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Abstract: Extracorporeal membrane oxygenation (ECMO) is an established rescue therapy for pa-
tients with chronic respiratory failure waiting for lung transplantation (LTx). The therapy inherent
immobilization may result in fatigue, consecutive deteriorated prognosis, and even lost eligibility for
transplantation. We conducted a feasibility study on a novel system designed for the deployment of
a portable ECMO device, enabling the physical exercise of awake patients prior to LTx. The system
comprises a novel oxygenator with a directly connected blood pump, a double-lumen cannula, gas
blender and supply, as well as control and energy management. In vitro experiments included tests
regarding performance, efficiency, and blood damage. A reduced system was tested in vivo for
feasibility using a novel large animal model. Six anesthetized pigs were first positioned in supine
position, followed by a 45◦ angle, simulating an upright position of the patients. We monitored per-
formance and vital parameters. All in vitro experiments showed good performance for the respective
subsystems and the integrated system. The acute in vivo trials of 8 h duration confirmed the results.
The novel portable ECMO-system enables adequate oxygenation and decarboxylation sufficient for,
e.g., the physical exercise of designated LTx-recipients. These results are promising and suggest
further preclinical studies on safety and efficacy to facilitate translation into clinical application.

Keywords: ECMO; ECLS; ECCO2R; ARDS; respiratory failure; LTx; DIN EN ISO 7199; extracorporeal
membrane oxygenation; acute respiratory distress syndrome; animal model

1. Introduction

Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is an established
therapy for patients with severe acute respiratory distress syndrome [1]. For patients with
irreversible respiratory failure, a lung transplantation (LTx) is the last resort measure [2].
For gas exchange in decompensated patients before LTx, ECMO as well as low flow
extracorporeal CO2 removal (ECCO2R) has become an established strategy as a so-called
bridge to (lung) transplantation [3–6]. Worldwide, 328 million patients [7] suffer from
advanced chronic obstructive pulmonary disease (COPD). A growing number of patients,
currently 10 million [8], suffers from advanced GOLD III/IV COPD status, resulting in
30.1% of all LTx [9,10]. Due to organ shortage, the waiting time for a suitable organ is
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446 ± 517 days [11], during which time at least 10% of the patients lose therapy eligibility
or decease [12,13]. Conventional treatment prior to LTx includes drug treatment and
mechanical ventilation. The efficacy of this treatment is limited mostly due to ventilator
induced lung injury (VILI) as well as sedation and immobilization of the patients in the
intensive care unit. Immobilized patients go through a sequence of physical deteriorations
comprising muscle atrophy, (poly-)neuroatrophy, and finally a state of general fatigue and
deterioration of the general condition [14–16]. This deterioration means either losing the
eligibility for or dramatically worsening the outcome of the intended LTx [17]. VV-ECMO
was established as an alternative or adjuvant therapy to decrease the detrimental effects
of mechanical ventilation [18]. However, the immobilization of the patients remains a
problem, as current ECMO-systems are complex, heavy, bulky, require highly trained
medical staff, and are prone to technical complications such as cannula kinking. The first
approaches to mobilize patients have been undertaken [12,19–23]. The results of these
studies have been promising, yet the resource intensity for the mobilization of patients is
immense: Haji et al. recently published their physical exercise protocol, involving seven
medical staff members for out-of-bed mobilization [24].

Within the present paper, we report the results of a feasibility study for a portable
VV-ECMO system. The system comprises a double-lumen cannula, an integrated pump-
oxygenator-unit, portable gas supply utilizing ambient air, a battery system, and a carrying
modality. The concept is depicted in Figure 1. All components were individually tested and
characterized by respective in vitro tests. The entire system was tested in vivo in porcine
animal trials. We demonstrated an effective system in terms of mobility, therapy-relevant
parameters including gas and heat transfer, and interoperability of all components.
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Figure 1. Concept for a portable VV-ECMO system.

2. Materials and Methods

The portable VV-ECMO system comprises specifically designed prototypes of the oxy-
genator, energy supply, control unit, gas blender, and pump drive, driving a commercially
available blood pump. All predefined parameters for a double lumen cannula were met by
a commercially available product. All components are described below. These components
were tested individually in vitro following relevant norms and guidelines (ISO 7199 [25];
Guidance for Cardiopulmonary Bypass Oxygenators 510(k) Submissions; Final Guidance
for Industry and FDA Staff [26]). The integrated system was tested in a novel large animal
test model. Figure 2 shows a prototype system and the intended carrying mode.
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2.1. System Components

For the double-lumen cannula, we chose the Novaport Twin (Xenios AG, Heilbronn,
Germany, now Fresenius SE & Co. KGaA, Bad Homburg, Germany). The cannula is
designed for the right internal jugular access with in- and outlet situated in the superior
vena cava and in front of the right atrium, respectively. The positioning of drainage and
reperfusion openings of the cannula was developed to mitigate blood recirculation. With an
outer diameter of 22 Fr and 3/8” connectors, the cannula was designed to allow a blood flow
of up to 3 L/min with a pressure drop below 140 mmHg, based on standard requirements
for VV-ECMO of the described group of patients. The cannula has a minimum kink
resistance to guarantee safety during patient mobilization (<50% flow reduction during
180◦ kinking with kinking radius of 35 mm). Since we used a commercially available
cannula, we did not evaluate the hemolysis in vitro.

As energy supply for the control system, the gas blender, and the pump drive, com-
mercially available 11.25 V, 2.95 Ah rechargeable battery packs with three lithium-ion cells
were installed (RRC2040, RRC Power Solutions GmbH, Homburg, Germany). These battery
packs are characterized by quick charging, extended life span, impedance tracking, and
cell balancing and do not require manual recalibration. Due to a high energy density,
they have a low weight of 170 g and small dimensions of 85 mm × 59 mm × 22 mm per
unit, do not produce extensive heat, and can be used in acceptable temperature ranges for
patient ambulation.

As pump, a conventional DP3 with an altered pump drive was utilized (Xenios AG,
Heilbronn, Germany, now Fresenius SE & Co. KGaA, Bad Homburg, Germany). The
drive was miniaturized in size and weight (425 g) and, during prototype development
stage, situated at the casing of the oxygenator unit. This allowed for a direct connection
to the specially designed inlet of the oxygenator unit without any tubing. The DP3 pump
produces a pressure head of 600 mmHg at flows far above the intended 3 L/min at max.
10,000 rpm.

The oxygenator unit was designed to achieve a flow of 3 L/min with an accept-
able maximum pressure drop of around 100 mmHg (Figure 3). Further, the gas transfer
efficacy should reach 150 mL/min for O2 and CO2, requiring a membrane surface of
around 0.75 m2, based on data interpolations of existing stacked oxygenators. The fibers
were arranged in stacks with solid polymethylpentene-membranes for gas transfer and
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polyethylenterephthalat-membranes for heat exchange (OxyPlus 90/200 single knitted
loop mat and Hexpet 60/670 single distorted knitted loop mat, both Membrana GmbH,
Wuppertal, Germany). Heat transfer may be necessary despite the miniaturized circuit
due to extracorporeal circulation. The extent of this has not been the object of the current
study. During mobilization sequences, the heat exchange fibers were not active. The phase
separation was implemented using a state-of-the-art centrifugal potting process [27] with
silicone (Elastosil 620, Wacker Chemie AG, Munich, Germany) and a resulting flow path
diameter of 8.5 cm. The oxygenator unit also incorporates a gas bubble trap. For this early
prototype, a 3D-printed casing was used. The oxygenator has a total weight of around
650 g. Targeted blood cell damage and heat transfer are within the range of commercially
available VV-ECMO-systems. Corresponding experiments are described below.
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Figure 3. Novel portable, stacked, and centrifugal potted membrane oxygenator front and back.

The gas blender comprises pneumatic components to blend ambient air with pres-
surized medical oxygen including a pneumatic pump, (unidirectional) valves, air filters,
pressure regulators, and a flow control system (schematic and prototype in Figure 4). The
system can produce 10 L/min of flow with an FiO2 between 0% and 100% at a pressure
head of 60 mmHg. The gas blender unit also contains the overall control system.
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2.2. In Vitro Evaluation

Oxygenator pressure drops, oxygen and carbon dioxide transfer rates, heat exchanger
performance factor (R-value), and blood cell damage were evaluated in vitro according to
ISO 7199 [25] and FDA guideline [26]. Eleven full scale gas transfer tests were conducted
with each six identical circuits including prototypes of the novel oxygenator and pooled, an-
ticoagulated, and porcine blood. The feed gas composition and blood/gas-flow ratio were
different in each of the six circuits (all possible combinations with FiO2 = 21%, FiO2 = 50%,
FiO2 = 100% and 4:1 gas/blood, 1:1 gas/blood). For hemolysis testing, an iLA Membrane
Ventilator in combination with a conventional DP3 pump (Xenios AG, Heilbronn, Germany,
now Fresenius SE & Co. KGaA, Bad Homburg Germany) was used as predicate device in
comparison to five identical prototypes of the novel oxygenator.
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2.3. In Vivo Evaluation

To verify the function of our newly designed prototype for portable ECMO, six acute
animal trials were conducted using 50–80 kg female pigs of the German Landrace. Per-
mission for the experiments was granted by the governmental animal care committee
(Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Reckling-
hausen, Germany, ref. no. 84-02.04.2016.A472), and the implementation followed the
principles of laboratory animal care.

After arrival, the animals were examined by a veterinarian and held at least seven
days in the stables of the institute of laboratory animal science of the Uniklinik RWTH
Aachen for acclimatization. Twelve hours before experiment, they were kept fasting with
free access to water.

The fasted pigs were premedicated with atropine (1 mL 1%), azaperone (0.2 mL/kg),
and ketamine (0.1 mL/kg) and anesthetized with propofol (initial bolus 1 mg/kg and
5–10 mg/kg/h) and fentanyl (8–12 µg/kg/h). The pigs were further treated following
standard protocols of intensive care. This included the treatment of electrolyte imbal-
ances, administration of crystalloid and colloid solutions as well as medications to sustain
hemodynamic stability. Throughout the trial, an ACT of ≥ 150 sec was targeted using
intravenous heparin. With the onset of general anesthesia, endotracheal mechanical ventila-
tion was initiated (tidal volume = 10 mL/kg, positive end expiratory pressure = 5 cmH2O,
inspiratory-to-expiratory ratio = 1:2, and a respiratory frequency = 14 ± 4 min−1, following
the target parameter PaCO2 of 35–45 mmHg). An arterial line was placed via one femoral
artery, and a pulmonary arterial catheter was placed via one jugular vein to measure cardiac
output, central venous pressure, and pulmonary artery pressure continuously as well as
pulmonary capillary wedge pressure discontinuously (Edwards Lifesciences, Irvine, CA,
USA) using an AS/3 Compact monitor (Datex-Ohmeda, Helsinki, Finland) and a Vigilance
monitor (Edwards Lifesciences). A bladder catheter was maintained to collect urine for the
control of the renal function. The animals received infusions of 1 mL/kg/h Sterofundin
(B.Braun, Melsungen, Germany) for fluid replacement. As pigs have a much larger diam-
eter of the external jugular vein compared to the internal jugular vein, the right external
jugular vein was cannulated with the NovaPort dual lumen cannula. After one bolus of
5000 IU Heparin, the prefilled ECMO was connected and blood flow was started.

The experimental sequence plan is depicted in Figure 5 and described in the follow-
ing paragraph.

The experimental protocol provided an 8 h timeline from ECMO connection with
fixed time points of measurements, blood samplings, and mode changing from lying to
upright position and back. The animal model contains an induced hypercapnic and hypoxic
respiratory failure by lowering the FiO2 and the respiration frequency using the PaO2 and
PaCO2 as target parameters, originally published by Kopp et al. 2016 [28]. First, animals
were ventilated with an FiO2 of 0.21 and a respiratory rate of 12 min−1. By reducing
the FiO2 to 20% and 18% and, correspondingly, the respiratory rate to 10 and 8 min−1,
we generated a standardized hypoxemia and hypercapnia to simulate respiratory failure.
The ECMO was running as low as possible and was adjusted according to the respective
measured values with a target arterial oxygen saturation of ≥ 90% and a target arterial
carbon dioxide partial pressure of 40–50 mmHg. Blood gas analysis and hemodynamic
parameters were measured every 30 min, before further reduction of FiO2 and respiratory
rate. During this process, the ECMO was initially tested running with ambient air; then,
the feed gas was blended with oxygen to meet the physiologic oxygen demand.
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Figure 5. Experimental sequence plan. Fully anesthetized pigs were supported by intermittent
mechanical ventilation with an initial respiratory rate >12 min−1 and FiO2 of >21%. The sequence plan
shows incremental decreases of these values to model hypercapnic and hypoxic respiratory failure.
After holding each plateau for 30 min, blood samples were taken. ECMO-support was adjusted to
stabilize the vital parameters for each plateau. During the first three measurement points, the animal
was lying in supine position, followed by a simple simulation of a mobilized patient by changing
to 45◦ reverse Trendelenburg position (see Figure 6). These groups are referred to throughout the
manuscript: Supine: animal was positioned flat on the back; Trend: 45◦ reverse Trendelenburg
position, simulating a mobilized patient; and 12,10,8: respiratory rate of the intermittent mechanical
ventilation, simulating hypercapnic respiratory failure.

The test protocol contained two distinctions: First, the pigs were brought up from
supine position to a 45◦ reverse Trendelenburg position, simulating an upright patient
as well as possible, taking into account the limitations of acute large animal models (rep-
resented on right side of Figure 5, depicted in Figure 6). In this model, vasoplegia and
hence dilated veins during general anesthesia in combination with gravity may cause a
distributive shock. This problem was counteracted by decreasing the passive volume of
the abdominal venous reservoir by abdominal compression. Vasopressors were discarded
as an option as their effect is mostly on arterioles and not the venous system which impacts
the blood pressure but does not solve the targeted venous pooling. The second distinc-
tion regards the blending of medical oxygen with ambient air. The feed gas was altered
during the course of the experiments, to see the impact of lower FiO2. Upon experiment
finalization, animals were euthanized.

During the in vivo experiments, the system and its components were tested on overall
handling and performance, including vital parameters of the pigs. Oxygenator and pump
unit were tested regarding gas transfer, pressure heads and drops, and hemolysis. Gas
transfer was tested taking blood samples pre- and post-oxygenator. Hemolysis was tested
every half-hour to calculate the normalized index of hemolysis (NIH) without a predicate
reference device.
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2.4. Statistical Analysis

For in vitro experiments, all results are depicted with mean and standard deviation
(SD). Hemolysis values from the in vitro experiments were tested for significance compar-
ing the five test objects against the single control circuit. First, normal Gaussian distributions
were tested using the Kolmogorov and Smirnov method. p-values above 0.10 were consid-
ered normal Gaussian distributions. Then, we conducted a two-tailed one sample t-test; a
p-value < 0.05 was considered significant.

The in vivo experiments were evaluated by calculating median, mean, and standard
deviation. If more than one sample point was recorded within a group, their mean was
calculated before the actual evaluation. All parameters shown in the result section (Table 1)
were tested for significant differences between the five groups of the experimental sequence
plan (Figure 5) using the Friedmann test with post Dunn’s test. Two animals had no data in
a single group; these values were imputed using the mean of the remaining group. If more
than one value was missing for a single parameter, an unpaired Kruskal–Wallis test was
conducted instead. Here, a post-test was not required due to insignificant results. For all
tests, a p-value < 0.05 was considered significant.

3. Results

The resulting system is depicted in Figure 2. All predefined criteria for the portable
utilization for ECMO-patients were met. The system showed efficacy during in vitro
experiments and in vivo trials.

3.1. In Vitro Evaluation

The internal resistance of the extracorporeal circuit to blood flow is mainly caused
by the cannula (properties available from manufacturer) and the oxygenator. The stacked
fiber mat design results in a pressure drop of around 75 mmHg (±20) at a blood flow rate
of 3 L/min, see Figure 7. The integrated heat exchanger fibers allow for a heat transfer of
R = 0.24 (±0.04) at the same blood flow; see Figure 8. The in vitro blood tests yielded a
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threefold normalized index of hemolysis (NIH) of the novel device compared to a reference
device (Figure 9).
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Figure 9. In vitro hemolysis results depicted as normalized index of hemolysis (NIH), mean and SD.
The predicate device is depicted in blue (n = 1, iLA oxygenator, DP3 pump), and the test devices are
depicted in red (n = 5). †: Normal distribution (tested with Kolmogorov–Smirnov), *: significant
difference between test device and predicate (two-tailed one sample t-test, p < 0.05 for Gaussian
distributions). The non-Gaussian distribution at t = 90 min was not further analyzed due to small
sample size.
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Carbon dioxide and oxygen transfer rates are depicted in Figures 10 and 11, respec-
tively. CO2 transfer rates at 3 L/min were 110 mL/min with a flow ratio for gas/blood
flows = 1:1. The transfer rates increase to 160 mL/min with a ratio for gas/blood flow = 4:1.
The rates were almost independent of the oxygen fraction. The oxygen was transferred
with 50, 110, and 160 mL/min for oxygen fractions of 21%, 50%, and 100%, respectively.
The oxygen transfer was almost independent of the ratio for gas/blood flows.
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experiment. Five animals had stable vital parameters during each stage, reaching a 
respiratory rate as low as 8 min−1 and a mean FiO2 of 18%. The sixth animal did not reach 
a respiratory rate of 8 min−1 in the supine position but in the Trendelenburg position. 
Throughout all experiments, the heart rate remained stable for three of the five 
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Figure 10. Carbon dioxide transfer rates for different feed gas blends and gas/blood-flow ratios,
n = 5, mean and SD. Beige: feed gas with pure ambient air, FiO2 = 21%; red: feed gas blend with
FiO2 = 50%; blue: feed gas with medical oxygen, FiO2 = 100%. Solid line: 1:1 flow ratio gas/blood;
dashed line: 4:1 flow ratio gas/blood.
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Figure 11. Oxygen transfer rates for different feed gas blends and gas/blood-flow ratios, n = 5, mean
and SD. Beige: feed gas with pure ambient air, FiO2 = 21%; red: feed gas blend with FiO2 = 50%; blue:
feed gas with medical oxygen, FiO2 = 100%. Solid line: 1:1 flow ratio gas/blood; dashed line: 4:1 flow
ratio gas/blood.
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3.2. In Vivo Evaluation

A total of six pigs were put on the dedicated ECMO system and treated following the
protocol described above. All animals survived until the planned termination of the experi-
ment. Five animals had stable vital parameters during each stage, reaching a respiratory
rate as low as 8 min−1 and a mean FiO2 of 18%. The sixth animal did not reach a respiratory
rate of 8 min−1 in the supine position but in the Trendelenburg position. Throughout
all experiments, the heart rate remained stable for three of the five experimental stages
and increased during the last sequences of both supine and 45◦ reverse Trendelenburg
position. The mean arterial pressure showed no conclusive trend. The mean pulmonary
artery pressure changed only due to the 45◦ reverse Trendelenburg positioning, by an
average decrease of 10 mmHg. Due to anesthesia and the resulting lack of vasoconstriction,
sufficient vital parameters could not be sustained below a respiratory rate of 10 min−1 dur-
ing the 45◦ reverse Trendelenburg position, despite abdominal compression. The ACT was
kept above 150 s as targeted. Neither bleeding nor macroscopically or clinically observable
thrombosis occurred during the experiments. The hemoglobin was mostly kept between 9
and 11 g/dL. There was no technical failure with any of the components.

Table 1 shows the measured data from intermittent mechanical ventilation, vital
parameters, ECMO settings, and blood gas analysis.

The ECMO blood flow was mostly well below its functional limit, with a maximum
flow of 3 L/min for a total of only 2 h in a single animal. A higher blood flow could not be
achieved during the experiments due to a combination of drainage insufficiency and suction
at the small double lumen cannula. This resulted in very low arterial oxygen saturation SaO2
between 40% and 95%. It can also be seen that the venous saturations SvO2 are very low as
well and decreasing with progression through the experimental sequences. Figure 12 shows
the difference between arterial and venous oxygen saturation in all experimental sequences.
The course of the oxygen saturation and the lactate levels suggest a progressing oxygen
debt. At the same time, the blood gas analysis at the oxygenator outlet showed saturations
well above 90% while partial oxygen pressures at the inlet mostly were between 40 and
70 mmHg. The oxygen transfer over the membrane oxygenator stays above 56 mL/min on
average and increases to an average of 122 mL/min for higher ECMO blood flows. The
respective carbon dioxide elimination ranges between 58 and 106 mL/min.
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Table 1. Animal trial monitoring. Supine: animal was positioned flat on the back; Trend: 45◦ reverse Trendelenburg position, simulating a mobilized patient; and
12,10,8: respiratory rate of the intermittent mechanical ventilation, simulating hypercapnic respiratory failure. RMV = respiratory minute volume; FiO2 = fraction
of inspired oxygen, utilized for simulating hypoxemic respiratory failure; HF = heart frequency; MAP = mean arterial pressure (approximated from end-systolic
and end-diastolic pressures); MPAP = mean pulmonary arterial pressure (approximated); S = oxygen saturation, p = partial pressures, et = end tidal/respiratory,
∆P = membrane pressure drop; fPHb = free plasma hemoglobin; and V = gas transfer. Indices: a = arterial, v = mixed venous at pulmonary artery, and cv = venous
at vena cava superior. Carbon dioxide blood contents were calculated using a function by Douglas et al. [29] with a CO2-plasma diffusion coefficient of
0.03 mmol/mmHg and an apparent dissociation constant of carbonic acid of 6.1. Oxygen contents were calculated using a function by Leach et al. [30] with the
Hüfner-number = 1.34 and with an O2-plasma diffusion coefficient of 0.03 mL/mmHg/dL. Significance was tested for all groups using the Friedman test (*) with
Dunn’s post-test. (0): No significance between any combination of groups using Dunn’s; (1): Supine 8 was significantly different to Supine 12 and Trend 12 using
Dunn’s. If values were missing within a parameter set, Kruskal–Wallis test was conducted (†). No parameter and combination of tested groups showed significance
for p < 0.05, except for the controlled parameter FiO2. The column p-value shows the Friedman/Kruskal–Wallis results.

Supine 12 Supine 10 Supine 8 Trend 12 Trend 10 p-Value

Parameter Unit Mean Median SD Mean Median SD Mean Median SD Mean Median SD Mean Median SD

RMV L/min 4 5 2 4 4 1 3 3 2 5 5 1 5 4 1 0.040 *, (0)

FiO2 % 21 21 1 20 20 3 18 18 0 21 21 1 20 19 1 0.004 *, (1)

HF 1/min 119 111 34 119 121 51 151 169 56 166 168 40 171 171 36 0.035 *, (0)

MAP mmHg 75 71 14 105 94 38 94 84 18 79 75 20 71 71 15 0.040 *, (0)

MPAP mmHg 22 20 8 24 21 10 24 23 5 14 14 12 17 15 16 0.355 *, (0)

SaO2 % 84 87 11 80 85 14 73 77 24 83 87 10 73 74 11 0.483 †

ScvO2 % 71 72 10 61 67 13 52 61 17 56 56 7 57 54 11 0.235 †

SvO2 % 65 67 6 68 72 13 55 62 18 57 58 5 56 55 4 0.231 †

paO2 mmHg 66 64 15 67 67 19 54 50 19 62 65 10 52 50 8 0.311 †

pcvO2 mmHg 49 47 6 43 43 5 60 40 35 40 42 3 41 40 4 0.157 †

pvO2 mmHg 44 44 2 50 45 12 38 39 5 40 41 3 40 40 3 0.075 †

paCO2 mmHg 53 55 5 49 50 8 49 45 13 50 49 7 53 51 8 0.556 †

pcvCO2 mmHg 58 58 5 57 58 6 56 48 16 57 56 6 59 55 10 0.873 †

pvCO2 mmHg 56 55 5 52 51 7 51 47 16 54 53 7 57 56 9 0.744 †

etCO2 % 7 6 1 6 7 2 7 6 1 7 7 1 7 7 1 0.747 *
Arterial
lactate mmol/L 2.8 1.0 4.1 3.5 1.7 4.1 3.0 1.8 2.7 4.1 2.6 4.0 5.6 4.5 4.8 0.255

Arterial pH [] 7.4 7.4 0.1 7.4 7.4 0.1 7.4 7.4 0.1 7.4 7.4 0.1 7.3 7.3 0.1 0.321 †

Blood flow
ECMO L/min 1.3 1.7 0.7 1.8 1.9 0.7 2.3 2.2 0.7 1.4 1.6 0.8 2.0 1.9 0.4 0.045 *, (0)

Pump
speed min−1 5470 5617 2878 6803 7188 2287 7457 7992 1774 5797 6967 2647 8097 8100 1581 0.082 *
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Table 1. Cont.

Supine 12 Supine 10 Supine 8 Trend 12 Trend 10 p-Value

Parameter Unit Mean Median SD Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Gas flow L/min 4 4 4 5 4 3 6 6 3 4 4 3 5 5 3 0.749 *
FiO2

ECMO % 68 100 43 86 100 23 100 100 0 74 100 41 100 100 0 0.171 *

∆P ECMO mmHg 7 7 13 18 20 14 30 28 16 12 16 15 23 26 10 0.075 *
fPHb mg/dL 15 13 6 12 12 7 12 12 7 14 12 4 13 14 6 0.920 *

SO2 post
ECMO % 96 100 8 100 100 1 98 100 5 98 100 3 100 100 0 0.922 *

SO2 pre
ECMO % 69 76 10 63 68 12 55 58 14 64 68 9 56 55 5 0.323 *

pO2 post
ECMO mmHg 278 322 199 239 227 86 223 182 125 228 232 139 234 181 107 0.736 *

pO2 pre
ECMO mmHg 48 50 5 48 45 11 52 40 27 45 46 4 41 40 2 0.171 *

pCO2 post
ECMO mmHg 38 37 13 36 36 5 40 36 7 37 36 3 41 41 3 0.073 *

pCO2 pre
ECMO mmHg 58 60 5 54 56 8 54 51 11 55 55 6 59 57 8 0.294 *

VCO2
ECMO mL/min 106 69 126 85 86 28 78 88 41 58 57 29 60 55 20 0.255 *

VO2
ECMO mL/min 56 57 48 90 93 49 122 133 45 69 74 46 116 123 32 0.220 *
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The ECMO parameters reflect the cannula related issues to achieve a flow of 3 L/min 
and the concept to run the ECMO circulation as low as possible. The ECMO blood flow 
was increased with the reduction of ventilator settings from on average 1.3 L/min to 2.3 

Figure 12. Mixed venous and arterial oxygen saturations for supine position and reverse Trendelen-
burg. Each column depicts one group of the experimental sequence. Supine: animal was positioned
flat on the back; Trend: 45◦ reverse Trendelenburg position, simulating a mobilized patient; and
12,10,8: respiratory rate of the intermittent mechanical ventilation, simulating hypercapnic respiratory
failure. Blue depicts venous values, and red depicts arterial values. Boxplots show 95%-CI (whiskers),
50% interval (box), median (black bar), and mean (diamond).

In contrast to the O2-values that decrease with progression of the experimental se-
quences, the venous pcvCO2-levels stay relatively stable between 45 and 75 mmHg. The
CO2-elimination even increases with progression of the experimental sequences in supine
position and decreases in 45◦ reverse Trendelenburg position. Figure 13 shows the courses
of the venous and arterial pcvCO2. Simultaneously, the pCO2-elimination in the ECMO-
circuit effectively lowers the pCO2 from between 50 and 65 mmHg in the drainage lumen
of the cannula to around 25–45 mmHg in the return lumen. Throughout all experiments,
the pH-values mostly remained between 7.2 and 7.5.
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Figure 13. Venous and arterial carbon dioxide partial pressures for supine position and reverse
Trendelenburg. Each column depicts one group of the experimental sequence. Supine: animal was
positioned flat on the back; Trend: 45◦ reverse Trendelenburg position, simulating a mobilized patient;
and 12,10,8: respiratory rate of the intermittent mechanical ventilation, simulating hypercapnic
respiratory failure. Blue depicts venous values in the vena cava, and red depicts arterial values.
Boxplots show 95%-CI (whiskers), 50%-interval (box), median (black bar), mean (diamond), and
outlier (black cross).
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The ECMO parameters reflect the cannula related issues to achieve a flow of 3 L/min
and the concept to run the ECMO circulation as low as possible. The ECMO blood flow was
increased with the reduction of ventilator settings from on average 1.3 L/min to 2.3 L/min
and ranged between 500 mL/min and 3 L/min. Figure 14 shows the corresponding
boxplots. Moreover, it was intended to run the ECMO with initial oxygen fractions of
ambient air and increase with physiologic demand. It can be seen that the oxygen fraction
was increased early to 100% with decreasing ventilator settings. Figure 15 shows the ECMO
oxygen fraction over the experimental sequence as boxplots.
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Finally, the pressure drop in all six oxygenators proved to be around 60% of the 
values determined in vitro, which means that the pressure drop at 3 L/min was between 
40 and 50 mmHg drop (compared to 50–100 mmHg in vitro). Hemolysis was measured as 
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Figure 14. ECMO blood flow for supine position and reverse Trendelenburg. Each column depicts
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Finally, the pressure drop in all six oxygenators proved to be around 60% of the values
determined in vitro, which means that the pressure drop at 3 L/min was between 40 and
50 mmHg drop (compared to 50–100 mmHg in vitro). Hemolysis was measured as change
of free plasma hemoglobin and showed no increase in any animal. Values stayed in a range
of 4–22 mg/dL.

4. Discussion

A novel veno-venous ECMO system with downsized and integrated components
dedicated for patient mobilization was tested in vitro and in vivo.

4.1. In Vitro Evaluation

The system was tested for hemolysis and membrane pressure drop, as well as heat
and gas transfer for the intended use case. The use case of the device was defined as
VV-ECMO for a blood flow of up to 3 L/min and ECCO2R. Comparable, commercially
available devices for VV-ECMO are the HLS Set Advanced 5.0 (Maquet Cardiopulmonary
GmbH, Rastatt, Germany) while one suitable device for ECCO2R may be the novalung iLA
(Xenios AG, Heilbronn, Germany). Both oxygenators have a stacked fiber arrangement.
At 3 L/min and a flow ratio gas/blood of 1:1, the HLS oxygenator has an O2-transfer rate
of almost 200 mL/min, a CO2-transfer rate of approximately 170 mmHg, a heat-exchange
performance factor of approximately 0.8, and a pressure drop of 10 mmHg [31]. The iLA
does not contain heat fiber mats. The O2-transfer rate is approximately 160 mL/min,
the CO2-transfer is approximately 140 mL/min, and the pressure drop is 10 mmHg as
well [32]. We do not have published data on hemolysis performance for both devices but
used the iLA oxygenator in combination with a DP3-pump as a predicate device during
in vitro experiments.

Heat and gas transfer achieved targeted values, though approximately at 25% of the
efficacy of the HLS 5.0. This may be acceptable as the extracorporeal circuit has a lower
blood volume, blood flow, and less unintended surface area, resulting in smaller heat loss;
the same concept can be found in the iLA oxygenator that has no heat exchange fibers at all.
Target oxygen transfer rates were realized only at pure oxygen for both 1:1 and 4:1 flow ratio
gas/blood. Target CO2-transfer rates were reached only with 4:1 flow ratio, independent of
oxygen fraction. These results were anticipated, though lower required oxygen fractions
would strengthen the use case of the device. All gas transfer rates are comparable to the iLA
oxygenator, which means approximately 75% of the HLS 5.0. Furthermore, Ficial et al. [33]
recently hypothesized that a higher FiO2 in the ECMO circuit may translate into higher
CO2 transfer rates by displacing CO2 from HCO3

−; our data do not support this theory, at
least not in clinically relevant dimensions.

The pressure drop with respect to commercial devices was approximately 800% higher
in vitro and 300% in vivo; the reason of which remains unclear but could be explained with
the laboratory grade prototype status of the novel oxygenator and its evolution over the
progression of the research project. We hypothesized based on institutional experience that
fiber arrangement and density are very sensitive to flow resistance—a problem of less extent
in industrial grade production. Hemolysis was three times as high as in the predicate device.
Again, the prototype status of the oxygenator may have caused a significant increase in
hemolysis, because the entire casing was printed. Recently, Petersdorff-Campen et al. [34]
showed an increase in hemolysis in printed blood pumps of 620%, which may explain our
results. Further, the higher resistance to flow and the hence increased pump performance
may have caused hemolysis. Future improvements to the integrated system of pump and
oxygenator will target the increased pressure drop and hemolysis. We see no technology
inherent disqualifying criterion to designing a safe system. Advances to the manufacturing
process, material selection, flow path optimizations of pump, oxygenator and connecting
parts, and a pump optimized to the targeted pump performance regime will reach safe
pressure drop and hemolysis levels.
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Last, we have successfully used a portable gas blender that allows quick, individual,
and automatable gas mixtures of medical oxygen and ambient air.

4.2. In Vivo Evaluation

The in vivo model was designed with three characteristic features. First, the hypoxic
and hypercapnic respiratory failure was simulated using the respiratory rate and oxygen
fraction of the intermittent mechanical ventilator. Both hypoxia and the hypercapnia could
effectively be established in a controllable and stable manner. Second, the animal was
switched from supine position to 45◦ reverse Trendelenburg position, with the aim to
simulate an upright awake patient. Established animal models for ECMO testing use the
recumbent position [35] or sometimes quadruped position [36,37], which do not reflect
the hemodynamic changes of an upright patient. The anesthesia prohibited effective
physiologic autoregulation, especially vasoconstriction, so that we actually simulated a
distributive hypovolemic shock. We had to counteract this shock via the experiment
design. Vasopressors were discarded as their effect mainly targets the arterioles and does
not resolve venous pooling. Instead, we applied an abdominal cingulum compression.
This model is not yet established through these experiments, but we showed efficacy and
feasibility. Additionally, as can be seen by the deteriorated sitting pig, the model may be
of high relevance for the simulated mobilized ECMO patient. We believe that the selected
model is valid for preclinical studies and that analog problems can be overcome for the
human patient population. First and most importantly, in contrast to the animal model,
awake patients are less sedated and should have a lesser degree of vasoplegia, i.e., a
higher muscle tonus. The remaining vasoplegia can be further targeted by slow, moderated
position changes of the patient and, analog to the abdominal compression of our model,
with support stockings. We are positive that this concept is feasible as patients were already
ambulated in several case studies. Third, we tried to blend ambient air with medical oxygen.
Our data suggest that situations with a low oxygen demand may allow for resource saving
gas blending, e.g., for more CO2-removal focused applications. Ideally, in combination
with an automated control, the device measures oxygen and carbon dioxide levels in high
frequency and adapts oxygen fraction and total gas flow continuously; an according system
was published by our colleagues before [28]. With respect to our in vitro data, we could
confirm that a high gas flow eliminates CO2 effectively. For ECCO2R-patients mainly
suffering from hypercapnic respiratory failure, the portable gas blender may offer a large
range extension.

In the experiments, severely hypoxic and hypercapnic animals were observed. The
most limiting factor was the drainage insufficiency due to the small cannula size that
prohibited higher ECMO flows. The optimal flow regime of the cannula is 1–1.5 L/min,
i.e., half of the intended operating point. This caused low inlet pressures. Further, the
NovaPort Twin cannula has only a single drainage opening either in superior or inferior
vena cava. Both factors contribute to a limit in ECMO flow. Alternative cannulas, e.g., the
Avalon cannula, are used for walking ECMO in a clinical setting and enable higher blood
flow and consecutive oxygen transfer, but the application is limited due to high cannula
migration and dislocation risk with severe complications [38–44]. We therefore conclude
that the cannula was not well chosen for the intended use. In consequence, we were not
able to show the functional limit of the membrane oxygenator unit. The current study
design did not comprise the investigation of other cannulas. Our study showed the need
for the investigation of the safe deployment of existing cannulas in different inlet and outlet
positions in the relevant vessels, especially with respect to the altered hemodynamics of a
sitting or mobilized patient. Due to the limitations of the currently available single- and
dual-lumen cannulas, new concepts for the patient-ECMO interfaces seem necessary to
provide efficient gas-transfer rates and simultaneously safe mobilization of the patient [45].

Blood gas analyses directly before and after the fiber bundle proved an effective gas
transfer. Other contributive factors for the severe hypoxia and hypercapnia were, firstly,
the low hemoglobin levels of around 10 g/dL. Secondly, the extracorporeal circulation
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may have been partly recirculating freshly oxygenated and decarboxylated blood; this
phenomenon is common [46] and decreases the effective blood flow almost by the fraction
of the recirculating blood [47,48]. Thirdly, the ratio of ECMO blood flow and native
cardiac output usually ranges between approximately 1:5 and 1:12 from our experiences
with similar animal models. Unfortunately, for the present study, we could not analyze
the cardiac output due to a corrupted logging file of the conductance catheter monitor.
Analyzing all available data from our experiment, we suggest that the extracorporeal
oxygenation is mostly limited by the achievable extracorporeal blood flow. For the current
proof of concept study with the chosen cannula, we aimed at a limited oxygen support
and high carbon dioxide elimination. In theory, a lower support means less utilization of
resources. The current study reflects the borderline of low flow within the applied animal
model. While this was a plausible approach for the present study, it is necessary to run
the system at an operating point prohibiting harmfully high carbon dioxide levels and a
profound oxygen debt. A higher oxygen support of our device could be provided with
alternative highflow cannulation strategies using available transatrial cannulas or other
newly developed connection strategies.

The gas transfer rates ECMO VCO2 and ECMO VO2 showed very similar results to
the in vitro tests for the respective blood flows. Müller et al. [49] as well as Kopp et al. [50]
stated that 150 mL/min CO2-elimination is required to reach around 50% of the metabolic
production for an ECCO2R scenario. We showed in our in vitro test higher values of around
160 mL/min; our in vivo test confirmed the results within the limited blood flow range due
to the cannula.

4.3. Conclusions

Generally, the ambulation of ECMO patients may be beneficial, if existing obstacles can
be resolved; these include: the reduction of procedural risks for nonimmobilized patients
for the redefined therapy, integration of the system components, resource intensity (mainly
staff), system autoregulation, the (prolongation of) temporary independence from static
(hospital) infrastructure, proving safety and efficacy and therapeutic benefit of the concept,
as for now, we rely on analogies from other therapies and single centers case studies and,
last, the mitigation of the psychological burden of the patients.

Within the present study, we could show that the downsizing of an ECMO system
with a carrying system close to the body, autonomous gas and energy supply, as well as a
control system, is feasible. With the chosen cannula, the system was running rather like
an ECCO2R device. A correctly selected cannula is obligatory to provide higher blood
flow and, consecutively, higher oxygen transfer. Using a novel large animal model, we
further showed the feasibility of a system applicable to mobilize patients and inherently
established an appropriate in vivo model. We suggest progressing with the technology and
the concept of mobilization to overcome the limitations of the laboratory sample. In order
to conduct preclinical trials on safety and efficacy, even in animal studies, we must advance
our system to reach at least industry standards. We therefore believe that a validation of
our concept with improved system components and implemented industry standards is
the definite next step.
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