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Abstract: Stem cell and cell therapies, particularly autologous cell therapies, are becoming a common
practice. However, in order for these technologies to achieve wide-scale clinical application, the
prohibitively high cost associated with these therapies must be addressed through creative engineer-
ing. Membranes can be a disruptive technology to reshape the bioprocessing and manufacture of
cellular products and significantly reduce the cost of autologous cell therapies. Examples of successful
membrane applications include expansions of CAR-T cells, various human stem cells, and production
of extracellular vesicles (EVs) using hollow fibre membrane bioreactors. Novel membranes with
tailored functions and surface properties and novel membrane modules that can accommodate the
changing needs for surface area and transport properties are to be developed to fulfil this key role.

Keywords: autologous cell therapy; bioreactor; hollow fibre membrane bioreactor (HFBR); cell culture

1. Introduction

Through the manipulation, expansion, processing, and subsequent re-implantation of
a patient’s own cells, autologous cell therapies are now used in the treatment of otherwise
incurable diseases and degenerative conditions. As the cells used in these therapies are
derived from the patient themselves, complications associated with immunological rejection
may be negated. Consequently, autologous therapies are considered to be more readily
achievable than other technologies in the field of regenerative medicine. To date, successful
autologous cell therapies in clinical practice include:

• Autologous chondrocyte implantation (ACI) for cartilage repair [1].
• Autologous cell therapy for treatment of burns [2],
• Autologous stem cell transplantation for the treatment of multiple myeloma and

multiple scoliosis [3], and
• Chimeric antigen receptor T-Cell (CAR-T) therapy for the treatment of blood can-

cers [4].

Autologous cell therapies, such as chondrocyte implantation therapy, are multi-step
processes [5] as shown in the block flow diagram in Figure 1. In such a process, cells are
initially obtained from the patient either through biopsy or a blood sample. Consequently,
in contrast to traditional therapies, each treatment is bespoke to an individual patient.
Processes developed for the production of autologous therapies are therefore not based on
“scale up”, but rather on the parallel “scale out” using single use disposable platforms.
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One of the main challenges to autologous cell therapies is their high cost. For example,
CAR-T therapies approved for use by the NHS in the United Kingdom, tisagenlecleucel
or Kymriah, come with the steep price tag of GBP 282,000 per treatment, with studies
revealing the real cost being even higher when considering post-treatment care [6]. Bio-
processing and manufacture of the cellular products account for a large fraction of the
cost of goods. Current processing technologies are largely based on mimicking laboratory
cell manipulation and culture with different degrees of automation [7] as shown in the
process flow diagram Figure 2. Infrastructure investment to create ultraclean environments
(good manufacture practice, or GMP) is necessary for the “open operation” where the
product or component are exposed to the operational environment. There is an urgent
need for novel bioprocessing technologies, new equipment, and new devices, to form a
fully enclosed, fully automatic, and single use system, to perform all the processing steps
in hospitals without the need for dedicated GMP facilities. In this way, membranes can
play an important role.

Membranes offer a physical barrier (excluding liquid membranes) with selective trans-
port properties and different surface properties. With the desirable properties, membranes
can be used to solve some key issues, in a genius way, for the bioprocessing and manu-
facture of autologous cellular products. Herein, we review the application of membrane
technologies towards, CAR-T therapy, the culture of adherent cell types, expansion of stem
cells, and isolation of extracellular vesicles (EVs).
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2. Hollow Fibre Membrane Bioreactors for CAR-T Immunotherapy

It has long been understood that the immune system plays an essential role in cancer
development and growth [9], constant “immunosurveillance” by the immune system
seeking and eradicating potential cancer cells [10]. Further studies [11] demonstrated that
specific T lymphocyte populations, killer T cells, are heavily involved in this natural cancer
prevention through the hunting down and killing precancerous and cancerous cells [12].
These T cells have an innate “guidance system” in the form of T Cell Receptors (TCRs),
which they use to recognize cancerous and precancerous cells [13]. These TCRs are sensitive
enough to distinguish single amino acid changes in antigenic peptide sequences [14].
However, to avoid the development of autoimmunity, it is estimated that more than 90%
of all immature T cells and all the T cells with self-reacting TCRs are destroyed before
they reach maturity [15]. Thus, most T cells in the blood stream are nonreactive or only
weakly reactive against mutated self-antigens on tumours. It is necessary to circumvent
this problem to effectively use T cells as a form of cancer therapy.

The first form of T cell therapy utilised Tumour-Infiltrating Lymphocytes (TILs) that
are found inside tumour tissues [16]. The rational for this was that T cells inside tumour
will have a higher chance of reacting with mutated self-antigens on tumours. However, in
spite of this TIL therapy has enjoyed only limited success [17].

A breakthrough in the effectiveness of this therapy was achieved by combining the
low-reactivity high-cytotoxicity T cell therapy with Monoclonal antibody (mAb) therapy,
which on its own has high reactivity but low cytotoxicity. This was achieved through
genetic modification of T cells, enabling researchers to attach high affinity cancer specific
antibodies called Chimeric Antigen Receptors (CAR) onto the surface of highly cytotoxic T
cells to create the first CAR-T cells [18]. Through multiple clinical trials, it was demonstrated
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that these newly created CAR-T cells were exceptionally good at treating certain types
of cancer [19]. In particular, the anti-CD19 CAR-T cell therapy for the treatment of B-
cell lymphoma had been extremely successful [20] and subsequently six therapies have
been commercially approved by the FDA including, ABECMA (idecabtagene vicleucel,
Bristol Myers Squibb, New York, NY, USA), CARVYKTITM (ciltacabtagene autoleucel,
Janssen Biotech, Inc., Horsham, PA, USA), TECARTUSTM (brexucabtagene autoleucel,
Kite Pharma, Inc., Los Angeles, CA, USA), Kymria™ (tisagenlecleucel, Novatis, Basel,
Switzerland), Yescarta™ (axicabtagene ciloleucel, Kite Pharma, Inc., Los Angeles, CA,
USA), and Breyanzi (lisocabtagene maraleucel, Bristol Myers Squibb, New York, NY,
USA) [21–26].

A key technical step in CAR-T therapy is to transduce and expand the CAR-T cells
to about 1 billion cells for a couple of treatments. This is usually done using traditional
cell culture flasks or wave-bag bioreactors. It should be pointed out the wave-bags are
made of gas permeable membranes to allow gas exchanges during the culture. CAR-T
therapy had been immensely successful in clinical trials and was generally regarded as
“ground-breaking”. However, its clinical implementation and uptake has been slow [27]
and has been plagued by problems such as the high cost and risk of associated side
effects [28,29]. CAR-T cell expansion has been identified as an important challenge to
improve the efficiency, uniformity, and controllability of the cell products.

As illustrated in Figure 2, all the currently approved CAR-T therapies use autologous
peripheral blood or apheresis as the cell source [21–26]. Traditionally in pharmaceutical
production cost is reduced through economy of scale during scale up. By using bigger
bioreactors and producing bigger batches, the unit cost of the product can be lowered [30].
However, the need for autologous cells means that doses must be made-to-order as opposed
to made-to-stock, which ultimately leads to higher unit cost. Not only does this increase
the patient-to-patient curative effect variation [31] but also limits the scale of production.
Thus, CAR-T manufacture capacity may only be increased by scaling out, increasing
capacity by adding more equivalently functional production units, rather than scaling
up [8]. Consequently, most CAR-T manufacturers still use largely manual flask or bag-
based culture systems, these flask or bag based culture systems can be easily scaled out
by adding more flasks or bags. However manual flask or bag-based cultures require large
centralized GMP facilities with a lot of support equipment and space to maintain a sterile
environment, which makes them very space inefficient and more important costly.

To negate these issues, standalone closed bioreactor units have been developed to
replace flask or bag-based cultures, examples of which may be seen in Figure 3 and a
comparison of which may be seen in Table 1. Several clinical CAR-T trials have used
systems such as CliniMACS Prodigy from Miltenyi Biotec for their production [32–34],
which provides an end-to-end platform for the expansion of both adherent and suspension
cell types. The Cocoon platform from Lonza is another similar system. Each of these
platforms is supplied with a touch screen interface and software which enables protocol
design, online process monitoring and logging. The Xuri cell expansion system [35], which
is based on the WAVE bioreactor platform, uses a large culture bag which is sufficient to
expand large numbers of CAR-T cells with semi-feed of fresh medium. None of these
systems can maintain ‘chemostat’ and uniform environment for the cultured cells [34].
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Hollow fibre membrane bioreactors (HFBRs), with continuous perfusion, can precisely
control the extracellular environment and control the cell culture process. Since their
first development in 1972, HFBRs have been touted as a means to overcome many of the
issues presented by vessel and wave bag based platforms, by offering a closed system with
automated temperature, gas concentration, and inlet media flow rate control [39]. Typically
consisting of a controller, positive displacement pump, HFBR cartridge, waste, media, and
buffer reservoirs, connected in a continuous loop [40], as illustrated by Figure 4, HFBRs
effectively facilitate the removal of waste products while simultaneously providing fresh
nutrients directly to the cells, which ultimately allows for the support a much higher cell
densities [41–43]. Membranes used in HFBR cartridges are typically produced through
immersion precipitation phase inversion in which a polymer solution is extruded through
a spinneret into a precipitation bath, in which asymmetric hollow fibre are formed with a
pore density gradient in the radial direction, before being rinsed and stored [44]. Polymers
commonly used for cartridge production include, Polyvinylidene fluoride, Polysulfone,
and cellulose [45].

Depending on the cell type and the intended product, HFBRs may be configured
such that cells are grown in the lumen of the membranes or in the extra capillary space
(ECS) in between the hollow fibres (HFs). Suspended cells, such as CAR-T cells, are ideally
grown in the ECS, in which a near fluid shear stress-free environment is maintained. In this
configuration, high cell numbers may be maintained as membrane bound advective mass
transfer facilitates the maintenance of high transmembrane concentration gradients for
efficient nutrient transfer. Cells may also be grown in the HF lumen, while being exposed
to fluid shear forces to induce mechanical stimuli. The use of membrane bioreactors for
cell culture and bioprocessing is not new, and the advantages in retaining cells while
removing secreted products and metabolic wastes have been explored for a wide range of
bioprocessing applications in both research and commercial settings.
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Table 1. Comparison of platforms developed for the manufacturing CAR-T cell therapies.

Name Company Principle Volume/Surface Area Scalability Gene
Editing? Temperature Control Final formulation

CliniMACS Prodigy Miltenyi Biotec CentriCultUnit or
External culture vessel

low/dependant on
external vessel size low In place

Requires external temperature
control when external vessel used.
No reagent temperature control

Fill and finish capable

Cocoon Lonza Customizable cassette 460 mL—low medium In place Duel environmental control for
reagents and cell growth Fill and finish capable

Xuri cell Cytiva Wavebag 0.3–25 L—medium medium In place Integrated tray heater and sensors External finishing required
Duet Pump FibreCellSystems Hollow fibre membrane 80 cm2–1.2 m2 medium No Requires CO2 Incubator External finishing required
Quantum TERUMO Hollow fibre membrane 1.7–2.1 m2 High No Continuous control of temperature External finishing required

HF Primer CellCultureCompany Hollow fibre membrane 1.5 m2 medium No Requires CO2 Incubator Concentrates harvest but external
finishing required

AutovaxID CellCultureCompany Hollow fibre membrane 80–100 L equivalent High No Automated control of temperature Integrated refrigerator for continuous harvest

AcuSyst-Maximizer CellCultureCompany Hollow fibre membrane 80–200 L equivalent High No Automated control of temperature
Integrated refrigerator for continuous harvest
and In-line filter for harvest clarification to
reduce downstream processing

AcuSyst-Xcellerator CellCultureCompany Hollow fibre membrane 500–2000 L equivalent High No Automated control of temperature
Integrated refrigerator for continuous harvest
and In-line filter for harvest clarification to
reduce downstream processing
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HFBRs can be made into an automatic system with single use functionally closed cell
culture consumable set, such as the Quantum Cell Expansion System. Studies have shown
that the Quantum Cell Expansion System can produce large quantities of functional T-cells
at clinical dosage levels [46] with increased potency [47].

Chang et al. developed a single use modular hollow fibre membrane bioreactor system,
specifically for CAR-T cell expansion. The system is fully closed, fully automated, and
integrated with all necessary steps involved including T cells transduction and activation,
expansion, product formulation, volume reduction and final harvest. It might be possible
that such a system can be placed at the hospital bedside without GMP bioprocessing
facilities and cell transportation, reducing the cost of CAR-T cell processing significantly.

The membrane provides a physical barrier to enable a fully closed system. This
minimises risk of contamination. As terminal sterilization techniques such as gamma
radiation ethylene oxide or UV sterilization cannot be used on living cells, strict aseptic
processing protocols must be followed to prevent contamination. When using traditional
flask or bag-based cell manufacturing processes, due to the prevalence of open processes
involved there is a higher microorganism exposure risk [48,49]. This is because, when using
static flask-based cell cultures or rocking motion-based bag cell cultures, these processes
involve multiple open processes such as, adding media or cell harvesting [50,51].

Traditional culture platforms in contrast to HFBR systems are very manual labour
intensive. This in turn increases the costs associated with the operation of such processes
due to the reliance on a large highly skilled labour force. In addition to the costs this
also increases the chances of human error and batch variability, a phenomena realised
in the increased rate of failure rate of commercial CAR-T products compared to other
pharmaceutical products [52].

An outstanding advantage of the HFBR system developed by Chang et al. is to
integrate all processing steps into the fully closed and automated system, with T cells
genetically modified so that they express the chimeric antigen receptor, activated to unlock
their proliferation potential, expanded, concentrated, formulated before being infused
back to the patient [52,53]. Without the HFBR system, these multiple step manipulations
mandate the use of multiple pieces of equipment for each step and technician’s operations
which is very labour intensive and introduces potential batch to batch variability and risk
of contamination.

3. Membrane Bioreactor for Autologous Cell Expansion

Autologous cell therapies, either using primary cells or various stem cells, involve
expansion of the target cells from biopsy to a large number of cells (millions to billions)
of desired quality and functions. Initial protocols use manual operations following the
procedures in the laboratory research. Bioreactors for cell expansion soon appeared as a
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key requirement in autologous cell therapy. While multiplate, spheroid, stirred tank and
packed bed bioreactor systems go some way in achieving this goal, the dependency of these
systems on labour intensive tissue culture practices and low cell yields inhibits their wide
spread commercial success [54].

Since their first use in their expansion of human choriocarcinoma cells, HFBRs have
been used to culture many adherent cell types, for research and clinical applications,
including, but not exclusively, endothelial cells (ECs), satellite cells, leukaemia cells, stromal
cells, human cord blood derived mononuclear cells, and erythroid cells.

ECs were first cultured in the lumen of HF membranes in 1995 [55]. It was noted that
when exposed to hydrodynamic shear stress that endothelial cells developed a phenotype
more akin to that found in vivo and may even explain the heterogeneity of ECs throughout
the body [56]. Through the compartmentalisation of cells grown in the lumen and ECS,
HFBRs have been used to recapitulate more complex cellular models. By co-culturing
of ECs with various other cell types, models have been developed for the blood brain
barrier [57], and leukemic lymphocytic metastasis.

HFBRs have shown great promise for stem cell expansion. Autologous stem cells,
including mesenchymal (MSCs) or hematopoietic stem cells (HSCs), as well as induced
pluripotent stem cells (iPSCs), have enormous medical potential owing to their potential
to differentiate into specific cell linages [56]. HFBRs have been demonstrated as a means
by which iPSCs may be expanded, similar to embryonic stem cells [57–59], although it
was noted that further process refinement was still required [60]. HFBRs have also shown
promise [60,61] in culturing MSC, the stem cells more readily for clinical applications. While
shear stress may be used to induce differentiation of MSCs, when expanding MSCs the
minimisation of shear stress is desirable, and to this end HFBRs excel [58,62]. Consequently,
HFBRs have been used for MSC expansion in large scale automated systems for a wide
range of derived tissues including neural [63,64], skeletal [65], and for immunomodulatory
effect [66].

HFBRs proved effective in producing red blood cells. It is known that the hematopoi-
etic cellular niche plays an integral role in the regulation of haematopoiesis. Owing to
their rigid mechanical properties and the relatively hydrodynamic shear stress free environ-
ment in the ECS, HFBRs have gained attention as a platform which may support ex-vivo
haematopoiesis. Through the co-culture of human stromal cell line (HS-5) and human cord
blood derived mononuclear cells a population of CD 34+ progenitor cells were expanded
in serum free conditions. Further examination revealed the deposition of ECM proteins
between the membranes, thus demonstrating the three-dimensional (3D) nature of HFBR
cultures [67]. This promising result garnered much attention, alluding to the potential of
ex-vivo red cell production. Subsequently a tertiary polyurethane scaffold was employed
in the ECS to mimic the structure of trabecular bone. Following the seeding of umbilical
cord blood mononuclear cells, hematopoietic populations were supported for 28 days
allowing for the continuous harvest of enucleated red cells in serum free conditions [68,69].
Consequently, HFBRs offer a means by which red blood cells may be produced ex-vivo at
greatly reduced cost and potentially alleviate the dependency of donations [70].

The clear need for HFBRs for regenerative medicine has naturally drawn great atten-
tion from industry and various commercial systems have been developed. For example,
TERUMO, fibreCellSystems, The CellCultureCompany, and Oxford Mestar now offer a
range HFBR solutions for bioprocessing applications [45,71–74]. Each of these companies
has targeted slightly different markets with; TERUMO providing a wholistic end to end cell
culture solution for the expansion of cells in the form of the Quantum platform. With full
control of media flow rate, temperature and gas compositions afforded by the automatically
fed cabinet, the Quantum system facilitates reduced manual operations thereby reducing
the chance of contamination while improving reproducibility [73]. To date the platform
has been used for, the expansion of CD3+ T-cell [75,76], MSCs [46,77], adipose stromal
cells [78], neural stem cells [54], and iPSCs [79]. The DUET pump platform developed
by FibreCellSystems is intended for laboratory scale HFBR systems. Depending on the
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intended application a range of different membrane modules may be used, each produced
with a range of membrane materials and pore sizes. It is the relatively low cost and flexibil-
ity, compared to complete cell expansion systems, associated with the FibreCellSystems
platform that make it so attractive to researchers. The DUET platform has consequently be
used in the investigation of immune regulatory effect of MSCs [66], for the production of
EVs at a GMP standard [80], the interaction of ECs and myeloid leukaemia [81], and even
in the investigation of stem cell health in microgravity conditions onboard the international
space station [82]. The CellCultureCompany has produced several platforms suitable for a
wide range of applications and scales of operation. At the smallest scale, intended for use
in a standard tissue culture incubator, the HF Primer system is most suitable for research
applications. Increasing in size the AutovaxID is a standalone system intended as a pilot
scale platform to bridge the gap between R&D and production scale. Finally, the AcuSyst-
Maximizer and AcuSyst-Xcellerator provide a scale-up pathway intended for production
scale applications of between 500–2000 L fed-bed equivalent in size, while fitting in a cabi-
net the size of a refrigerator. The RegenMed Solution system developed by Oxford Mestar
is a modular system integrating cell seeding, expansion, harvest, and final formulation
together, and has proved successful in CAR-T culture and human MSC expansion.

4. Membrane applications in EV Production

Membrane technology can play an important role in extracellular vesicle (EV) produc-
tion. EVs are a type of lipid bilayer membrane-bound nanovesicles secreted by cells. EVs
produced by stem cells [83–87] are an important secretory product that might be responsible
for various therapeutic effects of stem cell therapy [88–90], and hence can be an important
therapeutic product for anti-aging as an example. However, research and application of
this potential cellular secretome product is largely hindered by its low productivity and the
challenges of isolation and purification.

As EVs are secreted products of cells, the yield of EV products is partially dependent on
the ability of cell expansion [91]. Current production of EVs is mainly based on traditional
flask-based cell culture processes, which is largely limited by scale, highly manual labour-
intensive and time consuming, while also being associated with high chances of human
error and batch variability. As previously discussed HFBRs may yield large numbers of
adherent stem cells in a small 3D space, and consequently, may be used to increase the
yield of EVs. A key practical advantage that HFBRs systems offer is that they may also
function as a part of the downstream process. Owing to the semi-permeable nature of the
membranes in an HFBR, membranes with suitable pore size allow the mass transfer of
nutrients and waste through continuous perfusion while retaining EVs that are produced.
Through this means, EV products can accumulate and be preliminarily concentrated
within the cell culture compartment of an HFBR. This in turn is beneficial for downstream
purification processes as the smaller start volume makes subsequent liquid handling
easier [92]. Recently, Mendt et al. demonstrated the Terumo Quantum platform may be
used as an effective platform for the consistent expansion of exosomes, a type of EVs. The
exosomes produced in turn were shown to increase the rate of survival from pancreatic
cancer [93]. Furthermore, Williams et al. and Potter et al. demonstrated that MSC-derived
exosomes could be successfully obtained from Quantum cell expansion system, while
preserving their therapeutic effects [94,95]. Similarly, Cobin et al. demonstrated that EVs
could be produced efficiently and reproducibly with MSCs derived from multiple human
donors with a HFBR platform from FibreCellSystems, while preserving the phenotype and
functionality of the cells [80]. It should be noted that EVs reflect the state of the cells from
which they originate as their content can be considered as a fingerprint of the type and
status of their parent cells. Thus, in order to ensure that the EVs harvested from ana HFBR
are of desired type, quality, and function, it is vital to continuously monitor the status of
the cells in the bioreactor as previously mentioned. Currently, sterile sampling of metabolic
products and macromolecular biomarkers is readily achievable to monitor the cell condition
through the use of membrane probes. However, it is very challenging to achieve direct
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online monitoring of the status and functions of the parent cells, and there is currently no
existing method that would allow direct characterization of EVs within the bioreactors
during the cell culture, due to the limitation of current characterization method. Therefore,
it is also essential to characterize both the phenotype of their parent cells after the culture in
the bioreactor and the isolated EVs sample itself in terms of size, morphology, expression
of EV markers and functional potency, prior to the next stage research and application.

EVs are nanoparticles with a size range mainly from 30–1000 nm. They are usually
spherical, carrying cargoes including proteins, RNA species, DNAs, and lipids. Several
common methods are available for EV isolation and purification, the pros and cons of
which may be seen in Table 2. Among these EV isolation methods, ultracentrifugation,
immunoaffinity capture, precipitation, and size exclusion chromatography have limitations
of poor scalability, high cost, introduce unwanted agents and requiring extra isolation steps,
respectively [90]. In contrast, membrane filtration is capable for high throughput, is more
readily scalable, requires less capital investment for equipment, is faster, and less labour
intensive. Consequently, ultrafiltration (UF) is a very promising EV separation method for
large-scale manufacture of EVs intended for clinical applications.

Table 2. Pros and cons of common extracellular vesicle isolation methods.

Method Principle Throughput Scalability Cost Operation Effects on EVs

Ultracentrifugation

Sequential
centrifugation
step, separated

EVs based on size
and density

Large Low High
equipment cost

Manual labour
intensive, time

intensive,
batch variability

Mechanical
damage

Immunoaffinity
Capture EVs

based on their
surface markers

Low Medium High cost for
antibodies

Require a
pre-concentration

step, time
consuming

Reversible step
required

Precipitation

Use precipitating
agent to induce

the pelleting
of EVs

Low Medium Medium/Low

Further
purification
required to
remove the

precipitating
agents

Introduction of
synthetic

precipitating
agents to EVs

Size exclusion
chromatography

Separated EVs
based on size
with a packed
column of with

fine, porous
beads

Medium Medium Medium

Require
concentration

step before
and after

Minimal
detrimental

effects on EVs

Membrane
filtration

Separated EVs
based on size

with filters
Large High Medium/Low Time-efficient

Less
detrimental

effects on EVs

Microfiltration (MF) and UF can readily be used for EV isolation and purification.
MF using membranes with pore sizes ranging between 0.1–0.8 µm is normally used to
remove larger particles from the target EV fraction [96]. Track-etched polycarbonate
membranes with pore sizes from 30–600 nm have been utilized for fast EV isolation or
detection in specialized filtration devices, e.g., a cyclic tangential flow filtration (TFF)
system [97], a TFF based microfluidic chip [98], an integrated double-filtration microfluidic
device [99], an exosome total isolation chip [100], a lab-on-a-disc integrated with two
nanofilters [101]. Commercial centrifugal ultrafiltration filters with multiple membrane
materials and molecular weight cut-off (MWCO) ranging from 10–300 kDa are used for
volume reduction of a large amount of biofluids and conditioned medium from cell culture
before EV isolation [102], or as an additional concentration step for the relatively dilute EVs
after other isolation steps, for example, size exclusion chromatography (SEC) [103]. It was
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reported by Vergauwen et al. that the most popular membrane type for EV concentration
is regenerated cellulose with MWCO of 100 kDa, based on the records in the EV-TRACK
knowledgebase [104].

UF-TFF can also be applied to EV isolation and purification. In TFF with a suitable
choice of membrane MWCO, EVs larger than the pore sizes can be retained, concentrated
and recirculated in the capillary space where biofluid or conditioned cell culture media
is continuously pumped in, while smaller molecules, such as some small proteins, salts,
and solvents can travel through the pores on the membrane and be removed in the per-
meate [105,106]. In addition, to increase the purity of EV products, diafiltration can be
operated in TFF systems. Small molecules are further removed, buffer exchanged, or low-
ered by adding fresh exchange buffer at the same rate as the permeate flow rate. Compared
to conventional batch-wise dead-end filtration, TFF is superior as it reduces the formation
of filter cake and can operate large-scale EV isolation and purification in a continuous
process. Choi et al. successfully isolated EVs from human adipose-derived stem cells by
TFF with a 500 kDa MWCO membrane filter capsule, confirming the functional recovery in
photo-damaged human dermal fibroblasts after EV treatments [107]. Higher purity might
be obtained by combining different techniques with UF, although UF alone is applicable for
EV isolation and purification [108]. EVs were reported to have been concentrated 50 fold
through TFF with a 100 kDa MWCO membrane, followed by purification using chro-
matography column and further concentrated by 100 kDa MWCO centrifugal filter [109].
Finally, Hydrostatic filtration dialysis, a filtration technique which consists of filtration,
concentration and dialysis using hydrostatic pressure of the fluid, has also been employed
to isolate EVs from urine using dialysis membranes with 1000 kDa MWCO [110].

5. Needs for Research

Membrane bioreactors have an important role to play. When developing a platform
for the production of cells or cellular products, such as with EVs, there are crucial consid-
erations, such as, process conditions, regulatory approval, cost of device, quality control,
membrane area, and product recovery. First, it is vital to establish uniform bioreactor
conditions. This is necessary to ensure a homogeneous and reproducible product as cells
are sensitive to the local environment. This is particularly important to the culture of stem
cells as they are more susceptible to environmental perturbations.

There is always a need for new membranes that are biocompatible for single use
medical devices. Unlike other industrial applications of membranes, the cellular product
will be implanted or injected directly into the human body. Consequently, any material that
is in contact with the product stream such as the membrane, housing case, potting material
or glue must be approved for use in medical devices and produced in from pyrogen-free
materials [111]. Regulatory issues should not be overlooked during the research and
development of new membranes and modules which provide inevitable hurdles in the
path to commercialisation. To prevent complications associated with cleaning, systems
are commonly developed to be single use [112]. Consequently, the cost of such membrane
device must be low, e.g., at 10 USD per square meter of membrane area or lower. Finally,
the device will have to be pre-sterilised, usually with gamma radiation. This adds an
additional selection criteria that needs to be considered when selecting membrane and
housing materials [113].

Membrane biosensors may find a wider use in cell therapy. To meet regulatory re-
quirements, it is necessary to have robust methods to monitor the process for quality
control purposes. Currently, the sterile sampling of metabolic products and macromolec-
ular biomarkers is readily achievable through the use of membrane probes and various
sampling techniques like microdialysis [114]. In contrast, cell function can only be assessed
with biomarkers and complicated assays. It is therefore challenging to achieve the online
monitoring of cell function. However, as human cells do not grow quickly, offline assays
offer a practical means of measurement although their use increases the risk of contamina-
tion. In addition, the direct characterization and quality control method for the production
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of cellular products such as EVs is still at its infancy. Specialized biosensors that can be
integrated to membrane bioreactors are therefore required.

Novel membrane modules with changing and adjustable membrane areas are needed.
Throughout the culture period of adhering cells if the area is insufficient, cell growth will
be inhibited by contact inhibition. However, if the area is too large initially, the cell density
on the surface will be low and the cells will not proliferate. This is also true for culturing
suspended cells with an optimal cell density in the membrane reactor. The development
of a membrane bioreactor which may increase the area of membrane exposed throughout
culture, to maintain exponential cell growth, is therefore required.

Upon culture completion, the cellular product must be harvested, concentrated, re-
suspended, and formulated for cryopreservation and clinical application. Usually, the cell
suspension is reduced to a volume that fits into a syringe for administration. Current proto-
cols for harvest and formulation rely on labour- intensive multi-step processes. As with the
culture process, through the use of an HFBR platform, it is possible to replace these manual
steps with a membrane device capable of buffer exchange via dialysis, concentration, final
formulation, and volume reduction. Such a device would be a closed system and may be
fully automized, thereby greatly reducing the risk of contamination.

Single use and low cost membrane oxygenator for gas–liquid oxygen exchange is
welcomed. Further to the use of membranes in bioreactors, membrane technologies may be
used to optimize bioprocessing more generally. Membrane oxygenators have been widely
used in the culture of shear sensitive cells and microbes, which was stemmed out from
Extracorporeal Membrane Oxygenation (ECMO) [115]. The challenges with membrane
oxygenators are primarily the cost of the device and suitability as a medical device. In
addition, the use of an oxygenator increases the liquid holdup and should therefore be
minimized as the culture media are expensive.

Cell separation using membranes to replace flow cytometry would be a big step
forward. Currently, upon culture completion cell sorting and purification for stem and
T-cell production is achieved through flow cytometry. The development of a flow through
device for pre-treatment or cell sorting would represent a huge increase in efficiency. Such
a device would likely be based on the difference in the surface properties of cells, and
therefore operate upon affinity instead of size difference. Another application for affinity
or ion exchange membranes would be the removal of macromolecules secreted by the cells,
or from lysed cells, which otherwise negatively affect cell growth. The designing of such
a membrane will need detailed understanding on the specific proteins produced by the
particular cell type.

The separation and purification of EVs using membranes have great potential. Al-
though membrane-based techniques are widely used for EV isolation, the interaction be-
tween EVs and membranes with different parameters, such as MWCO, materials, charged
or not, and any kind of modifications, are rarely investigated to increase the selectivity and
reduce the losses from EV binding to membranes. The process of filtration should also be
studied and optimized to increase the efficiency and yield of EV isolation. Deformation,
disruption, or loss of properties and function of EVs caused during membrane separa-
tion requires further investigation [96]. Additionally, while there are several commercial
membrane-based separation products available, these have been originally developed for
different processes and subsequently adapted to EV separations. Specialized membranes
for EV isolation and purification based on the properties of EVs and EV-membrane interac-
tion research are therefore required. Integration of stem cell expansion and EV production
would increase the EV productivity enormously as the cells can be retained and cultured
for a longer period of time while EVs are still produced.

6. Conclusions

As the age of personalized medicine dawns, many engineering challenges come with
the realization of new technologies. For these technologies to reach full fruition, these
challenges must be overcome. No technology better exemplifies this than CAR-T therapies.
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While, broadly considered to be ground-breaking, CAR-T therapies have failed to reach
widespread clinical application, predominantly due to their prohibitively expensive cost per
treatment. To date, the cost of pharmaceuticals has been minimized through the economy
of scales. However, the bespoke nature of personalized medicine prevents this approach.
Instead, cost effective scale-out, rather than scale-up, methods are imperative for success,
as is an alternative business model.

Autologous cell therapies mandate the growth if a patient own cells for re-implantation
back to the patient. Traditional flask and wave bag culture techniques adopted in scale-out
processes are costly, labour intensive, and prone to contamination. HFBRs, developed
for the culture of various cell types in both research and commercial settings, may offer
an automated, cost-effective, closed system alternative. However, to implement HFBRs
into a clinical setting, rigorous regulatory approval of commercial devices, quality con-
trol, and validation methods are necessary to ensure success, as there normally is not a
second chance.

Membrane technologies represent a relatively untapped market in bioprocessing of
autologous cells and cellular products. There are some interesting and challenging problems
such as cell sorting and EV purification that provides an exciting research opportunity
through the development of specialized affinity membranes. New membrane modules,
e.g., those with adjustable membrane areas, would be interesting to develop too.
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ACI Autologous Chondrocyte Implantation
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ECs Endothelial Cells
EVs Extracellular Vesicles
GMP Good Manufacture Practice
HFMBs Hollow Fibre Membrane Bioreactors
HFs Hollow Fibres
HSCs Hematopoietic Stem Cells
IPSCs Induced Pluripotent Stem Cells
mAb Monoclonal Antibody
MF Microfiltration
MSCs Mesenchymal Stem Cells
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SEC Size Exclusion Chromatography
TCRs T Cell Receptors
TFF Tangential Flow Filtration
TILs Tumour-Infiltrating Lymphocytes
UF Ultrafiltration
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