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Inspired by the notion of a strategy defined within the theory of games we
present an algorithm designed to study a chain-like body (CLB) propagation
through an ensemble of its conformations. In the game theory the idea of a
strategy makes it possible to reduce any sequence of possible decisions made
by a player during the course of the game to exactly one choice of a strategy.
What is important in the definition of a strategy is the observation that when
each decision is made (in the sequence) then some a priori possible situations
become no longer accessible. Consequently, when a given strategy is adopted
a player does not have to consider all a priori possible game ”configurations”
but only those which can be accessed with the help of this strategy. We adopt
the same idea in our algorithm. From a given instant conformation the CLB
skips to its another allowable conformation according to a strategy adopted by
nature. Within this algorithm a move between two consecutive conformations
is built up from a set of virtual steps related to elements of the chain.

In this Supplementary Material we introduce the algorithm in a formal fash-
ion. For this purpose, we need to introduce some terminology.

An abstract 2D CLB position is a finite sequence c = {c1, c2, . . . , cn} of
points ci = (xi, yi) such that the distance (Dis) between any pair of its succes-
sive elements is bounded by given limits Lmin, Lmax, i.e. Lmin ≤ Dis(ci, ci+1) ≤
Lmax. The limit Lmax reflects some constraints as, e.g., constraints imposed by
interactions between segments. For example, the Finite Extensible Non-Linear
Elastic (FENE) potential includes the maximum bond extension, i.e., the max-
imal allowed separation between two consecutive monomers equals to Lmax.

The elements of the sequence c are called segments’ positions (shortly seg-
ments) of the CLB.

Assumption 1 (discretization of the motion space): The CLB moves along
the integer lattice nodes, i.e. coordinates of each segment (xi, yi) are integer.

It is common in the literature to distinguish between studies conducted
within continuous description of polymer-like bodies and these mapped onto
a lattice with a coarse grained view on the CLB structure. Both sorts of de-
scription are related by some relevant functional-integral limits and the result-
ing continuous models yield similar characteristics as the corresponding discrete
models. Discrete models themselves may depend on continuous space variables
or they are formulated with use of variables defined on the countable sets of
points, as e.g. on a lattice nodes. However, even in the discrete version to
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achieve better approximation of the continuous motion space, one may assume
that the abstract unit of the length (distance) is equivalent to a given number of
grid sides. Obviously, the greater is the number of grid sides per unit (GSPU),
the better approximation of the continuous space. On the other hand greater
values of GSPU lead to more computationally demanding simulations.

Any pair (ci, ci+1) of consecutive segments is called an (i−th) bond, i =
1, 2, . . . , n− 1. Number n is called the length of the CLB. The structure of the
CLB is defined by the relative mutual positions and orientations of all segments
and bonds.

In the description of the algorithm we distinguish steps and moves. A step
is made by a single segment of the CLB, carrying it from one lattice node to
another. The steps made by segments may be influenced by various external
laws. For example there may exist a variety of driving forces generated exter-
nally. Such outer rules may favor certain lengths or directions of a step. In
our algorithm the impact of such external laws can be incorporated by a spe-
cific probability distribution π defined on a set of nodes that can be reached
by a segment in a single step. This set will be called one step reachable nodes
(OSRN) and consists of nodes (say b), which for a given segment c satisfy the
following condition: Dis (c, b) ≤ Rmax. The parameter Rmax equals assumed
maximal length of a step made by a segment in a case where no other (internal)
forces and/or restrictions are present. This probability distribution determines
the more and the less probable directions and/or lengths of the steps. Such a
one step probability distribution (OS p.d.) may also depend on the segment’s
coordinates (i.e. its position in a motion space).

Due to assumed properties of the environment and as a result of assumed
features of the CLB itself, for any given segment among its OSRN there may
exist actually forbidden nodes (AFN). For example, one of such restrictions is
the upper limit for the distance between subsequent segments. Such a restriction
assures the continuity of the CLB. Another example of this kind of restrictions
may be a requirement that in a given node, at most a given number of segments
can be placed (e.g. the self-avoidance restriction). Yet another example is the
existence of different objects that already occupy some nodes, such as a cell’s
membrane or any other kind of obstacles.

For any given segment the subtraction of the sets OSRN and AFN will be
called a set of actually accessible nodes (AAN): AAN = OSRN \AFN. The OS
p.d. truncated to the set AAN will be called actual step probability distribution
(AS p.d.)

Let us illustrate the introduced notions in exemplary graphs. In these graphs
we assume GSPU = 2 and the following values of remining parameters: Lmin =
1, Lmax = 3 and Rmax = 4 (i.e. correspondingly 2, 6 and 8 grid sides).

The algorithm does not assume any specific form of the distance function
Dis(·, ·). It can be implemented with any metric which is suitable for a descrip-
tion of a given physical process. In our examples the distance between segments
c = (x, y) and c′ = (x′, y′) is defined by a metric:

Dis(c, c′) = max {| x′ − x |, | y′ − y |} (1)
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In the topology induced by the metric (1) any sphere with the center c and
radius r (in terms of grid sides) consists of all nodes lying in a square with the
same center and with sides parallel to the axes having a length 2r + 1 . Under
our assumptions about the parameters’ values, the set OSRN connected with
the segment c indicated by the gray bullet in Fig. 1A is the union of all nodes
indicated by the empty circles. Consequently, the OS p.d. should be defined on
this OSRN set. If all directions and lengths of steps are equally possible, then
the OS p.d. is the uniform one. For simplicity of the illustration let us assume
the latter case in our example.

A

6

B

Figure 1: Exemplary segment (indicated by the gray bullet) and its set of OSRN
( empty circles in graph A). Sets of AFN (black dots and bullets) and AAN
(empty circles) related to the indicated by gray bullet segment are presented in
graph B. The assumed values of the problem parameters: Lmin = 1, Lmax = 3,
Rmax = 4 and GSPU = 2

To illustrate the notions of the sets AFN and AAN let us assume that the
segment c (gray bullet) belongs to the CLB that is indicated by one blue and
eight black bullets connected by the blue bonds in Fig. 1B. In our case the only
restrictions result from the values of parameters connected with the assumed
elasticity properties of the CLB, i.e., the minimal and maximal distance between
successive segments (no other bodies occupy the neighbouring nodes). Thus the
set AFN consists of the nodes indicated by black dots and bullets while the set
of AAN is indicated by the empty circles.

By making a step towards its new position c′i the segment ci may create
a tension in the CLB structure. It is assumed that the tension is big enough

to drag neighbouring segment if Dis
(
ci−1, c

′

i

)
> Td and/or Dis

(
c
′

i, ci+1

)
>

Td, where Td is a tension parameter. A move of the CLB is a sequence of
consecutive segments’ steps, that finally leads to the relaxation of the structure’s
tension created by the initial step. In other words, the move reflects the tension
propagation and it is finished as soon as there is no tension in the structure.
Obviously sometimes the move may consist of a single step only.
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Assumption 2 (sequentialization of the CLB move): Every move of the
CLB is initialized by only one segment. Then each move of the CLB can be
sequentialized into a sequence of steps.

The segment that initializes a move of the CLB will be called a first to step
(FTS) segment. In the algorithm the choice of the FTS segment is random and
realized according a given probability distribution defined on all CLB segments.
The distribution will be denoted as FTSC p.d. The FTSC p.d. may model
various physical aspects of the CLB, e.g. the constrained motion of a tagged
monomer or forced relocation of a polymer capped with specific end monomers.

An example of a move made by the CLB from Fig. 1B is illustrated in Fig.
2. First let us number all segments: c1, . . . , c10. In Fig. 2 the letter ”c” is
omitted for clarity of the graphs. Let us also assume that the tension parameter
is Tp = 4 and let us consider the case where the segment c6 was carried from its
initial position to the new c′6 indicated by the green bullet. Now the distances
between the new position c′6 of c6 and its neigbouring segments c5 and c7 are
greater than Tp. Thus both latter segments have to make the steps. If their new
positions c′5 and c′7 are as indicated by the appropriate green bullets in Fig. 2B
then again the tension is created between the pairs of segments c4, c

′
5 and c′7, c8.

Consequently, the segments c4 and c8 have to also make their steps. However,
because their new positions c′4 and c′8 do not create any tension in the CLB, the
move is completed. The final new position of the CLB is indicated by blue and
green bullets in graph B in Fig. 2. Note that during the run of the simulation
all new positions of the segments are chosen according the related AS p.d.
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Figure 2: Exemplary move made by a CLB. The assumed values of the problem
parameters: Lmin = 1, Lmax = 3, Rmax = 4 , Td = 2 and GSPU = 2

A movement trajectory is a sequence of consecutive CLB positions stored in
matrix C whose i-th row is interpreted as a CLB position after i− 1 moves (at
moment i). Thus element Cij denotes the segment j in the CLB position at the
moment i.

In many real-world situations, such as biopolymer behaviour inside a living
tissue, one should also take into account some additional constraints connected
with the biochemical nature of the system. Thus we define additionally the
cost connected with the CLB structure. The cost of the CLB structure and its
location in the motion space is a function F representing its fitness connected

4



with its conformation and/or other external (e.g. environmental) properties.
The lower the cost, the better the fitness of the polymer structure and position.

Assumption 3 (acceptance of new CLB position): The new position of the
CLB is accepted with a probability depending on its cost.

The above three assumptions and ideas are implemented in the following
sequential algorithm for the CLB movement simulation:

Step 0. (Initialization) Set the initial (current) CLB position ccurr and
evaluate its current cost function value Fcurr.

Step 1. (FTM segment selection and computation of its AS p.d.) According
the given FTMCD, select FTM segment ccurr,f , f ∈ {1, . . . , n}. For the given
segment ccurr determine sets OSRN, AFN and AAN as well as the AS p.d..

Step 2. (Step choice for FTM segment) According to computed AS p.d.
randomly select one node out of the set AAN for the next position of the segment
ccurr.

Step 3. (Successive steps of remaining segments) To obtain a new CLB
position cnew sequentially choose segments cnew,i, i = f − 1, f − 2, . . ., deter-
mine their sets SRN, AFN, and AAN as well as the ASPD. Then according to
computed AS p.d. randomly draw their subsequent new positions cnew,i. This
process is terminated for the first k,f −1 ≥ k ≥ 1 for which the following condi-
tion holds:d (ccurr,k, cnew,k+1) ≤ Td. If k > 1 then cnew,i = ccurr,i for i = 1, . . . k.
Next sequentially choose segments cnew,i, i = f + 1, f + 2, . . ., determine their
sets SRN, AFN, and AAN as well as the related AS p.d. Then according to
computed AS p.d. draw randomly their subsequent new positions cnew,i. This
process is terminated for the first k,f + 1 ≤ k ≤ n for which the following
condition holds:d (ccurr,k, cnew,k−1) ≤ Td. If k < n then, for i = k, . . . n assume
cnew,i = ccurr,i .

Step 4. (Acceptance of new position) Compute the cost of the new CLB
position Fnew. If Fnew < Fcurr accept cnew. If Fnew ≥ Fcurr, accept cnew only
if random variable U having a uniform probability distribution on interval [0, 1]
satisfies U ≤ ψ (Fnew − Fcurr), with ψ being a given nonincreasing function. If
cnew is accepted then ccurr is replaced by cnew; else ccurr remains as is.

Step 5. Terminate the algorithm if the stopping criterion is met; otherwise
return to Step 1.

Step 6. Return the final position of the chain, its cost and required statistics
connected with the simulated movement trajectory.

The nonincreasing function that appears in Step 4 of the above algorithm
represents the attitude of nature towards the acceptance of worse states. If
nature accepts all states, one may assume that ψ ≡ 1. Otherwise, similarly
as in the famous Metropolis algorithm we propose the use of function ψ (z) =
exp [−z/T ], where T > 0 is a parameter which can be additionally subject to
change during the movement process.
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