results can be found in the
Appendix A Tables A2–A5 and Figures A1–A7.

0 2 4 6 8 10 12 14

P
f,1,1

 (bar)

0

2

4

6

8

10

12

P
r,

1,
1
 (

ba
r)

Linear Regression
Measured Data

Figure 3. Linear regression results of retentate pressure of stage 1, first parallel flow.
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Figure 4. Linear regression results of retentate pressure of stage 2, first parallel flow.

Regarding stage 3, it can be seen that even with a relatively good root mean square
error of R = 0.97 the actual behavior is not captured adequately. A reason for this is
most likely that in this case, the pressure measurement occurs after the energy recovery
device and not immediately after the RO unit. Nevertheless, for the energy optimization
it is especially important to calculate the pressure drop across the energy recovery device
(∆PERD,j, j = {1, 2}) since it can be used accordingly for energy recovery and therefore
has the potential to improve the energy efficiency of the system [64]. Therefore, for the
third stage, the pressure difference across the ERD is approximated with an ANN with
ReLU activation functions. To calculate said pressure difference from the obtained data, it
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is assumed that the pressure drop across the RO unit is negligible (Pf ,3,j = Pr,3,j, j = {1, 2})
for sufficiently high pressures [65]. Further, the data set for each parallel flow has been
united in one overall data set, since the plant only uses one ERD. The most advantageous
ANN in terms of simplicity and accuracy was obtained for one hidden layer and three
nodes, resulting in an overall root mean square error of R = 0.9983. Further, the derived
weights and biases of the ANN are summarized in Table A6 of the Appendix A. In this case,
not only the accuracy could be improved, but the surrogate model follows more closely
the observed trend, as can be seen in Figure 6. However, using the obtained ANN for
calculating the output pressures of the ERD based on the ANN (PERD

out,j = Pf ,3,j − ∆PERD,j)
did not yield satisfactory results, as can be seen in Figure A8. It is important to note that
Pr,3,j as previously mentioned in Section 2, is now renamed as PERD

out,j .
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Figure 5. Linear regression results of retentate pressure of stage 3, first parallel flow.

0 2 4 6 8 10 12 14 16 18

P
f,3

 (bar)

0

2

4

6

8

10

12

14

16

 P
ou

t
E

R
D

 (
ba

r)

Measured Data
Surrogate Model
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Since it may be desired to not only approximate the pressure difference across the ERD,
but also the outlet pressure of the ERD, another ANN with ReLUs as activation functions
is utilized to to so. The most advantageous result was obtained when the ANN was only
trained with the data set of parallel flow one, resulting in R = 0.9786, with one hidden layer
and two nodes. The derived weights and biases of the ANN are summarized in Table A7 of
the Appendix A. The results of the surrogate are summarized in Figures A9 and A10. The
presented approach results overall in a mathematical description of the pressures of stage 3
according to Figure 7.
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Figure 7. Stage 3 pressure description.

3.2. Water Recoveries

To ensure that the RO plant operates adequately in terms of water consumption, the
water recoveries have been estimated for each stage based on the actual pressure measured
Pi,j and the maximum observed pressure max(Pi,j) in each stage and parallel flow. A linear
correlation between the pressures of each parallel flow and the water recovery of the
respective stage is assumed [66], as introduced in Equation (2). Then, based on an overall
mass balance the RO plant water recovery can be calculated according to Equation (3).

WRi = WRmax
i ·

∑j Pi,j

∑j max(Pi,j)
(2)

WRsys = WR1 + WR2 · (1−WR1) + WR3 · (1−WR2) · (1−WR1) (3)

This approach results in water recovery estimations based on the obtained data as
specified in Table 2.

Table 2. Results of estimating the water recoveries throughout the RO plant.

Parameter Mean Max Min

WR1 31.13% 52.77% 0.37%
WR2 29.35% 50.16% 0.34%
WR3 18.60% 39.50% 0%

WRsys 57.92% 85.66% 0.97%
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3.3. Permeate Concentration

Since surrogate models for the retentate pressures and energy recovery have already
been defined, the only variable left to compute is the overall permeate concentration. To
do so, again an ANN with ReLUs as activation functions is employed. Further, instead of
simply using defined inputs as the sole inputs of the ANN (input = {in(t)}) to compute
the outputs (output = {out(t)}), it is also possible to consider as an additional input
the inputs of the previous time point (input = {in(t), in(t − 1)}) or the outputs of the
previous time point (input = {in(t), out(t − 1)}). The latter two approaches are used
to capture the dynamics of the system. For all here presented ANN results, the last
approach (input = {in(t), out(t− 1)}) was selected, since the R value was the highest for
all investigated cases, compared to the other two set-ups.

Generally, with the available data, it is possible to generate surrogate models based
on ANNs for several plant set-ups. It is possible to generate an ANN for each respective
stage, for each RO train or for the complete RO plant. Further, several different process
parameters can be considered as inputs of the ANN, as summarized in Table 3. It is worthy
to note that adding several layers has been investigated for all presented cases as well.
However, the accuracy could not be improved. The presented number of nodes (#nodes) in
the hidden layer represents the number of nodes after which no significant change in the R
value (second decimal) could be detected by further increasing the number of nodes.

Moreover, Table 3 also summarizes the results of each ANN training in terms of
R, to compare the accuracy of the derived surrogate models. In this case, we desire a
compromise between accuracy and simplicity of the model. The most accurate networks
are being generated, when each stage is modeled separately. However, in this case the
results of each surrogate have to be used for further calculations, i.e., closing the overall
permeate mass balance, which reduces the accuracy of the obtained results in terms of
approximating the overall permeate concentration of the system. In addition, more nodes
are required to achieve these high R values (with the expectation of stage 3). Apart from
that, in only 56 out of 14,543 data points (0.39%) the observed permeate concentration is
higher than the restriction for drinking water (500 mg

L [67]), with a maximum observed
overall permeate concentration of 626 mg

L . Therefore, we decided to use the overall RO
plant surrogate model one (R = 0.895), which is arguably one of the least accurate surrogates
of the presented ones, but by far the simplest one and yet still sufficiently accurate for the
purpose of energy optimization, while fulfilling the drinking water quality restriction. The
results of the ANN training for the selected case, split into the training, testing, validation,
as well as showing the overall result, is summarized in Figure A11 of the Appendix A.
Additionally, the derived weights and biases of the ANN are presented in Table A8 of the
Appendix A.

It is important to mention that also a multivariate linear regression was employed
instead of using an ANN, for the same inputs and outputs as the selected surrogate, which
resulted in less accurate approximations (R = 0.848), as can be seen in Figure A12.

3.4. Objective Function

To calculate the overall RO plant energy consumption, the specific energy consumption
(SEC) of a single pump, according to Equation (4), is applied to the RO system, resulting in
an expression as shown in Equation (5) [68].

SEC =
Q f · ∆P
η ·Qp

(4)

SEC =
Q f

Qp
· ( 1

4 · η1

i=4

∑
j=1

Pf ,1,j +
(1−WR1)(1−WR2)

η1
(

1
2

i=2

∑
j=1
·Pf ,3,j −

1
4

i=4

∑
j=1

Pr,2,j)− · · ·

· · · (1−WR1)(1−WR2)(1−WR3) · η2

2

i=2

∑
j=1

∆PERD,j)

(5)
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Here, η1 denotes the pump efficiency and is assumed to be 0.74. In contrast, the
efficiency of the ERD is assumed to be η2 = 0.8 [69]. The remaining factors are derived
from mass balance equations considering the process flows, as presented in Figure 1. To
obtain a linear objective function WR1, WR2 and WR3 are substituted for their respective
maximum possible values and the first factor is neglected, resulting in Equation (6):

SEC∗ =
1

4 · η1

i=4

∑
j=1

Pf ,1,j +
1

10 · η1
(

i=2

∑
j=1

Pf ,3,j −
1
2

i=4

∑
j=1

Pr,2,j)−
η2

20

i=2

∑
j=1

∆PERD,j (6)

Table 3. Inputs and outputs of various possible ANNs. In each case only one hidden layer has been
considered (input = {in(t), out(t− 1)}; output = {out(t)} ).

Approach Input Output #nodes R

Q f , WR1
Cp,1,1, Cp,1,2, 7 0.961
Cp,1,3, Cp,1,4

Q f , WR1, Cp,1,1, Cp,1,2, 10 0.973
Stage 1 Pf ,1,1, Pf ,1,2, Pf ,1,3, Pf ,1,4 Cp,1,3, Cp,1,4

Q f , WR1, Cp,1,1, Cp,1,2,
Cp,1,3, Cp,1,4

9 0.972Pf ,1,1, Pf ,1,2, Pf ,1,3, Pf ,1,4,
Pf ,2,1, Pf ,2,2, Pf ,2,3, Pf ,2,4

(1−WR1) ·Q f , WR2
Cp,2,1, Cp,2,2, 8 0.958
Cp,2,3, Cp,2,4

(1−WR1) ·Q f , WR2, Cp,2,1, Cp,2,2, 12 0.965
Stage 2 Pf ,2,1, Pf ,2,2, Pf ,2,3, Pf ,2,4 Cp,2,3, Cp,2,4

(1−WR1) ·Q f , WR2, Cp,2,1, Cp,2,2,
Cp,2,3, Cp,2,4

11 0.964Pf ,2,1, Pf ,2,2, Pf ,2,3, Pf ,2,4,
Pr,2,1, Pr,2,2, Pr,2,3, Pr,2,4

Q f , WR1, WR2
Cp,prim,1, Cp,prim,2, 8 0.952
Cp,prim,3, Cp,prim,4

Q f , WR1, WR2, Cp,prim,1, Cp,prim,2,
Cp,prim,3, Cp,prim,4

5 0.951Pf ,1,1, Pf ,1,2, Pf ,1,3, Pf ,1,4,
Primary RO train Pf ,2,1, Pf ,2,2, Pf ,2,3, Pf ,2,4

Q f , WR1, WR2,
Cp,prim,1, Cp,prim,2,
Cp,prim,3, Cp,prim,4

6 0.954Pf ,1,1, Pf ,1,2, Pf ,1,3, Pf ,1,4,
Pf ,2,1, Pf ,2,2, Pf ,2,3, Pf ,2,4
Pr,2,1, Pr,2,2, Pr,2,3, Pr,2,4

(1−WR1) · (1−WR2) ·Q f , Cp,3,1, Cp,3,2 3 0.954
WR3

(1−WR1) · (1−WR2) ·Q f , Cp,3,1, Cp,3,2 5 0.968
Stage 3 WR3, Pf ,3,1, Pf ,3,2

(1−WR1) · (1−WR2) ·Q f ,
Cp,3,1, Cp,3,2 4 0.968WR3, Pf ,3,1, Pf ,3,2

Pr,3,1, Pr,3,2

Q f , WR1, WR2, WR3, Cp,sum 3 0.895

Q f , WR1, WR2, WR3,
Cp,sum 4 0.894Pf ,1,1, Pf ,1,2, Pf ,1,3, Pf ,1,4

Pf ,3,1, Pf ,3,2

Overall plant Q f , WR1, WR2, WR3,

Cp,sum 3 0.898
Pf ,1,1, Pf ,1,2, Pf ,1,3, Pf ,1,4
Pf ,2,1, Pf ,2,2, Pf ,2,3, Pf ,2,4
Pr,2,1, Pr,2,2, Pr,2,3, Pr,2,4
Pf ,3,1, Pf ,3,2, Pr,3,1, Pr,3,2
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4. Optimization Model

To incorporate the ANN to calculate the pressure difference across the ERD and the
ANN to approximate the permeate concentration in the optimization model, both ANN
models are reformulated as MILPs, as presented in [58,70]. Therefore, the weights and
biases of the former ANN are referred to as WERD

k,l and bERD
k,l , where the hidden and output

layer can be distinguished with k = {1, 2} and the number of nodes in the hidden layer
are given as l = {1, 2, 3}. For the latter ANN, an additional index h = {1, 2, 3, 4, 5} has to
be introduced to distinguish the weights of the input layer for the set of inputs, resulting
in WRO

h,k,l and bRO
k,l . Further, auxiliary variables x1,l,j, s1,l,j and z1,l,j are introduced for the

reformulation of the ANN approximating ∆PERD,j. Accordingly, for the ANN calculating
Cp,t, x2,l , s2,l and z2,l are introduced. To differentiate between the permeate concentration of
a previous time point and the permeate concentration in the time point under investigation
the indices t and t− 1 are utilized. Together with the other surrogate models for the retentate
pressures and the water recovery estimation, this results in the following optimization
model (Equations (7)–(25)) to minimize the overall energy consumption of the RO system.

min SEC∗ =
1

4 · η1

i=4

∑
j=1

Pf ,1,j +
1

10 · η1
(

i=2

∑
j=1

Pf ,3,j −
1
2

i=4

∑
j=1

Pr,2,j)−
η2

20

i=2

∑
j=1

∆PERD,j (7)

s.t. Q f ≥ Qres
f (8)

WRi ≥WRres
i , ∀i = {1, 2, 3} (9)

Cp,t ≤ Cres
p (10)

Cp,t = Cp,t−1 (11)

WRi = WRmax
i ·

∑j Pi,j

∑j max(Pi,j)
, ∀i = {1, 2, 3} (12)

Pr,i,j = ai,j · Pf ,i,j + bi,j, ∀i = {1, 2}, j = {1, 2, 3, 4} (13)

Pf ,2,j = Pr,1,j, ∀j = {1, 2, 3, 4} (14)

WERD
1,l · Pf ,3,j + bERD

1,l = x1,l,j − s1,l,j, ∀j = {1, 2}, l = {1, 2, 3} (15)
3

∑
l=1

WERD
2,l · x1,l,j + bERD

2 = ∆PERD,j, ∀j = {1, 2} (16)

x1,l,j − z1,l,j ·U1,l,j ≤ 0, ∀j = {1, 2}, l = {1, 2, 3} (17)

s1,l,j − (1− z1,l,j) · L1,l,j ≤ 0, ∀j = {1, 2}, l = {1, 2, 3} (18)

WRO
1,1,l ·Q f +

3

∑
i=1

WRO
1,i+1,l ·WRi + WRO

1,5,l · Cp,t−1 + bERD
1,l = · · · (19)

· · · = x2,l − s2,l , ∀l = {1, 2, 3} (20)
3

∑
l=1

WRO
2,l · x2,l + bERD

2 = Cp,t (21)

x2,l − z2,l ·U2,l ≤ 0, ∀l = {1, 2, 3} (22)

s2,l − (1− z2,l) · L2,l ≤ 0, ∀l = {1, 2, 3} (23)

x1,l,j, s1,l,j, x2,l , s2,l ≥ 0, ∀l = {1, 2, 3}, j = {1, 2} (24)

z1,l,j, z2,l ∈ {0, 1}, ∀l = {1, 2, 3}, j = {1, 2} (25)

The objective function denoting the energy consumption of the RO plant, as derived
in the previous section, is presented in Equation (7). To calculate the overall energy con-
sumption in kW, the objective function is multiplied with Q f . To derive the specific energy
consumption in kWh

m3 , the objective is divided by the overall water recovery of the system as
calculated with Equation (3). From Equations (8)–(10) process restrictions are introduced to
guarantee that a minimum feed flow and a minimum water recovery per stage are fulfilled,
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to produce drinking water (Cres
p = 500 mg

L ). Equation (11) is introduced to incorporate
a steady-state process assumption and guarantee that in t− 1 the water quality is com-
parable to the one obtained in t. Then, the water recoveries of each stage based on the
presented linear pressure correlations (see Equation (2)) of the pressure in the respective
parallel flows of each stage (Equation (12)) and the retentate pressure of stages one and
two according to the linear pressure correlations are calculated (Equation (13)). Further,
the retentate pressure of stage one is used as the feed pressure of stage two (Equation (14)).
Equations (15)–(18) summarize the MILP reformulation of the ANN to approximate the
pressure difference across the ERD, whereas Equations (20)–(23) are used as the representa-
tion of the ANN to calculate the overall permeate concentration. To successfully implement
these reformulations, the auxiliary variables x1,l,j, s1,l,j, x2,l and s2,l have to be positive, to
split the ReLU output into a positive and negative component according to the binary
variables z1,l,j and z2,l (Equations (24) and (25)). This ReLU output distinction is further
implemented with the inequality constraints shown in Equations (17), (18), (22) and (23),
which introduce lower and upper boundaries for each output of a node in the hidden layer
(L1,l,j, U1,l,j and L2,l , U2,l). Overall, the optimization model results in a MILP, which was
solved in MATLAB using the CPLEX solver.

5. Results and Discussion

Next, the optimization model is used for two studies. First of all, the energy of the
system is minimized for distinct water recovery and feed flow restrictions to enable a
comparison of generated results with the actual energy consumption of the desalination
plant. Then, the trade-off between energy minimization and water utilization in terms of
the feed flow and the overall water recovery are visualized in a Pareto front. To do so, the
ε-constrained method is used for multi-objective optimization [71].

5.1. Energy Minimization

To evaluate the optimization model, the overall energy consumption of the RO plant
for the year 2017 is compared to the energy optimization results. Therefore, the data set
for the year 2017 for the feed flow and the estimated water recovery of the system are split
into 12 sets according to the month of the year. Then, the monthly average of the feed
flow and the overall water recovery are calculated. The obtained values are summarized
in Table 4. These values are used as a pairwise input of the optimization model to update
the restrictions shown in Equations (8) and (9). More specifically, the optimization model
is solved while the restrictions of Equation (9) are updated to fulfill the set overall water
recovery as presented in Table 4, calculated with Equation (3).

Table 4. Monthly averaged feed flow and water recovery of the RO plant for the year 2017.

Parameter Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Q f (·102 m3

h ) 8.11 9.52 2.13 6.95 6.45 10.7 10.2 8.29 9.86 10.6 11.7 10.7
WRsys(%) 54.2 56.8 14.5 47.41 40.0 61.9 60.9 52.6 60.4 63.2 67.4 62.8

The results of this case study are presented in Figure 8. In June 2017, the fraction of
the derived RO desalination energy consumption to the overall energy consumption of
the plant is at a year high of 51%, to compare, in March 2017 said fraction is at a year low
of 10%, whereas calculating the average results in a fraction of only 40%. Generally, the
energy consumption of the RO system is the major energy consumer of a RO plant having a
major impact on the process performance and sustainability [72]. Therefore, the minimized
energy consumption of the RO system is comparably low, i.e., less than half the overall
consumed energy of the plant on average, yielding satisfactory results which can lead to
substantial energy savings.

Originally, the obtained monthly energy consumptions were planned to be compared
to literature values. However, the energy consumption of RO plants is reported in the
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literature normalized with the permeate output in kWh
m3 permeate . The here presented results

are derived in MWh. However, the SEC of the plant for various operating points is
presented and compared to literature values in Section 5.2. For now, the results of the
energy optimization are compared to the overall energy consumption of the high service
pumps of the desalination plant, to classify the order of magnitude of results. In 2017,
the high service pumps consumed 1.5169× 103 MWh

year . Summing up the obtained results

to calculate the energy consumption for 2017 results in 1.3929× 103 MWh
year . Consequently,

the difference in energy consumption is 124 MWh or around 8%. Since the overall energy
consumption of the RO system is in the same order of magnitude as the energy consumption
of the high service pumps, the initial statement of obtaining advantageous results, in terms
of minimizing the systems energy consumption, is confirmed.
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Figure 8. Energy minimization results of the year 2017. Comparison of minimized energy results and
the overall RO plant energy consumption.

5.2. Multi-Objective Optimization

After confirming the capabilities of the optimization model, the model was expanded
to consider multiple objectives using multi-objective optimization. To do so, the constraints
summarized in Equations (8) and (9) are updated to calculate the minimized energy for a
set of water recoveries and feed flows. Compared to the previous study, where a pair of
water recovery and feed flow were the inputs, an array of water recoveries and feed flows
are used as inputs, performing the minimization at each feed flow for all specified water
recoveries. The multi-objective optimization has only been performed in the RO plant’s
relevant water recovery region of 40% to 85%. The obtained Pareto-optimal solutions are
visualized in Figure 9. It can be seen that the energy consumption increases with increasing
water recoveries, as well as increasing feed flows. Apart from that, it can be deducted
that the energy consumption from the lowest water recovery to the highest water recovery
for all feed flows increases approximately by a factor of 5. Additionally, comparing the
calculated energy consumption for the highest feed flow with the lowest one, results in
the deduction that the gap between the two feed flows increases with increasing water
recoveries. For a water recovery of 50% the energy consumption difference between the
two is approximately 125,883 kW, whereas the difference increases to 636,471 kW for a
water recovery of 85%. Therefore, depending on the separation task at hand, this result can
lead to indirect energy savings.
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To further analyze the results, the specific energy consumption in kWh
m3 of the results

is calculated and summarized in Table 5. The specific energy consumption can be ap-
proximated with the linear correlation presented in Equation (26), with an accuracy of
R = 0.998.

SEC (
kWh
m3 ) = 0.753 ·

WRsys(%)

100
− 0.1326 (26)

As expected, the specific energy consumption increases with the water recovery of
the system. Increasing the water recovery by a factor of 1.7 from 50% to 85% results in
approximately doubling the specific energy consumption (factor of 2.07), from 0.2455 kWh

m3

to 0.5072 kWh
m3 . This underlines the sensitivity of the specific energy consumption to changes

in water recovery since the relative change between the respective factors is more than 20%.
Lastly, we compared the obtained minimum specific energy consumption with literature
values. Stillwell and Webber report observed literature values for the SEC of BWRO
desalination plants between 0.5 kWh

m3 and 3 kWh
m3 [73]. In addition, Sassi and Mujtaba report

a minimized SEC between 0.578 kWh
m3 and 0.730 kWh

m3 [20]. The highest here observed SEC is
0.5072 kWh

m3 for WRsys = 85%. Overall, this comparison underlines the competitiveness of
the presented optimization methodology, as well as the potential energy savings when this
approach is employed.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

WR
sys

 (-)

0

100

200

300

400

500

600

700

800

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

W
)

Q
f
 = 1703.44 m3/h

Q
f
 = 1362.75 m3/h

Q
f
 = 1022.06 m3/h

Q
f
 = 681.37 m3/h

Q
f
 = 454.24 m3/h

Q
f
 = 227.12 m3/h

Figure 9. Pareto front evaluating the trade-off between minimizing the energy consumption in kW,
the feed flow, as well as the water recovery of the system.

Table 5. Specific energy consumption of the obtained multi-objective optimization results.

W Rsys(%) SEC ( kWh
m3 )

44 0.1923
50 0.2455
55 0.2868
60 0.3245
65 0.3597
70 0.3941
75 0.4294
80 0.4665
85 0.5072
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6. Conclusions

We presented a comprehensive methodology to utilize industrial scale RO desalination
plant data for surrogate modeling and subsequent optimization. Linear surrogate models
were developed for the retentate pressures of the parallel flows of the first and second
stage. For the pressure difference across the ERD, as well as the output pressure of the
ERD, ANNs with ReLUs were trained and reformulated as MILPs with the feed pressure of
stage three as the sole input. To calculate the permeate concentration of the system several
possible ANN formulations have been presented and compared in terms of their respective
inputs and accuracy (R). Depending on the task at hand different surrogate models can be
selected. For the subsequent optimization case studies the simplest ANN system resulted
in sufficiently accurate results and was therefore reformulated as a MILP.

The optimization model was first used for minimizing the energy consumption of
the RO plant based on the monthly averaged feed flows and water recoveries of the year
2017. The derived energy consumption constituted at most 51% of the monthly overall RO
desalination energy consumption and on average 40% throughout the year, underlining
the major energy saving potential using the presented methodology. In fact, the derived
energy consumption is on the same order of magnitude as the energy consumption of the
high service pumps of the RO plant.

Then, the model was used to derive a Pareto front to illustrate the trade-offs between
minimizing the energy of the system as well as maximizing the feed flow and water recovery
of the system. Here, the potential for indirect savings was uncovered by comparing the
increase in energy consumption for the lowest and highest utilized feed flows. The results
were further analyzed in terms of the specific energy consumption of the system, which
ultimately showed the significant impact of changing water recoveries on the specific
energy consumption.

Overall, the presented methodology should be understood as a recipe for other re-
searchers on how to move from obtained RO data sets to an optimization model for single
and multi-objective optimization using linear data driven surrogate models. In subsequent
work, the objective function can be re-evaluated by introducing a nonlinear function and
compare obtained results to the linear case. Moreover, if other data points across the plant
can be obtained, i.e., the permeate flows or water recoveries for each stage, the accuracy of
the surrogates can be further validated and if necessary modified.
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Abbreviations

The following abbreviations are used in this manuscript:
ANN Artificial neural network
BWRO Brackish water reverse osmosis
ERD Energy recovery device
FEWN Food-energy-water nexus
GPM Gallons per minute
MILP Mixed-integer linear programming
ML Machine learning
PSI Pounds per square inch
RO Reverse osmosis
SAWS San Antonio Water System
SEC Specific energy consumption
TDS Total dissolved solids

Symbols

The following symbols are used in this manuscript:
Q Volume flow m3

h ( gal
min )

WR Water recovery %
P Pressure bar (psi)
∆P Pressure difference bar (psi)
C Concentration mg

L (µS
cm )

R Root mean square error -
W Weight of an ANN node -
b Bias of an ANN node -
x Positive ReLU output -
s Negative ReLU output -
z Binary variable to distinct between positive and negative ReLU outputs -
L Lower boundary -
U Upper boundary -
η1 Pump efficiency -
η2 ERD efficiency -

Indices

The following indices are used in this manuscript:
f Feed
p Permeate
r Retentate
sys System (water recovery specific)
sum Overall system value (permeate concentration specific)
primary Primary RO train
max Maximum possible value
res restriction (bound on a variable)
h input factors of hidden layer h ∈ {1, 2, 3, 4, 5}
i number of stages i ∈ {1, 2, 3}
j number of parallel flows j ∈ {1, 2, 3, 4}
k number of ANN layers k ∈ {1, 2}
l number of nodes in hidden layer l ∈ {1, 2, 3}
ERD Energy recovery device
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Appendix A

Table A1. Inorganic feed water composition of the RO plant. Comparison of taken measurements in
January and July 2017.

Analyte Results January 2017 ( mg
L ) Results July 2017 ( mg

L )

Total Alkalinity as CaCO3 222 227
Total Dissolved Solids 1300 1350

Chloride 237 243
Fluoride 0.215 Not measured
Nitrate <0.5 Not measured

Phosphate <0.1 Not measured
Sulfate 462 481

Calcium 26.8 24.4
Iron 0.216 0.171

Magnesium 12.5 11.0
Silicon 7.60 8.15
Sodium 418 416

Strontium 2.17 1.96
Iron Dissolved <0.125 0.159

Aluminum 13.9× 10−3 14.1× 10−3

Barium 32.8× 10−3 31.5× 10−3

Hardness (Ca/Mg calculation) 118 106
Silica as SIO2, Total 16.3 17.4

Table A2. Normalized liner regression results for the retentate pressure of Stage 1.

Stage 1
Parallel Flow 1 2 3 4

Slope 0.9738 0.9961 0.9639 0.9394
Intercept −0.0178 −0.0109 −0.0159 −0.0429

Table A3. Normalized liner regression results for the retentate pressure of Stage 2.

Stage 2
Parallel Flow 1 2 3 4

Slope 0.9428 0.9717 0.9387 0.8924
Intercept −0.0438 0.0002 −0.0344 −0.0821

Table A4. Normalized liner regression results for the retentate pressure of Stage 3.

Stage 3
Parallel Flow 1 2

Slope 0.5704 0.5551
Intercept −0.2841 −0.3053

Table A5. Linear regression performance for the retentate pressure of each stage and parallel flow, in
terms of R (root mean square error).

Parallel Flow Stage 1 Stage 2 Stage 3

1 0.9996 0.9997 0.9744
2 0.9965 0.9997 0.9746
3 0.9997 0.9999 X
4 0.9996 0.9998 X
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Figure A1. Linear regression results of retentate pressure of stage 1, second parallel flow.
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Figure A2. Linear regression results of retentate pressure of stage 1, third parallel flow.

Table A6. Weights and biases of the ANN to approximate ∆PERD
out . One input (Pf ,3,j) and one hidden

layer with three nodes.

Layer Weight Bias

Hidden layer
0.7617 −0.2093
−0.9346 0.6925
0.7775 0.3956

Output layer
−0.5216
−0.4094 −0.3413
1.2498
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Figure A3. Linear regression results of retentate pressure of stage 1, fourth parallel flow.
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Figure A4. Linear regression results of retentate pressure of stage 2, second parallel flow.

Table A7. Weights and biases of the ANN to approximate PERD
out,j , ∀j = {1, 2}. One input (Pf ,3,j) and

one hidden layer with two nodes.

Layer Weight Bias

Hidden layer −1.7695 −1.3021
1.7932 −1.3353

Output layer −2.0706 −0.0172.1311
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Figure A5. Linear regression results of retentate pressure of stage 2, third parallel flow.
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Figure A6. Linear regression results of retentate pressure of stage 2, fourth parallel flow.

Table A8. Weights and biases of the ANN to approximate Cp,sum. Five inputs (Q f , WR1, WR2, WR3,
Cp,t−1) and one hidden layer with three nodes.

Layer Weight Bias

Hidden layer
−0.9282 0.1619 1.1833 −0.7842 1.2263 0.2516
−0.0198 −0.0470 0.0774 0.0187 −1.4914 −0.4574
−0.6438 1.0768 −2.2842 0.9856 0.7062 −0.5085

Output layer
−0.2997
−0.5658 −0.3704
1.8043
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Figure A7. Linear regression results of retentate pressure of stage 3, second parallel flow.
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Figure A8. Calculation results PERD
out based on the surrogate model for ∆PERD

out . Both parallel flows
are taken into account.
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Figure A9. Approximation of PERD,1
out with a separate ANN, based on stage 3 parallel flow one.
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Figure A10. Approximation of PERD,2
out with a separate ANN, based on stage 3 parallel flow one.
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Figure A11. Results of the ANN training for the approximation of the overall permeate concentration,
R = 0.895.
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Figure A12. Normalized results multivariate linear regression of the RO system to approximate the
overall permeate concentration Cp,sum, R = 0.848.
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