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Abstract: Proteolytic ectodomain release is a key mechanism for regulating the function of many 
cell surface proteins. The sheddases ADAM10 and ADAM17 are the best-characterized members of 
the family of transmembrane disintegrin-like metalloproteinase. Constitutive proteolytic activities 
are low but can be abruptly upregulated via inside-out signaling triggered by diverse activating 
events. Emerging evidence indicates that the plasma membrane itself must be assigned a dominant 
role in upregulation of sheddase function. Data are discussed that tentatively identify phospholipid 
scramblases as central players during these events. We propose that scramblase-dependent exter-
nalization of the negatively charged phospholipid phosphatidylserine (PS) plays an important role 
in the final activation step of ADAM10 and ADAM17. In this manuscript, we summarize the current 
knowledge on the interplay of cell membrane changes, PS exposure, and proteolytic activity of 
transmembrane proteases as well as the potential consequences in the context of immune response, 
infection, and cancer. The novel concept that scramblases regulate the action of ADAM-proteases 
may be extendable to other functional proteins that act at the cell surface.  

Keywords: ADAM17; ADAM10; activation; cell membrane asymmetry; phosphatidylserine; scram-
blases 
 

1. Introduction 
Membrane anchored metalloproteases of the ADAM family assume central functions 

in the living cell by the controlled cleavage and release of biologically active proteins and 
peptides from the membrane surface. Two predominant members, ADAM10 and 
ADAM17, are indispensable for embryonic development in mice [1,2]. Loss of ADAM17 
is associated with severe multiorgan dysfunction in humans. Patients with a homozygous 
mutation in ADAM17 presented with severe diarrhea, skin rash, and recurrent sepsis [3–
5]. 

ADAM17 was originally identified as the TNF-alpha releasing enzyme [6,7]. Today, 
ADAM17 is known to be involved in the shedding of an increasing number of cell surface 
proteins including the EGFR ligands TGF-α and amphiregulin (AREG), TNF receptor 1, 
and L-selectin. Very diverse biological processes are thus regulated by a single protease.  

ADAM10 is the major sheddase of cell adhesion molecules including neuronal (N)-
cadherin [8], epithelial (E)-cadherin [9], and vascular-endothelial (VE)-cadherin [10], but 
also releases the EGFR ligands betacellulin (BTC) and EGF [11] and the low affinity IgE 
receptor CD23 [12]. Moreover, the protease mediates the non-amyloidogenic α-secretase 
cleavage of the Alzheimer’s precursor protein. Dysregulated ADAM10 activity is assumed 
to play a central role in diverse pathologies including Alzheimer’s disease, allergic re-
sponses, and cancer development [13,14]. 

The bewilderingly wide spectrum of potential substrates on the one hand is matched 
by the complexity of cellular processes that fine-tune the individual shedding events on 
the other. The post-translational regulation of ADAM10 and ADAM17 sheddase activity 
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is multifaceted. For ADAM17, inactive rhomboid proteins, iRhom1 and iRhom2, are as-
sumed to be key regulators of maturation, protease function and substrate selectivity [15–
17]. Tetraspanins play an important role for ADAM10 subcellular localization and sub-
strate interaction [18,19]. Moreover, sheddase activity is modulated by changing interac-
tion partners as well as subcellular compartmentalization [20].  

A remarkably broad and heterogeneous spectrum of stimuli has been found to acti-
vate the enzymes [21–24], whereupon substrate cleavage occurs at sites located very close 
to the cell membrane surface. 

Functional upregulation of ADAM10 is generally observed in association with cyto-
solic Ca2+ elevation—as elicitable by treatment of cells with Ca2+ ionophores, purinergic 
receptor agonists, or membrane-perturbating agents [23,25,26]. ADAM17 sheddase activ-
ity is amplified by more diverse signaling pathways including activation of protein ki-
nase C (PKC) and tyrosine kinases such as VEGFR2 or EGFR [27].  

The main thrust of research into the control of sheddase activation has been con-
ducted on these two proteases. They have targeted dissection of events underlying the 
trafficking of the proteases to the cell surface, and of regulatory roles assignable to the 
extracellular domains of the proteases [28,29]. The present review introduces a novel as-
pect into the discussion. We summarize current knowledge regarding the significance of 
PS externalization on proteolytic activity of ADAM10 and ADAM17. Arguments are pre-
sented to support the concept that scramblase-mediated shuffling of phospholipids is a 
key step leading to ADAM10 and ADAM17 activation [30–35]. The potential functional 
consequences of these interactions are discussed and future challenges to be met in field 
are outlined. 

2. ADAMs and the Cell Membrane 
The multifaceted role of the cell membrane in the regulation of shedding has been an 

emerging theme in recent years [26,36]. Cell membrane fluidity appears to directly pro-
mote substrate–protease interaction. Fluidity is affected by content of cholesterol and un-
saturated free fatty acids (FFA). Membrane cholesterol depletion led to increased shed-
dase activity, as did the enhancement of lateral protein mobility evoked through incorpo-
ration of unsaturated FFA [37].  

Organization of membrane nanostructure is a second major issue. Nanodomains rich 
in cholesterol and sphingolipids are thought to form platforms for substrate–protease in-
teraction in the plasma membrane. Depletion of cholesterol or sphingomyelin enhances 
shedding of several ADAM substrates. Application of sphingomyelinase leads to for-
mation of ceramide-enriched nanodomains. This resulted in increased ADAM17-medi-
ated release of substrates in different cells [24].  

Increasing evidence indicates that assembly in multiprotein complexes modulates 
ADAM locations and thus discriminates substrate specificity as well as timing of sheddase 
activation. Vesicular compartments and intracellular organelles work as structural scaf-
folds to coordinate specificity and temporal activity of functional hubs in cell signaling 
and enzymatic function [20].  

3. PS Exposure and Scramblases 
3.1. Cell Membrane Asymmetry 

A germane property of common ADAM stimuli is the breakdown of phospholipid 
asymmetry. The non-random distribution of different lipid species in the lipid bilayer is a 
common feature of all eukaryotic membranes. Phosphatidylserine (PS) is exclusively lo-
cated in the inner leaflet while phosphatidylcholine (PC) and glycolipids are mainly lo-
cated in the outer leaflet of the membrane. This asymmetry is maintained by P4-type 
ATPases (flippases), which transfer the amino phospholipids PS and phosphatidylethan-
olamine (PE) to the cytoplasmic membrane leaflet [38,39]. 
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Irreversible PS externalization occurring upon ATP depletion is a key signal for apop-
totic cell clearance. Massive PS externalization in activated platelets triggers blood and 
platelet coagulation [40].  

Less well known is the fact that breakdown of membrane asymmetry also occurs as 
a transient event in many physiological situations. Among others, surface PS exposure is 
involved in myoblast and osteoclast fusion and is critical for neuronal regeneration [40]. 

PS is externalized through the activation of scramblases, proteins that non-specifi-
cally and bidirectionally translocate phospholipids between the outer and inner leaflets of 
the plasma membrane. The existence of scramblases was postulated decades ago, but their 
molecular identity eluded definition until recently. Diverse transmembrane proteins have 
been implicated in lipid scrambling. Members of the TMEM16 family are by far the best 
characterized [41,42]. 

3.2. The TMEM16/Anoctamin Family 
There are 10 human TMEM16/Anoctamin (ANO) proteins. Although structurally re-

lated, TMEM16A/ANO1 and TMEM16B/ANO2 function as Ca2+-activated chloride chan-
nels and lack scramblase activity. Mammalian TMEM16C/ANO3, D/ANO4, E/ANO5, 
G/ANO7, and K/ANO10 are primarily assigned scramblase activity, while 
TMEM16F/ANO6 and TMEM16J/ANO9 apparently fulfil dual functions as cationic chan-
nels and scramblases [41,43,44]. The function of TMEM16H/ANO8 has not yet been eluci-
dated. ANO-provoked breakdown of cell membrane phospholipid asymmetry can trigger 
a plethora of cellular responses such as blood coagulation [45,46], microparticle release 
[47], membrane repair [48], cell–cell fusion [49–52], and viral infection [40,53,54]. Malfunc-
tions in TMEM16/ANO proteins have been implicated in human diseases, including 
asthma, cancer, bleeding disorders, muscular dystrophy, arthritis, epilepsy, dystonia, and 
ataxia [55–58]. 

3.3. Xkr Scramblases 
Scramblase activity at the plasma membrane was also attributed to members of the 

Xkr family which comprises nine family members in humans. Xkr8 was shown to facilitate 
PS exposure in apoptotic cells by a mechanism that involves cleavage by caspases or acti-
vation via phosphorylation near the caspase recognition site [59,60]. Apoptotic Xkr8-defi-
cient cells do not expose PS. After transfection with Xkr4, Xkr8, or Xkr9, they responded 
to apoptotic stimuli with PS exposure at the cell surface [59]. However, the question 
whether these proteins act as bona fide lipid scramblases is still a matter of debate since 
studies with purified proteins reconstituted into synthetic vesicles have yielded contra-
dicting results with XKR9 [61] and are not available for XKR4 and XKR8. 

3.4. Additional Phosphlipid Scramblases 
There is a third family of phospholipid-translocating proteins, designated phospho-

lipid scramblases (PLSCR). Four human members of this family have been identified 
hPLSCR1-4 [62]. hPLSCR1 and hPLSCR3, the most extensively studied proteins in this 
family, are reported to have crucial roles in apoptosis. Recombinant purified hPLSCR1, 
hPLSCR3 and hPLSCR4 showed scrambling activity in vitro when reconstituted in prote-
oliposomes [63], but the true in vivo role of hPLSCRs in PS exposure still remains a matter 
of debate [40,64,65]. 

In addition, some other transmembrane proteins have recently been implicated in 
lipid scrambling such as few G protein-coupled receptors, the autophagy protein Atg9, 
and the ER protein complex TMEM41B/VMP1 [66–68]. 
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4. The Link between Sheddase and Scramblase Activity 
4.1. PS Exposure and ADAM17 Activity  

Scott syndrome is a rare bleeding disorder caused by the incapacity of blood cells to 
expose PS in response to intracellular Ca2+ elevation. The defect is due to a missense mu-
tation in the calcium-dependent PS scramblase ANO6 [45,69]. The link between the func-
tion of sheddases and scramblases was initially uncovered through experiments with lym-
phocytes from Scott syndrome patients. Calcium influx provoked rapid PS exposure and 
loss of the ADAM17 substrate L-selectin in normal B-cells, but Scott lymphocytes re-
sponded neither with PS exposure nor with substrate shedding. Expression of caspase-
dependent scramblases is unaltered in Scott lymphocytes, so the decisive experiment was 
performed to examine whether apoptosis induction would provoke normal PS-externali-
zation and shedding of the ADAM17 substrate. This turned out to be the case, and the 
possible mechanism underlying ADAM17 activation by PS was investigated [35]. If PS 
directly interacted with the protease, its soluble head group ortho-phosphorylserine (OPS) 
would possibly act as a competitive inhibitor. Indeed, ADAM17-dependent substrate 
shedding was found to be reduced in the presence of OPS in several cell models. 

This prompted a search for a PS interaction motif in the ectodomain of the protein. 
Commencing at the membrane surface, the ectodomain comprises a stalk region, a mem-
brane-proximal domain (MPD), a disintegrin-like domain, and the catalytic domain with 
resolved crystal structure [70,71] (Figure 1). The stalk region of ADAM17 contains a 
unique evolutionally conserved sequence called CANDIS (Conserved Adam seventeeN 
Dynamic Interaction Sequence), which forms an amphipathic helix that can interact with 
the cell membrane [72]. 

 The MPD represented a likely candidate for interaction with PS because of its prox-
imity to the membrane surface. To test for this possibility, recombinant MPD was pro-
duced and found to bind to PS but not to PC liposomes. NMR-spectroscopy localized the 
PS interaction site to a cluster of basic amino acids, R625/K626/K628. Mutation of these 
amino acids to glycines abolished PS binding capacity. When the corresponding ADAM17 
mutant was transfected into ADAM10/ADAM17-double deficient cells, it was no longer 
able to cleave its physiological substrate TGF-α. However, the cells did express ADAM17 
on their surface and the mutated protease was still capable of cleaving a soluble peptide 
substrate in the culture medium. A key finding was thus made that abrogation of PS bind-
ing selectively affected the release of cell membrane-bound substrates but not the bona 
fide enzymatic activity of the protease (Figure 1).  

 
Figure 1. Proposed links between scramblase and ADAM17 function. (a) In non-activated cells, neg-
atively charged phosphatidylserine (PS, red) is mainly sequestered in the inner cell membrane leaf-
let, while phosphatidylcholine (yellow) is mainly localized in the exoplasmic leaflet. ADAM17 (blue) 
has limited access to substrates. The ectodomain consists of a metalloprotease domain, a disintegrin 
domain, and a membrane-proximal domain (MPD) followed by a stalk region. (b) Cell stimulation 
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can lead to scramblase activation and rapid loss of cell membrane asymmetry. Externalized PS elec-
trostatically interacts with positively charged amino acids of ADAM17 and guides the enzyme to its 
substrate. 

The relevance of these findings was confirmed in vivo. Mutagenesis of the three 
amino acids constituting the PS-binding motif led to embryonic lethality in mice [32]. Pri-
mary hepatocytes and fibroblasts were found to express the mutant protease on the cell 
surface. However, release of ADAM17 substrates was completely abolished. The results 
directly supported the concept of transiently externalized PS as the essential trigger of 
ADAM17 sheddase activity in vivo. 

Further studies bore out the contention that ANO6 is a key regulator of ADAM17 
function [30]. Overexpression of ANO6 in HEK293T cells led to increased Ca2+-mediated 
PS exposure that was accompanied by enhanced release of ADAM17 substrates. Transfec-
tion of cells with a constitutively active ANO6 mutant led to spontaneous PS exposure 
and to enhanced release of ADAM17 substrates in the entire absence of any stimuli. Inhib-
itor experiments indicated that ANO6-mediated enhancement of substrate cleavage sim-
ultaneously broadened the spectrum of participating metalloproteinases. Complementary 
experiments showed that siRNA-mediated downregulation of ANO6 in human umbilical 
vein endothelial cells decreased ionophore-mediated release of TNFR1.  

4.2. ADAM10 Sheddase Function and PS Externalization 
The question arose whether the homologous protease ADAM10 would similarly be 

subject to regulation by ANO6 and PS exposure. 
Our results pointed to such a scenario [31]. Overexpression of ANO6 led to increased 

PS externalization and substrate release. Transfection with a constitutively active form of 
ANO6 resulted in maximum sheddase activity in the absence of any stimulus. Calcium-
dependent ADAM10 activation could not be induced in lymphocytes of patients with 
Scott syndrome harboring a missense mutation in ANO6. In principle analogy with 
ADAM17, inhibition experiments with soluble OPS indicated that triggering of proteolytic 
activity involved a direct interaction of surface-exposed PS with the protein. ADAM10 has 
basically a similar modular structure as ADAM17. The X-ray crystal structure of the 
ADAM10 ectodomain has been elucidated by Seegar et al [73]. It was found that the en-
zyme active site is occluded by a short peptide loop located at the commencement of the 
stalk region (residues 647–655). We became aware that a putative PS binding site similar 
to the cationic motif identified in ADAM17 follows immediately after this inhibitory loop 
(residues 657/659/660) within the ADAM10 stalk region. Alteration of this motif abrogated 
sheddase activation by externalized PS [31]. A simple model evolved in which surface-
exposed PS attracts and draws this peptide sequence down to the membrane surface. As 
a result, the enzyme-inhibiting loop will be drawn out of the catalytic site which can then 
access its intended substrate [31]. 

5. ADAMs and Scramblases in Health and Disease 
5.1. Immune Responses 

Transient PS exposure is integral to a multitude of activation events in cells of the 
immune system, although the relevance thereof remains unclear in many instances. Such 
is the case with activated neutrophils [74]. In mast cells, transient exposure and cell 
degranulation are co-induced by IgE receptor stimulation [75]. Transient PS externaliza-
tion has also been described in T cells. Elliott et al. identified a role for PS distribution 
changes in signal transduction, rapidly modulating the activities of several membrane 
proteins including the P2X7 cation channel [76]. P2X7-stimulated transient PS externaliza-
tion induced shedding of the homing receptor L-selectin in T cells. In macrophages, ANO6 
could be identified as a responsible scramblase and essential component of innate immun-
ity downstream of P2X7 [77]. A new link was recently uncovered between an immunolog-
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ical axis and the function of sheddases. CD137 is a member of the TNFR family that func-
tions as costimulatory molecule, promoting proliferation and survival of activated T cells. 
A soluble form of CD137 (sCD137), hitherto considered to represent a splice variant of the 
membrane-anchored molecule, circulates and is elevated in plasma of patients with rheu-
matoid arthritis and diverse malignancies [78–80]. A directed search led to the finding that 
ADAM10 is centrally involved in the generation of sCD137 [33]. Release of sCD137 was 
markedly suppressed when ADAM10 sheddase function was inhibited by either conven-
tional inhibitors or through the presence of soluble phosphorylserine. Overexpression of 
ANO6 increased stimulated shedding, and hyperactive ANO6 led to maximal constitutive 
shedding of CD137. sCD137 was functionally active and augmented T cell proliferation 
(Figure 2). The collective findings potentially impact current immunotherapeutic ap-
proaches that are targeting CD137 in a variety of diseases. 

 
Figure 2. Transient exposure of PS plays an important role in the immune system. One example is 
the release of the TNFR family member CD137 via ADAM10 (or ADAM17). Soluble CD137 
(sCD137) can bind to its ligand CD137L expressed on activated T cells and activate cell signaling. 
Whether sCD137 could fulfill additional functions, e.g., activation of antigen-presenting cells 
(APCs) or act as decoy is still not clear.  

5.2. Cancer 
TMEM16 proteins are associated with diverse malignancies. Overexpression corre-

lates with poor prognosis in breast, head and neck, and pancreas cancer [39,81]. Inhibition 
of TMEM16A/ANO1 function reportedly suppresses cancer cell proliferation and migra-
tion [82,83]. TMEM16D/ANO4 has been associated with breast cancer [84,85]. 
TMEM16G/ANO7 is upregulated in prostate cancer [86]. TMEM16J/ANO9 was linked to 
pancreatic and colorectal cancer [87,88]. In pancreatic cancer it supposedly promotes tu-
morigenesis via modulation of EGFR signaling. This equates with a direct link to ADAM10 
and ADAM17, which are the major sheddases of EGFR ligands. In an immediate context, 
both ADAMs play a profound role in many types of cancers [89,90]. Recent results from 
our working group indicate a direct link between ANO4 and ANO9 scramblase activity 
and ADAM function [34]. Overexpression of ANO4 and ANO9 led to increased release of 
ADAM10 and ADAM17 substrates, such as betacellulin, TGF-α, and AREG, upon iono-
phore stimulation in HEK cells. Increased PS exposure was observed under constitutive 
as well as under stimulated conditions. The direct link between scramblase activity and 
ADAM activity emerged in competition experiments with the soluble PS headgroup phos-
phorylserine. Overexpression of ANO4 or ANO9 in human cervical cancer cells (HeLa) 
enhanced constitutive shedding of the growth factor AREG and increased cell prolifera-
tion. These data indicate that ANO4 and ANO9, by virtue of their scramblase activity, 
may play a role as important regulators of ADAM-dependent tumor cell functions. Un-
covering the detailed connections between TMEM proteins and ADAMs in cancer will 
become a rewarding field of cancer research in the foreseeable future.  
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Another interesting aspect of the role of ADAMs and scramblases in cancer concerns 
the role of extracellular vesicles (EVs). Released exosomes are present in body fluids in-
cluding blood or bronchoalveolar fluid, and this release is increased in many pathologies 
ranging from oncogenesis to inflammation [91,92]. Cancer cell released exosomes play an 
important role in promoting progression of cancers by increasing their invasive potential 
[93]. They are carried through the blood and lymph circulation and affect the development 
of the primary tumor as well as distant metastasis through the transfer of RNA and pro-
teins [94]. Externalization of PS and PE alters lipid packing in the membrane and influ-
ences the membrane curvature [95]. An important consequence is the release of extracel-
lular vesicles as intercellular messengers. A direct connection of Anoctamins with vesicle 
and exosome release has been described [81,95]. In particular, a central role for the release 
of vesicles has been reported for ANO6 [47,96,97] and ANO1 [98]. A similar function has 
been suggested for ANO7 in the context of prostate cancer [99] that might also apply for 
other Anoctamin family members.  In this context, it is of distinct interest that both 
ADAM10 and ADAM17 are reportedly present in exosomes [20]. It has been shown that 
exosomal ADAM10 and ADAM17 retain their biological activity and enhance substrate 
release in target cells. Addition of exosomes to cells expressing the ADAM17 substrates 
TGF-α and amphiregulin led to enhanced shedding [100]. Notably, contribution of exoso-
mal ADAM10 activity could also be shown for shedding of the ADAM10 substrates CD44 
and L1 [101–103]. Increased ANO scramblase activity could thus enhance ADAM activity 
and the release of, e.g., tumor growth factors on the same cell. In addition, ANO scram-
blase activity could increase the release of ADAM-containing vesicles that could further 
promote tumor growth in distant target cells.  

5.3. Virus and Bacterial Infection 
The presence of PS in the target membrane promotes fusion of many enveloped vi-

ruses with host cells [39,104,105]. HIV-1 entry into host cells starts with interactions be-
tween the viral envelope glycoprotein (Env) and cellular CD4 receptors and co-receptors. 
Formation of the pre-fusion receptor/co-receptor complexes triggers non-apoptotic cell 
surface exposure of PS. This event involves activation of the lipid scramblase 
TMEM16F/ANO6 and depends on Ca2+ signaling. Externalized PS promotes Env-medi-
ated membrane fusion and HIV-1 infection. Blockade of externalized PS or suppression of 
TMEM16F resulted in the inhibition of Env-mediated fusion and infection [53]. Promotion 
of membrane fusion by surface-exposed PS seems to be relevant for the entry of many 
other viruses including vesicular stomatitis virus (VSV) or alpha-herpesvirus into the cell 
[106,107]. 

Further to allowing viral entry, PS externalization may play a general downstream 
role because viral replication necessarily involves cell activation events that will involve 
Ca2+ influx. Then, activation of scramblases and sheddases cannot but follow. Perhaps 
these recent recognitions will provide the speculation with further impetus that targeting 
exposed anionic phospholipids might protect against lethal virus infections in vivo [105]. 

The spike protein of SARS-CoV-2 can also activate TMEM16F/ANO6 and thus induce 
syncytia formation [50], a finding consistent with the previously proposed role of PS ex-
posure in physiologic cell fusion events [40]. Moreover, it has been speculated that PS 
exposure may be an important mechanism related to ADAM17-mediated ACE2, TNF-al-
pha, EGFR and IL-6R shedding that might contribute to the pathophysiology of COVID-
19 inflammation and coagulation abnormalities [108]. However, the possible relevance for 
the disease is not clear.  

PS externalization could promote virus infection in an additional way, namely by 
activating ADAM sheddase function. The importance of ADAM activity for viral infec-
tions was recently demonstrated for human papillomavirus (HPV) [109]. HPVs are small 
DNA viruses that infect epithelial cells. After HPV binding to cell surface receptors, a cas-
cade of molecular interactions mediates viral internalization. Metalloproteases of un-
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known identity appeared to be involved in these processes [110], and we recently identi-
fied ADAM17 as the prime candidate [109]. It was found that shedding of growth factors 
by ADAM17 triggered the extracellular signal-regulated kinases (ERK1/2) pathway, 
which then led to formation of the endocytic entry platform for the virus (Figure 3). In 
subsequent studies, the tetraspanin CD9 was identified as another regulator of ADAM17 
activity and HPV infection [111].  

An interesting link to ADAM10 comes from the field of bacterial defense. ADAM10 
is a high-affinity receptor for cytotoxic Staphylococcus aureus alpha-toxin [112]. The prote-
ase itself is subject to cleavage and removal from the membrane surface by other shed-
dases [113]. This must be expected to render the respective cells less susceptible to the 
action of alpha-toxin, one of the most important pathogenicity factors of Staphylococcus 
aureus [114]. Intriguingly, Lizak and Yarovinsky (2012) have reported that IFNα-mediated 
protection from alpha-toxin is dependent on induction of PLSCR1 [115]. If increased ex-
pression of PLSCR1 would lead to enhanced PS exposure, the activation of transmem-
brane metalloproteases might reduce the surface amounts of ADAM10 and limit the cyto-
toxic effects of alpha-toxin.  

It is evident that we are witnessing just the beginning of an exciting field of research 
into the interwoven roles of scramblases and sheddases in the context of viral and bacterial 
infections.  

 
Figure 3. PS externalization could be of high relevance for virus entry into host cells. First, for-
mation of the primary virus–receptor complex triggers non-apoptotic cell surface exposure of PS 
via scramblases. Externalized PS promotes membrane fusion and virus infection. Second, scram-
blase activation would lead to ADAM activation. Subsequent EGFR signaling has been identified 
as important step for infection with the human papillomavirus. 

6. Conclusions and Perspectives 
Externalization of PS effected by scramblases is envisaged to exert a key regulatory 

function in controlling substrate cleavage by ADAM10 and ADAM17. Major challenges 
arise for future research. There is still little reliable data that indicate whether proposed 
scramblase proteins indeed function as a scramblase or whether other molecules are nec-
essary. This could only be examined by appropriate in vitro reconstitution assays in syn-
thetic proteoliposomes. In addition, knockout and gain of function mouse models could 
help to further understand the in vivo relevance and the potential compensation mecha-
nisms. It is obvious that several proteins must be involved in such a central element of life 
as the regulation cell membrane asymmetry. It is also clear that ADAM10 and ADAM17 
will not be the only proteins whose function is regulated by scramblases. Our data indi-
cate that ANO6-mediated enhancement of substrate cleavage simultaneously broadened 
the spectrum of participating metalloproteinases far beyond ADAM10 and ADAM17 [30]. 
In accordance with the literature, cleavage of TGF-alpha provoked by ionophore in nor-
mal cells is affected predominantly by ADAM17 and inhibitable with ADAM17 inhibitors. 
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In cells overexpressing ANO6, however, the substrate release could not be blocked any-
more with ADAM17 inhibitors but only with broad-spectrum metalloprotease inhibitors, 
indicating that further metalloproteases participated in the cleavage of TGF-alpha [30]. 
Recently, we obtained similar results upon ANO4 and ANO9 overexpression [34]. Could 
other membrane-anchored proteases or proteins operating at the cell surface underlie sim-
ilar regulatory principles? These and many other intriguing questions await resolution.  

The scramblase–ADAM connection could also be important under pathologic condi-
tions. The proteases promote several inflammatory as well as tumorigenic pathways 
[90,116–118]. Much less is known about the significance of the scramblases in health and 
disease, but there are indications that there may be a causal link to protease activity. To 
target scramblase proteins and treat scramblase-related diseases, it is critical to have a 
comprehensive understanding of these proteins and their function at the molecular level. 
Elucidation of the possible links between scramblase activity and protease/protein func-
tion represent an exciting future challenge for research in cell membrane biology. 
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