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Abstract: Despite significant research efforts, hemodialysis patients have poor survival rates and low
quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a
barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and
suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis
a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability,
hemocompatibility, and functionality, which are important in dialysis efficiency. The modification
techniques can be classified as follows: (i) physical modification techniques (thermal treatment,
polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone
treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic
treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy
has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even
if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding
hydrophilicity and hemocompatibility can be achieved by employing the right surface modifica-
tion and immobilization technique. Modified membranes pave the way for more advancement in
hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of
the modification method used on the hemocompatibility of dialysis membranes while covering some
possible modifications and basic research beyond clinical applications.

Keywords: hemodialysis membrane; hemocompatibility; surface modification; performance improvement;
membrane fouling; protein adsorption

1. Introduction

Membrane surface characteristics have a significant impact on membrane hemocom-
patibility and antifouling properties because the blood is directly in contact with the
membrane. It’s not surprising, then, that many research efforts are focused on membrane
surface modification and it is the key technology in this field [1–8]. The goals of membrane
surface modification are (1) reduction of undesirable membrane-human serum proteins
interactions, which leads to blood activation, in addition to protein adsorption (membrane
fouling) that degrades efficiency, and (2) enhancement of selectivity or even the generation
of totally new separation capabilities [9–13]. In the process of membrane modification,
various variables must be critically controlled, including, stability, homogeneity, rough-
ness, process control, and acceptable cost, as well as the fine-tunable of functional groups,
which is a significant problem [14]. The key challenges that can be addressed by surface
modification for hemodialysis membranes are hemocompatibility and human serum pro-
teins adsorption which result in the activation of immune system cascades and membrane
fouling and its critical consequences for hemodialysis patients [15–19]. Membrane fouling
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is the deposit of blood proteins, platelets, and other blood constituents on a membrane
surface or within its pores, resulting in a decrease in membrane performance and the
efficiency of clearing toxins. The degree of membrane fouling caused by protein adsorption,
denaturation, and aggregation is influenced by the interaction between membrane surfaces
and blood constituents [6,11,15,20–23]. The hydrophilicity of membranes is a challenge
in dialysis. Some researchers claimed that hydrophilicity has a crucial effect on fouling
resistance [24–32], as the hydrophilic surface absorbs so much water that it prevents pro-
tein adsorption, and in some situations even completely prevents it, resulting in a more
hemocompatible membrane.

Our research group has conducted extensive studies on membrane modification and
its improved biomedical applications, particularly for hemodialysis membranes [19,33–39].

So, the current tendency is to create novel and more effective membrane materials
to lower protein attachment improving hemocompatibility and toxins removal efficiency
to increase dialysis performance. Alternative materials, on the other hand, are frequently
found to be less stable and (unreasonably) expensive [40]. Surface modification is the
process of changing the physical, chemical, or biological features of a membrane’s sur-
face from those of the polymeric membrane. Polymer membranes with outstanding hy-
drophilicity and hemocompatibility can be made utilizing appropriate surface modification
techniques [25,41–48]. Physical and chemical procedures are the two primary groups of
these strategies. The classification of these significant groups is determined by whether or
not a chemical bonding happens through the process. Generally, physical changes do not
affect the chemical structure of the membrane. The use of grinding, polishing, and thermal
treatment to change the surface characteristicsof a membrane, such as roughness, grain
boundaries, andsize, is common in these procedures. Blending and coating, on the other
hand, are the most prevalent physical-process-based approaches that affect the membrane
chemical composition. In contrast to physical methods, chemical techniques such as graft-
ing, ozone & plasma treatment, photochemical & radiation reaction, radical polymerization,
click chemistry, and biomimetic treatment, definitely alter the final composition of the
membrane surface [49]. This research builds on our early studies by presenting typical
strategies for enhancing the antifouling property and hemocompatibility of the membranes,
making them more successful in the hemodialysis procedure [19,35,37,43,50–55]. The most
common methods are first described separately; then, in the next part, they are evaluated
and their advantages and disadvantages are discussed.

2. Physical Modifications

Surface alteration can be accomplished through physical methods which do not require
any chemical interactions. Modifications, such as polishing, grinding, thermal treatment,
blending, and coating are easy and inexpensive ways to change the surface roughness,
grain size, and grain boundary of membranes [56,57]. However, the application of physical
modification is limited as they are better suited to flat membranes rather than hollow fiber
membranes. Moreover, polishing and grinding processes are only applicable to inorganic
membranes.

2.1. Polishing and Grinding

Polishing and grinding, which use abrasive materials like sandpaper and diamond
powder to adjust the surface roughness of a membrane, were among the first methods of
manipulating membrane surface physical attributes. R. Meghnani et al. [58] designed and
developed novel ceramic membranes and polished them with a silicon carbide abrasive
sheet for hemofiltration application. Clay ingredients were mixed and compacted to create
the membrane. The membrane was made by combining clay components, compacting
them, and thensintering them at temperatures ranging from 900 to 1100 degrees Celsius.
To achieve a uniform smooth surface, the strong sintered membranes were carefully pol-
ished on both sides with a silicon carbide abrasive sheet. Based on the results of protein
attachment tests, platelet adhesion, whole blood clotting time, blood coagulation time, and
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complement activation, this type of membrane demonstrated excellent hemocompatibility,
clearly showing that polishing was a good technique for surface modification in inorganic
membranes [4]. This procedure is easy and affordable, and no organic solvents or reagents
are required; nonetheless, it is only suited for inorganic and flat membranes.

2.2. Thermal Treatment

Thermal treatment is a kind of physical technique, which involves heating the mem-
branes over time. By heating a membrane, the physical structure will be altered, including
the amount and size of pores, which will improve separation properties [59,60]. Not only is
it inexpensive, easy to use, and eco-friendly, but it may also prove useful for the modifi-
cation of hollow fiber membranes. J. Barzin et al. [61] used the dry-wet spinning method
to synthesize hemodialysis (HD) hollow fiber membranes from polyethersulfone (PES)
and poly(vinylpyrrolidone) (PVP) solutions in N,N-dimethylacetamide (PES/PVP = 18/3
and 18/6 by weight). Heat-treated hollow fibers (in the air at 150 ◦C for 5 min) exhibit
significantly increased and decreased water flux in heat-treated water and air respectively.
The AFM morphological study of the membrane internal and external surfaces revealed
that the roughness decreased after heat-treatment, either in water or in air. Furthermore,
SEM indicated that the membrane surface morphology changed after heat treatment. In-
creased surface smoothness (or decrease in roughness) resulted in increased UF membrane
separation, showing that hollow fiber heated membranes are superior for hemodialysis
because of their improved surface morphology. M. Gholami et al. [62] revealed similar
results in another study, reporting that when the thermal treatment temperature rises to
230 ◦C, the pore size of PES hollow fiber membranes decreases. To explore the influence of
heat treatment on ultrafiltration UF capability, PES hollow-fiber membranes were produced
using the dry-wet spinning technique and then heated in an oven at various temperatures.
Following research into the effects of heat treatment temperature and time, it was deter-
mined that a combination of 150 ◦C and 5 min generated the greatest results. Even though
there was no obvious alteration in the hollow-fiber diameter, annealing was shown to affect
the surface morphology of the membrane, as indicated by a drop in flux and an elevation
in solute separation.

2.3. Blending

Blending is the physical mixing of two (or more) polymers to get desired characteristics.
Blending modification is the most practical method for use in large-scale manufacturing.
Membrane morphological properties are influenced by factors such as the casting solution
(polymer and solvent type, and polymer to solvent ratio), producingconditions (temper-
ature, method), and additives [63]. By blending various chemicals during membrane
production, polymer membranes with hydrophilic surfaces and other beneficial charac-
teristics can be manufactured without pre- or post-treatment. In addition, by using this
technique, hollow fiber membranes may be modified, unlike most grafting methods, which
modify flat sheet membrane surfaces. The most extensively utilized blending components
to increase the hydrophilicity of the HD membrane are biocompatible hydrophilic polymers
such as polyethylene glycol (PEG), oligo (ethylene glycol) (OEG), polyvinylpyrrolidone
(PVP) and zwitterions polymers (ZWs) [63–72]. Sinha et al. [73] used the phase inversion ap-
proach to create a flat sheet asymmetric polymeric membrane using polysulfone (PSF) and
N-methyl-2-pyrrolidone (NMP) as casting solvents (Figure 1). Polyethylene glycol methyl
ether (PEGME) in three distinctmolecular weights was used as an additive polymerin the
casting solution. The hydrophilicity of the modified membraneswasdemonstrated to be
improved by raising the additive molecular weight (from 200 to 5000 Da) induced by the
addition of additives to the membrane matrix as well as the creation of more pores. There
was also a considerable rise in bovine serum albumin (BSA) rejection as well as flux.
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Poly(lactic acid) (PLA) HD membranes with improved fouling resistance and hemo-
compatibility were developed by L. Zhu et al. [45] using poly(lactic acid)-block-poly(2-
hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-
PHEMA block copolymer was made via reversible addition-fragmentation polymerization
and was utilized as a hydrophilic additive to change PLA membranes using the non-solvent
induced phase separation (NIPS) technology. PLA/PLAPHEMA membranes with high
PLA-PHEMA content showed improved hydrophilicity, which resulted in boosted compat-
ibility (reduced platelet adhesion, prolonged plasma recalcification, and decreased BSA
adsorption) and antifouling qualities(better water flux recovery ratio (FRR) and improved
fouling resistance). The findings revealed that PLA-PHEMA copolymers were excellent
additivesfor improving the properties of PLA-based membranes used in hemodialysis.

O. Azhar et al. [74] used Polyvinyl Alcohol (PVA) and PEG as additives to improve
the filtering performance and hemocompatibility of cellulose acetate (CA) HD membrane.
With a higher concentration of the copolymer, the cross-sectional shape of the membranes
altered significantly, revealing a spongy structure that improved moisture absorption.
Increases in the concentration of PVA also increased the surface roughness. According to
SEM images, the surface of the membrane exhibited asymmetrical pores and the mean
size of the membrane pores has changed with changing the concentration, which impacts
the membrane selectivity in removing toxins and rejecting proteins. These alterations
revealed the critical involvement of PVA in the establishment of structure in the CA-PVA
membrane. As a biocompatible hemodialysis membrane, CA-PVA looked impressive. The
modified membrane is more biocompatible than the pure CA membrane, as evidenced
by the 95% rejection of BSA, decreased platelet adsorption and hemolysis ratio, and low
thrombus formation on the membrane surface. PVA appears to be an appealing material
for constructing asymmetric porous membranes with good selectivity and permeability. In
addition to having a high fouling resistance, PVA is extremely hydrophilic, has good pH
stability, is highly mechanically durable, and shows excellent biocompatibility [75]. PVA
can be employed as an additional polymer or a low molecular weight additive to modify
membrane structure [76]. However, the presence of hydrophilic polymers such as PEG,
PVP, and PVA on the dialysis membrane surface could pose serious problems in the HD
process due to their slow elution from the membrane over time [77]. As a result, many
strategies were used to increase the performance of the additive, such as usingdi and tri
amphiphilic copolymers and nanocomposites with a variety of molecular configurations
and structures, thermally cross-linking PVP, or tailored function of the polymers [78,79].

H. Song et al. [79] made a highly branched block copolymer poly (vinyl pyrrolidone)-
block-poly (acrylate-graft-poly (methyl methacrylate))-block-poly-(vinyl pyrrolidone) (PVP-
b-P(AE-g-PMMA)-b-PVP and utilized it in the modification of PES membranes. The PVP-
b-P(AE-g-PMMA)-b-PVP chains were directed onto the membrane surface to enhance
hydrophilicity and hemocompatibility, and AE-PMMA chains were intertwined with PES
networks to prohibit copolymer leaching when immersed in water. The modified PES
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membranes had a better water contact angle (WCA), lower platelet adsorption, and a longer
clotting time than the virgin membrane. In addition, the flux of PBS (or water) and the
resistance to protein fouling were considerably enhanced. Sun et al. [80] reportedsilica-PVP
nanocomposites as a blending additive for PES modification and discovered that the protein
antifouling properties were superior to the PVP additive. PVP surface coverage and hy-
drophilic characteristics are higher in the PES membrane with a silica-PVP nanocomposite
additive than in the PES membrane with just PVP leading to superior flow recovery and
better fouling resistance.

Sulfonation is another chemical modification process that uses a sulfonation agent to
add hydrophilic groups to polymer networks. Athira et al. [81] investigated blended PES
membranes made of CA and sulfonated polyether sulfone (SPES) (Figure 2), and illustrated
that SPES/PES and CA/PES blend membranes are more hydrophilic and hemocompat-
ible than PES membranes. SEM analysis of the blend membranes revealed considerable
alterations in membrane morphology and pores. Based on the protein fouling, platelet
adsorption, and activated partial thromboplastin time (APTT) tests, SPES/PES membranes
show better hemocompatibility than their equivalents.

Membranes 2022, 12, x FOR PEER REVIEW 5 of 45 
 

 

enhance hydrophilicity and hemocompatibility, and AE-PMMA chains were intertwined 

with PES networks to prohibit copolymer leaching when immersed in water. The modi-

fied PES membranes had a better water contact angle (WCA), lower platelet adsorption, 

and a longer clotting time than the virgin membrane. In addition, the flux of PBS (or water) 

and the resistance to protein fouling were considerably enhanced. Sun et al. [80] report-

edsilica-PVP nanocomposites as a blending additive for PES modification and discovered 

that the protein antifouling properties were superior to the PVP additive. PVP surface 

coverage and hydrophilic characteristics are higher in the PES membrane with a silica-

PVP nanocomposite additive than in the PES membrane with just PVP leading to superior 

flow recovery and better fouling resistance. 

Sulfonation is another chemical modification process that uses a sulfonation agent to 

add hydrophilic groups to polymer networks. Athira et al. [81] investigated blended PES 

membranes made of CA and sulfonated polyether sulfone (SPES) (Figure 2), and illus-

trated that SPES/PES and CA/PES blend membranes are more hydrophilic and hemocom-

patible than PES membranes. SEM analysis of the blend membranes revealed considerable 

alterations in membrane morphology and pores. Based on the protein fouling, platelet 

adsorption, and activated partial thromboplastin time (APTT) tests, SPES/PES membranes 

show better hemocompatibility than their equivalents. 

 

Figure 2. The synthetic procedure of SPES/PES blends membranes [81]. 

Citric acid, which is commonly employed as an anticoagulant, is grafted onto the 

polymer surface as a synthetic additive. T. M. Liu et al. [82] used phase-inversion technol-

ogy to develop a blend membrane with improved hemocompatibility and antibacterial 

properties utilizing polyurethane (PU) materials treated with citric acid and chitosan. A 

three-step reaction was effective in synthesizing the PES-PU-CA-CS membrane. Initially, 

a PU pre-polymer containing an isocyanate group was made using a one-pot approach, 

then grafted with citric acid andblended with PES to prepare a membrane for grafting 

chitosan via esterification and acylation processes. Surface and cross-section SEM images 

of PES, PES-PU-CA, and PES-PU-CA-CS membranes revealed no discernible variations, 

indicating that the blending PU-CA and grafting of CS did not affect the membrane struc-

ture. Based on the surface analyses, the PES-PU-CA membrane had a rougher surface 

compared to the PES membrane, possibly because of blending with PU-CA and that some 

outshoot, such as points and lines, developed on the PES-PU-CA-CS membrane, maybe 

due to grafted CS aggregation. For all membranes, a unique finger-like across-section 

morphology was developed, comprising aporous sub-layer and a dense top-layer, which 

was a common asymmetric morphology generated by a delaying liquid-liquid demixing 

mechanism [83]. Even though all membranes were stable in physiological settings, the 

modified membranes had better biocompatibility and antibacterial capabilities than the 

pristinePES membrane. 

C. Nie et al. [84] used aramid nanofiber (ANF) to modify the surface of PES and PSF 

membranes via the blending method. The mixture of ANF and PES or PSF was prepared 

and forcefully agitated to make a homogeneous casting solution. The casting solution was 
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Citric acid, which is commonly employed as an anticoagulant, is grafted onto the
polymer surface as a synthetic additive. T. M. Liu et al. [82] used phase-inversion technol-
ogy to develop a blend membrane with improved hemocompatibility and antibacterial
properties utilizing polyurethane (PU) materials treated with citric acid and chitosan. A
three-step reaction was effective in synthesizing the PES-PU-CA-CS membrane. Initially, a
PU pre-polymer containing an isocyanate group was made using a one-pot approach, then
grafted with citric acid andblended with PES to prepare a membrane for grafting chitosan
via esterification and acylation processes. Surface and cross-section SEM images of PES,
PES-PU-CA, and PES-PU-CA-CS membranes revealed no discernible variations, indicating
that the blending PU-CA and grafting of CS did not affect the membrane structure. Based
on the surface analyses, the PES-PU-CA membrane had a rougher surface compared to the
PES membrane, possibly because of blending with PU-CA and that some outshoot, such
as points and lines, developed on the PES-PU-CA-CS membrane, maybe due to grafted
CS aggregation. For all membranes, a unique finger-like across-section morphology was
developed, comprising aporous sub-layer and a dense top-layer, which was a common
asymmetric morphology generated by a delaying liquid-liquid demixing mechanism [83].
Even though all membranes were stable in physiological settings, the modified membranes
had better biocompatibility and antibacterial capabilities than the pristinePES membrane.

C. Nie et al. [84] used aramid nanofiber (ANF) to modify the surface of PES and
PSF membranes via the blending method. The mixture of ANF and PES or PSF was
prepared and forcefully agitated to make a homogeneous casting solution. The casting
solution was de-gassed before being spin-coated on a glass plate and quickly soaked
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in distilled water to create the composite membranes. By improving FRR, suppressing
protein adhesion, and inhibiting bacterial attachment, the modified membranes illustrated
enhanced antifouling properties. Moreover, in comparison to the pristine membranes,
platelet adsorption was reduced, plasma clotting time was enhanced, and coagulation and
complement factor activation were repressed in the ANF-modified membranes, confirming
improved hemocompatibility. The blending of ANF also improved the efficacy of the
composite membranes in removing creatinine toxin.

ZW polymers are now being used to enhance the hemocompatibility of HD mem-
branes, because of their outstanding antifouling qualities, decreased platelet adsorption,
and activation. L. F. Fang [85] reported polyvinyl chloride (PVC) membrane modifi-
cation with a novel zwitterionic polymer, methacryloyloxyethylphosphorylcholine-co-
poly(propylene glycol) methacrylate (MPC-PPGMA) as the blending additive via non-
solvent induced phase separation method. The surface-segregated MPC groups give the
blend membranes with superior surface hydrophilicity and anti-biofouling properties be-
cause of the excellent hydration capacity of the zwitterionic part. The FRR for the blend
membrane with 1 wt% MPC-PPGMA copolymer in the casting solution was greater than
97%. The stability and endurance of the copolymers in blend membranes, as well as the
sustained antifouling property on modified membrane surfaces, were demonstrated by
multi-cycle filtration and long-term stability testing. Through blending, S. Y. Choi et al. [86]
created some novel oligomeric polyurethanes using methylene diphenyl diisocyanate (MDI)
and sulfobetaine (SB), tetra-fluoro ethylene (TF), or SB/TF (SBTF). The surface migrating
oligomers (SMOs) were synthesized from polyurethane backbones containing ZWs and flu-
orine and then blended with PVC to provide enhanced anti-thrombotic properties through
the anti-fouling effect. Comparing the SMO (SBTFPU) combining both SB and hydrophobic
TF parts was highly successful in terms of fouling inhibition and anti-thrombogenicity.
Table 1 compares the increased membrane performance achieved by blending various
additive blocks.

Table 1. Comparison of combining different additive blocks on membrane performance.

Name of
Additive

Preparation
Method of
Modifica-

tion
Layer

wt% of
Additive

Pure Water
Flux

(L m−2

h−1)

Contact
Angle
(θ◦)

Antifouling
Properties

(%)
FRR

(BSA)

Protein
Absorp-

tion
Platelet

Adhesion
Clotting

Time
(PT, APTT)

Complement
Activation Ref.

PLA-PHEMA RAFT 5, 10, 15, 20

236 for
15 wt%

PLA-
PHEMA
content

71.4◦ to
60.5◦

54.9 to
86.0%

28 to 2
µg/cm2

Suppressed
platelet

adhesion

Prolonged
plasma

recalcifica-
tion

times

[45]

PEG-PVA
Phase

inversion
method,

1. 1.5, 2, 2.5 16.4 to
42.484 37.3 to 46◦ 82 to 90%

low
amount of

protein

Suppressed
platelet

adhesion

Plasma
recalcifica-
tion times:

240 ± 5 s to
300 ± 3 s

~5% ± 0.15
to ~6.5% ±

0.15
thrombus
formation

[74]

PVP-PES RAFT

1.11, 2.97,
4.50,

6.29, 8.12
and
9.47.

- - - -

96%
reduction

in
platelet

adsorption.

APTT
increased
from 58 to

93 s.
[79]

SPES Sulfonation 3 49.55 ±
1.52◦

72 ± 5
ng/cm2 Decreased 178 ± 2 s

Minor
amount of
hemostatic

fibrin
[81]

MPC-PPGMA

Non-
solvent
induced

phase
separation

3.1, 5.1, 6 80 L m−2

h−1 85–97%

BSA
rejections

are around
20–35%.

Total cell
thickness
decreased

from about
0.43

µm3/µm2

on the
pristine

PVC
membrane

to 0.08
µm3/µm2

[85]
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Table 1. Cont.

Name of
Additive

Preparation
Method of
Modifica-

tion
Layer

wt% of
Additive

Pure Water
Flux

(L m−2

h−1)

Contact
Angle
(θ◦)

Antifouling
Properties

(%)
FRR

(BSA)

Protein
Absorp-

tion
Platelet

Adhesion
Clotting

Time
(PT, APTT)

Complement
Activation Ref.

PES-Aramid
nanofiber

Spin-
coating
method

and phase
inversion
technique

0.5% CNT Higher
fluxes 62.5 ± 3.1◦ 92.3% 4.81

µg/cm2
3.1 × 107

cells/cm2
Clearly

improved [84]

PES and PSF
Aramid

nanofiber/
Blending

Spin-
coating
method

and phase
inversion
technique

0.5% CNT Higher
fluxes 64.6 ± 2.0◦ 88.2% 5.03

µg/cm2
3.2 × 107

cells/cm2
Clearly

improved [84]

PVC-
SBTFPU (20%) 20%

similar
level to
pristine

PVC
(89.6◦)

2 µg/cm2

for BSA

0.84 × 106

platelets/cm
2

Fibroblasts
(NIH3T3

cell line) test,
Higher than

90%
cell viability

[86]

2.4. Coating

Surface coating is a facile, cost-effective, and environmentally acceptable technique of
surface modification in which the coating material(s) create a thin layer that adheres to the
membrane through non-covalently forces (weak van der Waals or hydrogen forces) [87–89].
Coating techniques are divided into five categories: (I) coating followed by heat curing,
(II) deposition from a glow discharge plasma, (III) coating of a hydrophilic thin layer
by physical adsorption, (IV) coating with a monolayer using analogous or Langmuir–
Blodgett techniques, and (V) extrusion or casting of a two-polymer mixture by simultaneous
spinning using, for example, a triple orifice spinneret. In the last method, as the membrane
polymer and the top coating layer were mixed with various solvents [90,91], the adhesion
between them could be improved.

Noteworthy is the fact that this coating method is suitable for flat-sheet membranes,
and it is difficult to modify hollow fiber membranes using this method. Hollow fiber mem-
branes have more complicated morphologies and structures than flat-sheet membranes,
which limits surface modification studies, particularly interior-surface modification of hol-
low fiber membranes [89]. While no chemical reaction occurs in this method, the modified
membranes are relatively stable due to the electrostatic interactions between the membrane
and the coating layer. In this process, dense coating layers are placed over the entire
membrane surface, resulting in thick smooth membrane surfaces with better selectivity and
lower flux [92]. However, the pore size of the modified membrane can not be adjusted in
this method and some coatings layers decrease membrane pore size, limiting the membrane
ability to selectively transport molecules of different sizes [93]. Membrane degradation
during performance or cleaning processes, as well as additional processing stages that
are time-consuming, are also disadvantages of this method [94]. Various coating methods
include physical adsorption, layer by layer (LBL), self-assembled monolayers (SAMs), spin-
coating, spray-coating, Langmuir-Blodgett monolayer, and casting or extrusion between
two polymer solutions by simultaneous spinning [4,90,95,96].

Zwitterionic polymers have distinguished out from other biocompatible and antifouling-
coated layers for their excellent biocompatibility and great antifouling property [97,98].
In 2016, A. Venault et al. [99] developed a unique ZW copolymer, zP(4VP-r-ODA), by
polymerizing 4-vinylpyrrolidone and octadecyl acrylate as a coating layer to improve
the hemocompatibility of polypropylene (PP) membranes using a simple and inexpensive
self-assembling approach. Commercial PP membranes were modified using a thermal evap-
oration coating method in this study [99]. Membranes were first washed in ethanol while
being treated with an ultrasonic cleaner. The membrane discs were then placed in separate
wells and coated with different coating solutions. The solvents were allowed to evaporate,
and the membranes were then dried. By calculating the weight difference per unit surface
area between the self-assembled membrane and the virgin membrane, the coating densities
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were determined. The modified membranes demonstrated good hemocompatibility and
the ability to resist the adsorption of BSA, lysozyme proteins, blood cells, and escherichia
coli. A. Venault et al. [100] also prepared new zwitterions p(MAO-DMEA) (synthesized
through poly(maleic anhydride-alt-1-octadecene) and N,N-dimethylenediamine reaction)
and p(MAO-DMPA) (synthesized through poly(maleic anhydride-alt-1-octadecene reac-
tion) and 3-(dimethylamino)1-propylamine) to modify the antifouling performance of
poly(vinylidene fluoride) (PVDF) membranes via a self-assembled anchoring method. In
this study, ZW copolymers were first prepared by ring-opening zwitterionization and then
self-assembled by thermal evaporation coating onto PVDF membranes, which showed ex-
cellent antifouling ability in terms of preventing BSA and FN attachmentas well as repelling
various blood cells, platelets, and bacteria.

Using a two-step spin-coating method, C. He. et al. [101] reported a novel and
hemocompatible dual-layered PES membrane made up of a graphene oxide top layer and
a sulfonated polyanion co-doped hydrogel bottom layer (GO-SPHF) by a two-step spin-
coating method. To prepare the top casting solution, Acrylic acid (AA) and sodium styrene
sulfonate (SSNa, 90%) were cross-linked via in situ free-radical copolymerizations in the PES
solution in which GO was added to increase miscibility with PES through hydrophobic and
π–π interaction. The liquid-liquid phase inversion method was used to obtain dual-layered
membranes by spinning pristine PES solution onto glass plates in two steps. The two layers
of the dual-layered functionalized membranes had a distinct border that was effectively
combined (Figure 3a). The modified membranes showed good durability for a variety
of applications while exhibiting minimal tensile strength loss. The modified membranes
exhibited outstanding anticoagulant characteristics, low inflammation, decreased platelet
adsorption, and excellent cytocompatibility, giving them exceptional hemocompatibility
for a variety of blood-contact applications. Furthermore, they retained high durability for a
variety of applications while exhibiting minimal tensile strength loss.
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tion of pre-deposited SiNPs functionalized with SB [102].

B. R. Knowles et al. [102] reported silica nanoparticles modified with sulfobetaine
siloxane as a novel and efficient fouling resistance layer for surface functionalization. To
create hydrophilic antifouling coatings, silica nanoparticle suspensions were designed
with SB at different pH levels and coated as thin films by a simple spin-coating procedure
(Figure 3b). Surface modification of pre-deposited SiNPs functionalized with SB offers a
quick technique of introducing hydrophilic chemistries to surfaces with strong resistance
to protein adhesion and may be used to create robust antifouling coatings appropriate for
long-term applications.

S. H. Chen et al. [103] used free radical polymerization and RAFT polymerization to
produce a set of random and block zwitterion copolymers that were used for zwitterion-
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ization of PP membranes using a-convenient coating process. A pre-wetting treatment
can adjust the chain orientation of the above-mentioned copolymers that are bonded to
hydrophobic PP membranes, leading to enhanced antifouling and hemocompatibility
properties. The resultant modified membranes showed superior bio-inert characteristics,
excellent hemocompatibility in human whole blood, significant antifouling capacity against
leukocyte and thrombocyte adhesion, as well as different proteins and platelet attachment.

X. Lin et al. [17] reported a new functional amphiphilic ZW copolymer coated on a
PVC surface that was constituted of both super hydrophobic carboxybetaine acrylamide
(CBAA) units and hydrophobic/photosensitive N-(4-benzoylphenyl) acrylamide (BPAA)
units. Surface modification was performed using hemocompatible polymers containing
carboxybetaine (CB) parts and photosensitive cross-linking moieties, accompanied by UV
light illumination. The modified PVC materials showed superior resistance to protein
attachment, platelet adsorption, and complement activation in real circumstances.

Spin coating is a versatile procedure that involves either casting the solution onto
rotating support or casting it onto static support and then spinning it [104–106]. When
compared to immersion assembly, spin assembly produces more homogeneous, thinner,
and smoother films in a quicker time frame, making it more appealing for membrane
design and development [107]. Z. Zhou et al. [108] reported a novel method of spin-
coating assisted interfacial polymerization (SCIP) to fabricate ultrathin polyamide (PA)
membranes for nano-filtration (Figure 4). The spin coating produces a homogeneous
diamine distribution that is mostly localized outside of the surface pores instead of inside
the substrate. By forming ultrathin PA nano-films smaller than 10 nm and minimizing
the size of back surface protuberances, improvement of water permeability is achieved as
preserving mechanical stability.
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Ren et al. [109] designed a durable protein-resistant multilayer system using
poly(sulfobetaine methacrylate) (PSBMA) and tannic acid (TA) through an LBL assembly
approach to improving hydrophilicity and resistance to proteins. Increasing the number of
bilayers in the (TA/PSBMA)n multilayers resulted in a change in surface hydrophilicity,
and (TA/PSBMA)20 multilayers demonstrated superior hydrophilicity and antifouling
properties than others with fewer bilayer numbers (n = 5, 10, 15).

H.W. Chen et al. [110] developed an amine-rich surface for the conjugation of ZW
polymers using LBL polyelectrolyte deposition. In this method, an ultra-thin film is
built by alternating positively and negatively charged polyelectrolytes adsorbing on a
substrate. Polyzwitterion with a carboxylated end was first prepared with different chain
lengths before being conjugated onto TLP-coated substrates. Cell adsorption and protein
attachment were almost prohibited on the polyzwitterion-modified surfaces.

Q. Chen et al. [111] developed new biocompatible and cytocompatible PES membranes
using an HB-LBL assembly of anti-oxidative TA and hemocompatible poly (N-acryloyl
morpholine) (PACMO). The PES membrane was alternately immersed in TA and PACMO
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solutions to create the multilayers. The pristine PES membrane was first placed in the TA
aqueous solution for 20 min and then washed three times with distilled water. The mem-
brane was then soaked in PACMO aqueous solution and again washed with distilled water.
Repeated both coating and washing operations yielded the desired number of bilayers as
shown in Figure 5a. Because TA is a powerful natural antioxidant, TA-PACMO function-
alized membranes are resistant to oxidative stress. PACMO also boosted hydrophilicity
and hemocompatibility, which improved anticoagulant activity and reduced platelet and
red blood cell adherence on membrane surfaces, as well as lowered the likelihood of
complications.
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Even though electrostatic LBL cannot be utilized to create multilayers of zwitterionic
polymers due to the inner salt structure, Xie et al. [112] used Schiff-based LBL assembly to
create an antifouling PES membrane surface (Figure 5b). In the first step, amino-abundant
ZW polymers of PEI-SBMA and aldehydes-rich oxidized sodium alginate (OSA) were
prepared; then, a fouling resistance coating was produced by assembling the two macro-
molecules using the facile Schiff-based LBL assembly with the PEI-SBMA layer remaining
as the out-layer for all the samples. Following that, the synthesized membranes (PES/PEI-
SBMA/OSA-n) were soaked in a silver nitrate solution and sodium borohydride, respec-
tively, to create Ag-loaded membranes (PES/PEI-SBMA-Ag and PES/PEI-SBMA/OSA-
n-Ag). The loaded Ag NPs membranes could prevent bacterial growth, and bactericidal
action could be improved by raising layer numbers to increase the loaded Ag NPs ability.
The results demonstrated that PES/PEI-SBMA-Ag and PES/PEI-SBMA/OSA-n-Ag mem-
branes could be useful in clinical bacterial contamination control for a variety of biomedical
implants.

A notable recent invention is ‘Mussel’ inspired chemistry, in which the membrane
is coated with dopamine analogs. By adjusting temperature, deposition time, pH, and
atmosphere, the deposition method can be easily controlled. High surface hydrophilicity
and antifouling qualities are provided by polydopamine (PDA) coating. PDA is also capable
of interacting with many different molecules, making it a useful platform for applying
covalently grafted functional layers to substrates [113–116]. These membranes, however,
are often expensive and have low chemical stability, especially in an alkaline environment
mostly, which limits their use on a large scale [117–119].

R. Zhou et al. [120] reported the modification of polypropylene membranes with PSBM
through a facile and efficient co-deposition procedure in one step. Co-deposition is simply
achieved by immersing microporous polypropylene membrane (MPPMs) samples in a
one-pot mixture of dopamine alkaline solution and varying concentrations of PSBMA as
illustrated in Figure 6a. The average pore size of the surfaces of the unmodified membrane
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is around 0.20 m, according to FESEM images, and there was no substantial alteration
for the membrane deposited with 1:0 PSBMA/DPA. Because the membrane surfaces are
covered in a thin layer of PDA, the pore size appears to shrink slightly following PDA
deposition. When the membrane is co-deposited with PSBMA/PDA, this phenomenon
is amplified. The modified membranes showed better hydrophilicity, lower water flux
reduction, and higher water flux recovery than pure membranes.
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between PDA, PEI, and PEI-S [121], (d) The reaction mechanism of TA/DAS-SMP [122].

A straightforward and efficient method to produce superior biofouling resistance
coatings with good stability has been proposed by L. Yao [121] based on the co-deposition
of PDA and an amino-enriched ZW polymer. PDA and polyethyleneimine-quaternized
derivative (PEI-S) were deposited on the PES membrane surface in water at room tempera-
ture (Figure 6b). The addition of PEI-S to PES membranes could significantly increase their
antifouling capacity. Moreover, because of covalent cross-linking, the chemical durability
of the co-deposited polymers (M-PDA/PEI-S) was greatly improved over that of the PDA-
coated membrane (M-PDA). Importantly, the M-PDA/PEI-S showed exceptional stability
under extreme alkaline conditions due to the cation-interaction (Figure 6c).

Zhang et al. [122] developed a facile and sustainable approach to immobilizing a
heparin-like coating consisting of TA, DAS, and SMP on a PES ultrafiltration membrane
through the hydrophobic interactions and hydrogen bonding of TA with the PES membrane,
the cross-linking of D-asparagine (DAS) with TA, and a Michael addition reaction of
sodium 3-mercapto-1-propane sulfonic acid (SMP) with TA (Figure 6d). The insertion of
hydrophilic functional groups as –COOH and –SO3 to the membrane surface resulted in a
heparin mimetic coating which increased the hemocompatibility of the modified membrane.
Different membranes with high flux and excellent antifouling capabilities were created by
adjusting the coating conditions. The TA/DASSMP-modified coating did not affect the
membrane pores of the ultrafiltration membrane, according to SEM and AFM pictures,
and the modified membrane PEST/D-S had a homogeneous surface. A summary of some
studied surface-coating modifications is given in Table 2.
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Table 2. Summary of selected surface-coating modification studies.

Membrane Modification Method Main Results Disadvantages Ref.

PP P(4VP-r-ODA) SAMs

A versatile approach for
developing bio-surfaces in vitro,
Accurate control of the packing
density and environment of an
immobilized recognition center,

or many centers, on a
substrate surface.

The amphiphile concentration,
pH, and ionic content all

influence the self-assembly
process.

[99]

PVDF p(MAO-DMEA) SAMs

Facile approach, no damage to
bulk membrane properties,

nanoscale control, Optimizing of
coating variables (coating time,

solution concentration), and
modifier chemical composition

(hydrophilic/hydrophobic ratio).

A two-step process, The
thermal evaporation process

was used as an additional
processing stage that is

time-consuming

[100]

PES GO-SPHF Spin-coating

Produce a thin, uniform coating,
Controlling the film thickness,
Novel fashion of dual-layered
composite membranes with

integrated advantages of GO and
sulfonated polyanions, GO as a
multifunctional nano building

block linked to a variety of
biomaterials, Maintaining

membrane mechanical strength

Difficulty with large area
samples. two-step spin

coating is time-consuming,
low efficiency of spin coating

material (95–98% of the
material is thrown away

during the process),

[101]

Gold
SB-

functionalized
SiNPs

Spin-coating

Thickness can be adjusted easily
by varying spin speed or

viscosity of liquids. The ability of
uniform thin film with low-cost
production, Does not need the
catalyst, Organize and control
the chemistries at a materials’

interface, Relatively inexpensive
technique, Quickly and easily

deposit thin layers.

Depending on many different
parameters make it a complex
process, Difficulty with large

area samples, Multilayer
structure difficulty (more than
2 layers), Inability to control

deposition accurately
(homogeneity, roughness,
etc.); Difficulty in making
super-thin films (<10 nm).

[102]

PP

poly(MPC-
random-BMA),

poly(SBAArandom-
BMA),

poly(HEMA-
random-BMA),
PMPC-block-

PBMA,
PSBAA-block-

PBMA,
PHEMA-block-

PBMA

Dip-coating A simple and efficient method,
minimal waste systems.

Difficult control of film
thickness and surface

roughness, Time consuming
method

[103]

PEI LBL

A versatile and simple technique
for developing multilayer films

with desired qualities,
Formationofhighlystablemulti-
layersofzwitterionicpolymers

LBL is an appropriate method
to produce multilayers of ZW

polymers, under specific
circumstances such as low pH

or ionic strength.

[109]



Membranes 2022, 12, 1063 13 of 43

Table 2. Cont.

Membrane Modification Method Main Results Disadvantages Ref.

PSF, PDMS
PEI/PAA-g-

AZ/PEA-
p(SBMA)

LBL

Easy & straightforward method,
Undetectable nonspecific protein
adsorption& completely inhibit
platelet adhesion and L929 cells

attachment

Limited by the substrate size,
type, and shape, Possibility of

different types of
polymer surfaces

[110]

PES TA-PACMO LBL

Produce high blood
compatibility surfaces, Reducing
the danger of cell bursting and

enhancing red blood cell
retention during dialysis,

Preventing
oxidative stress and decreased

complication risk

The risk of degradation
during the performance as
hydrogen bonding is not as
strong as covalent bonding

[111]

PES
PEI-

SBMA/OSA-n-
Ag

LBL

The Schiff reaction is a strong
approach in the biomedical area

since it is simple, reversible,
pH-sensitive, and biocompatible,

as well as having a high stable
modified membrane due to
Schiff-based connections.,

Combination of ZW and Ag NPs
also leads toantibacterial and

antifouling surface

The possibility of association
or dissociation of Schiff bases

linkages due to different
stimuli consisting of pH,

vitamin B6 derivatives, amino
acids, and enzymes

[112]

PP SBMA/PDA Co-deposition
A facile and efficient method,

One-step process- Short reaction
time process

Pore size reduction in a
modified membrane, The
co-deposition process is

influenced by several
parameters such as pH,
temperature, solution

concentration, and
deposition time.

[120]

PES M-PDA/PEI-S Co-deposition

One-step mussel-inspired
method, Simple, robust, and

material-independent technique,
Covalently anchors the PDA to

the zwitterionic polymer to
improve the coating stability,
Producing excellent fouling

resistance membrane surface.

Surface morphologies of the
M-PDA/PEI and

M-PDA/PEI-S noticeably
altered compared to M-PDA,

Pore size-reduction

[121]

PES TA/DAS-SMP Co-deposition

No changes to the membrane
pores, Production of

homogenous surfaces, Good
hydrophilic properties,
anti-pollution property,

hemocompatibility and solute
filtration capability, Excellent

adhesive qualities, making it an
excellent modification surface for

materials such as PVDF, PP,
PAN, etc.

The risk of degradation
during the performance as
hydrogen bonding is not as
strong as covalent bonding

[122]

3. Chemical Modification

The chemical modification involves changing the surface of membranes by using
chemical reactions to modify molecules with various functional groups [13,91,123] that are
then cross-linked or immobilized with biocompatible compounds. The surface chemistry
of the membranes will certainly be altered as a result of chemical modifications. It provides
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long-term stability and can be applied to both polymers and inorganic membrane materials.
A variety of chemical techniques are available, including chemical grafting, UV-induced
grafting, controlled radical polymerization, click chemistry, mussel-inspired chemistry,
initiated chemical vapor deposition (iCVD), plasma techniques, and enzymatic treatment.
Modification of membrane surfaces chemically can provide desired surface properties
while retaining the bulk polymers desired mechanical properties, chemical resistance, and
morphology.

However, the modified membranes in this method frequently exhibit non-uniform
surfaces, and the drastic modification approach often affects their characteristics. A long-
term modification may cause the bulk materials to be etched. Furthermore, it is crucial to
carefully control the modification time of harsh modification procedures, such as plasma,
high-energy radiation, and ozone treatment.

3.1. Grafting

The surface of membranes naturally possesses functional groups such as carboxylic
acids and primary amines that can be utilized to add various functional groups. Chemical
grafting may produce free radicals and ionic species, initiating polymerization that serves
as a driving force for bonding of the modification compounds. ZW species, polyethylene
glycol, polydopamine, as well as inorganic nanoparticles are some compounds that have
been used to prepare antifouling membranes [26,124–127]. Surface grafting methods are
attracting a lot of research attention among other techniques because of their flexibility
in tailoring desired surface features with different monomers and accuracy in imparting
grafts at specified locations onto the membrane. Additionally, surface grating provides
a facile and controllable method to incorporate polymer compounds with large surface
areas and can improve membrane chemical stability and performance during hemodialysis
therapy.

G.V. Dizon [128] developed an effective and novel “grafting-to” method for sur-
face zwitterionization of polydimethylsiloxane (PDMS) to increase membrane antifouling
and hemocompatibility. They used tannic acid Fe(III) as a first coating layer on PDMS
to form numerous -OH groups that could be exploited in the ring-opening reaction of
the GMA parts of poly(glycidyl methacrylate-co-sulfobetaine methacrylate) (PGMA-co-
SBMA)copolymer (Figure 7a). The intrinsic key characteristics of PDMS, including physical
and mechanical characteristics and optical transparency, are preserved using this approach.
As a result of the pre-treatment procedure with the polyphenyl-metal complex, a layer
with many –OH groups are formed that is capable of allowing the covalent attachment of
ZW compounds. When in contact with a range of biomolecules, including escherichia coli,
erythrocytes, thrombocytes, plasma proteins, and human blood, the as-prepared PDMS
displayed outstanding biocompatibility with no changes in mechanical properties or optical
transparency.

“Grafting from” refers to grafting in which the initiators are connected to the sur-
face before polymerization, leading to better density control. As a result of this method,
surface-anchored polymers are usually poorly controlled in terms of polymer structure,
but they may be able to reach a variety of chain lengths and grafting densities under
comparatively straightforward reaction conditions. However, this strategy is constrained
by a multi-step procedure that makes it difficult and time-consuming. To address this
problem, P. Weng et al. [129] designed a one-step approach for cellulose membrane surface
zwitterionization based on alkoxysilane polycondensation to enhance its antifouling prop-
erty and biocompatibility. Three alkoxysilane coupling agents with pendant ZWs were
produced and grafted onto the cellulose membrane (CM) surface. Protein adhesion, platelet
adhesion, and cell attachment resistance were all outstanding in the zwitterions-grafted
membranes. The modified membranes also showed nearly the same permeability as the
pristine membranes. E. N. Simsek et al. [130] used bulk modification via nitration and
reduction processes to add amino or amide (acetyl), functional groups, to the aromatic
ring of PES, resulting in improved hydrophilicity and fouling resistance characteristics.
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Initially, a nitration reaction was used to attach NO2 groups to the aromatic ring of PES,
followed by reduction processes and acetylation of the amine groups with acetic anhydride
to produce PES-NHAc (Figure 7b). Zhang et al. [131] also used the grafting process as a
cheap and reliable approach for attaching ZWs groups to the backbone of PES to create two
modified PES membranes (PES-CB & PES-SB) with superiorhydrophilicity and antifouling
capabilities. The prepared membranes showed a 95 percent recovery ratio of the lysozyme
solution flux, whereas the virgin membranes only had a 25% recovery ratio.

Radiation-induced graft copolymerization (RIGC) is a flexible approach for covalently
bonding preferential antifouling substituents to a manageable amount of grafting groups
with the use of less dangerous chemicals and potentially improving fouling issues [132]. It
can be conducted using low-energy (UV and plasma) and high-energy (γ-rays) and electron
beam (EB) radiation. J. F. Jhong et al. [133] used plasma-induced RIGC to graft PSBMA and
hydrophilic poly(ethylene glycol) methacrylate (PEGMA) onto poly(tetrafluoroethylene)
(ePTFE) membranes. The wettability of the ePTFE-g-poly(PSBMA) membrane was high,
and it became less adherent to protein, tissue cells, and bacteria. The use of plasma
treatment to produce membranes with high hemocompatibility, biocompatibility, and
minimal biofouling by RIGC with ZW monomers could be highly advantageous for HD
treatment.

J. Zhao et al. [134] reported O2 plasma pretreatment and UV-irradiated technique
to graft a ZW polymer, [3-(methacryloylamino)propyl] dimethyl(3-sulfopropyl) ammo-
nium hydroxide (MPDSAH), onto a polypropylene non-woven fabric (NWF) membrane
(Figure 7c). Fourier transforms infrared spectroscopy (FTIR-ATR), static WCA measure-
ment, and X-ray photoelectron spectroscopy (XPS) were used to analyze the surfaces of
the modified NWF membranes. The WCA for the membranes decreased from 123◦ to 17◦

when the grafting density of poly(MPDSAH) was raised from 0 to 349.2 g/cm2, whereas
equilibrium water adsorption achieved a peak at the grafting density of 120.5 g/cm2. Re-
duced protein attachment and platelet adsorption on the modified membrane demonstrated
improved antifouling properties due to the addition of zwitterionic polymers. Plasma-
induced is a rapid technique for surface modification that produces clean and uniform
grafts on the membrane surface by comprising four fundamental effects like as cleaning,
cross-linking, ablation, and chemical alteration [135]. The change in surface energy caused
by plasma-induced grafting has also a significant impact on membrane fouling [136].
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Y. P. Tang et al. [137] reported using a zwitterionic graft copolymerization technique to
create an antifouling lumen surface on a PVDF hollow fiber membrane. Because the inside-
out filtering mode offers proper control over module hydrodynamics, PVDF hollow fiber
membranes with antifouling lumen surfaces are of tremendous interest and importance
for several industrial uses. This research group was the first to use thermal-induced graft
copolymerization to fix a ZW polymer on the surface of a PVDF hollow fiber membrane, to
make the antifouling PVDF membrane. Two phases are involved in the graft copolymeriza-
tion process: ozone-treated surface pre-activation and grafting of SBMA as illustrated in
Figure 8a. By modifying process conditions such as ozone treatment and grafting time, the
grafting density and chain length were systematically tuned. Ozone-assisted oxidation or
grafting can provide spread grafts or peroxides on the surface of the membrane even with
a complex configuration. Modified membranes illustrated notable fouling inhibition when
filtered through a 2.0 wt% solution of BSA. Pretreating PVDF membranes with ozone is an
efficient and simple way to change the surface of commonly available membranes without
affecting their remarkable physical and chemical properties [138,139].
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Y. N. Chou [140] used the ZW copolymer formulation of poly(glycidyl methacrylate-
co-sulfobetaine methacrylate) (poly(GMA-co-SBMA) to develop a simple, practical, and
cost-effective grafting process that forms a stable chemisorption layer on a range of surfaces.
The ring-opening process between the epoxide parts of GMA and nucleophilic -OH groups
is enough reactive for grafting poly(GMA-co-SBMA). After the surface is pre-assisted with
UV and ozone, the poly(GMAco-SBMA) can bond covalently with a variety of surfaces,
such as ceramic, polymer, and metal substrates owing to the -OH groups (Figure 8b). In this
study [140], an SB formulation and grafting method are proposed to support effective zwit-
terionic layer formation on various membrane surfaces with nonspecific fouling inhibition
for general bioadhesive constituents, like plasma proteins, tissue cells, platelets, erythro-
cytes, and bacteria. Y. Xia et al. [141] described grafting of poly(sodium p-styrene sulfonate
-co- sulfobetaine methacrylate) P(SSNa-co-SBMA) to PES membranes using ammonium
persulfate (APS) to produce -OH groups on the membrane surfaces for the polymerization
process. In situ cross-linking polymerization was applied to create –OH groups upon
the PES membrane, followed by free radical polymerization initiated by APS to generate
functional polymers of P(SSNa-co-SBMA) (Figure 8c). Results showed that the membranes
with good blood compatibility and antifouling properties were prepared by using a reli-
able grafting-from technique, which was a convenient and efficient method of modifying
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membranes. Furthermore, the modification did not affect membrane permeability. In
another study, using in situ cross-linking, C. Wang et al. [142] prepared carboxylic PES
composite membranes and then post-functionalized them with sodium styrene sulfonate
(SSNa) through a “graft from” method. PSSNa was grafted on the membrane surfaces after
liquid-liquid phase inversion to improve the hemocompatibility and fouling resistance of
the modified membrane. It should be feasible to introduce functional groups to membrane
surfaces via this facile, versatile crosslinking technique, and the post-functionalization
operation could endow the membranes with desired qualities.

In summary, surface grating techniques have gained significant attention in recent
years due to their capability in achieving desired properties through various grafting
monomers as well as their precision in implanting grafts at precisely the locations required.
In addition to these benefits, surface grating can considerably improve membrane chemical
stability which is critical for improving membrane hemocompatibility and anti-fouling
capabilities. Although each of the surface grafting methods has advantages and disad-
vantages, there are also different factors that affect their efficiency. Bulk modification,
as an old-fashioned modification technique, has a stable modification impact, but it is
an unsuccessful method due to the hazardous organic solvents, harsh environment, and
time-consuming processes [89,143,144]. Surface grafting is a straightforward, useful, and
reliable technique for membrane modification that has been frequently used. Due to the
covalent attachment, the surface of membranes might be modified with a variety of features
by using various grafting agents with high densities and long-lasting chemical stability.
Free radicals are typically created and transported to the membrane to commence poly-
merization and produce grafting copolymers in chemical grafting. The use of a chemical
activator or cleavage agent to induce thermally initiated polymerization is a straightforward
technique in membrane modification. Though surface grafting has a durable modifying
effect, obtaining active sites usually necessitates sophisticated physical or chemical treat-
ments, which restricts its use on a broad scale [145]. Furthermore, some investigations
have shown that the pore structure might vary as a function of the grafting procedure,
either enlarging or shrinking [146]. PIG, as a type of grafting procedure, is a simple, cheap,
safe, and adaptable approach that is well-suited to MBR technology. Without any chemical
or physical pre-treatment, the membrane polymers can be treated with photo-induced
grafting (PIG) in their natural condition, minimizing time and resources. At the interface
between the monomer and the membrane polymer, the PIG process can also creat desirable
and localized active species [147]. Polymer grafting can also be done at a low temperature
under mild operation circumstances, making it a safe synthesis technique [148]. It is also
a versatile process that can be adjusted and combined with other techniques. However,
the majority of these studies are still conducted on a small scale in batch tests and have
not been thoroughly used in the MBR system. It should be mentioned that PIG is less
effective on hollow fiber membranes since UV irradiation may not reach the membrane
inside the surface [148,149]. Additionally, severe UV irradiation might cause irreparable
damage to the polymer backbone in some cases. Similar to PIG, plasma treatment and
plasma-induced grafting have drawbacks such as the complexity of scaling up to a con-
tinuous process and limited application research on MBR configurations. Furthermore,
surface plasma and irradiation procedures may have an impact on membrane structure
and mechanical characteristics. Various variables like voltage, oxidation time, monomer
content, and hydroperoxide concentration must be controlled to optimize ozone-induced
grafting, making it a difficult and time-consuming procedure.

Overall, a wide range of grafting procedures have been investigated, but comparing
prior and current studies is challenging because of the non-uniformity of results for the
various techniques. A variety of studies have been conducted to characterize WCA, surface
roughness, and hydrophilicity, while others have looked at aspects such as water flux, FRR,
relative flux ratio, platelet, and protein fouling. Table 3 summarizes a comparison of the
various grafting procedures outlined in Section 3.1.
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Table 3. Comparison of selected grafting methods.

Types of Surface
Modification Membrane Monomer Contact Angle (◦)

Before/After Protein Adhesion Platelet Adhesion Advantages Disadvantages Ref.

“Grafting-to”
method & coating PDMS (PGMA-co-

SBMA) 117.93/79.51◦

2.89 µg/cm2

For FB
(90% Fibrinogen

adhesion
reduction)

63.67% Platelet
reduction

Non-destructive, simple,
innovative method,
Precise control of

localized grafting, High
chemical stability,

Maintaining the basic
properties of PDMS, such

as its mechanical
properties and
transparency.

Not applicable for
large-scale modification,
Possibility of changing

pore structure as a
function of the grafting

procedure

[128]

Bulk grafting
method PES NHAc 76.6/48.1 - -

An efficient technique
with a stable modification

impact due to chemical
reactions, Providing

membranes with
long-term biocidal

activity

Old fashioned and
unsuccessful method
due to the hazardous

organic solvents, harsh
environment, and

time-consuming process

[130]

Thermal induced
grafting PES CB & SB 10◦ reduced 66% reduction

BSA - Facile, economic, and
efficient method

Obtaining active sites
usually necessitates

chemical initiators as
well as cleavage agents,

Difficult process on a
broad scale

[131]

Atmospheric
plasma-induced

surface
copolymerization

grafting

ePTFE PSBMA 120◦/22

Fibrinogen plasma
protein was
drastically
reduced

Excellent
resistance to

platelet adhesion

Long-term stability
because of covalent

bonding, Flexible method
in tailoring desired

surface features with
different monomers

Membrane structure
and mechanical

properties may be
affected by plasma

impact, and
non-uniformity of

modified membranes
is possible

[133]
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Table 3. Cont.

Types of Surface
Modification Membrane Monomer Contact Angle (◦)

Before/After Protein Adhesion Platelet Adhesion Advantages Disadvantages Ref.

O2 plasma
pre-treatment and

UV-
irradiatedgrafting

Polypropylene
non-woven

fabric (NWF)
MPDSAH 123/17 80% reduction

for BSA

Excellent
resistance to

platelet adhesion

The rapid method that
produces clean and
uniform functional

groups on the membrane
surface, Accurate control

of the packing density,
Higher FRR,

Excellent stability

Exactly control of
different conditions

including O2 plasma
treatment time, UV

irradiation, monomer
concentration, etc.

[134]

Ozone induced
grafting PVDF SBMA - Excellent BSA

reduction -

Efficient and simple
procedure, Tuning the

grafting density and chain
length, No

remarkablephysical and
chemical changes on
membrane properties

Excessive ozone leads
toPVDF degradation

and creates large pores
[137]

Ozone and
UV-induced

grafting to method
PS Poly(GMA-co-

SBMA 100/45 90% reduction
of FB

89.3%, reduction
of platelet

adhesion, 28.6 *
104 (cells per cm2

Simple, effective, and
cost-effective grafting

method, Producing stable
chemisorption layer on

various surfaces,

Control of several
variables like the

voltage, oxidation time,
etc., UV can impact
membrane structure

and mechanical
characteristics.

[140]

Radical graft
polymerization PES P(SSNa-co-

SBMA) 75/55

4.93 µg/cm2 BSA
and

4.04 µg/cm2

Fibrinogen(BFG)

2 × 105 cells/cm2

Convenient and versatile
method, Adjusting of

component ratio,
Commercial and

industrial potential for
biomedical requirements.

Non-uniformity surface,
the Possibility of

changing pore structure
as a function of the
grafting procedure

[141]
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3.1.1. Radical Polymerization, Initiated Vapor Deposition (iCVD) & Click Chemistry

Chemical grafting can also be carried out by using free radicals and ionic species to
initiate polymerization, which is responsible for attaching the modification layer. Free radi-
cal polymerization, controlled radical polymerization, initiated chemical vapor deposition
(iCVD), and click chemistry are some common methods for the grafting of zwitterion-
containing units to natural polymers [22,26].

P. Saha et al. [150] developed a zwitterionic poly(phosphobetaine) (PMPC) microgel
with excellent antifouling capabilities by thiol-epoxy click reactions mediated by macrore-
versible addition-fragmentation chain transfer (macro-RAFT). The effectiveness of the
“grafting to” approach is demonstrated by the introduction of zwitterionic PMPC polymers
with suitable chains and narrow distribution onto a poly(N-vinylcaprolactam-co-glycidyl
methacrylate) (PVG) copolymer matrix.

In a subsequent step, PEG-based were utilized as effective cross-linkers to produce
microgels with enhanced swelling and antifouling abilities. The fouling resistance of
microgels was significantly influenced by the molecular weight of PMPC and PEG-NH2
parts. In a similar study, Z. Nadizadeh et al. [151] also used surface-initiated reversible
addition-fragmentation chain transfer (SI-RAFT) polymerization as a promising radical
grafting technique to uniformly modify nanofiltration (NF) membranes with functional
groups while avoiding nonspecific protein fouling. Polyamide thin-film composite NF
membranes were produced by interfacial polymerization between trimesoyl chloride
(TMC) and a combination of diamines (i.e., 1,3-phenylenediamine (MPD) and (3,5-diamino
phenyl) methanol (DAPM). The reaction of the polyamide thin film composite layer with
α-bromoisobutyryl bromide (BIBB) was then performed. The amount of BIBB on the surface
of the produced membranes could be effectively increased by utilizing the DAPM treat-
ment, based on their result. Lastly, a ZW polymer, poly [(2-methacryloyloxy)ethyl]dimethyl
[3-sulfopropyl]ammonium hydroxide (pMEDSAH), was effectively grafted on the mem-
brane surface by the RAFT polymerization process. The amount of nonspecific protein
attachment on the produced pMEDSAH-grafted membrane was reduced to >96 percent.
This polyamide TFC modification technique offers a simple and efficient method for stabi-
lizing the RAFT initiator to produce the non-fouling separation membrane via interfacial
polymerization.

The synthesis of fouling resistance PES membranes modified with zwitterionic poly-
mers surface grafted from a reactive amphiphilic copolymer additive was presented by Y.
F. Zhao [152]. PES-b-PHEMA (amphiphilic polyethersulfone-block-poly(2-hydroxyethyl
methacrylate)) was produced at first and employed as a blending additive in phase inver-
sion PES membranes. The surface-loaded PHEMA blocks on the membrane surface served
as anchoring to keep the starting site immobilized. SI-ATRP was used to graft PSBMA onto
the PES membranes (Figure 9a). By altering the modification time, the PSBMA’s grafting
yield may be controlled. When compared to the original membrane, the modified PES
membrane showed improved hydrophilicity, excellent antifouling performance, and high
blood compatibility (protein attachment, platelet adsorption, and plasma recalcification
time).

Using iCVD and di-tert-butyl peroxide as a radical initiator, M.N. Subramaniam [153]
modified PVDF hollow fiber membranes with thin layers of hydroxypropyl methacrylate
(HPMA) (Figure 9b). This technique was able to thoroughly coat PVDF membranes,
resulting in a homogeneous deposition of hydrophilic HPMA on the membrane surface of
50 nm and 100 nm thickness. The HPMA-covered membranes had dramatically increased
surface hydrophilicity, as evidenced by a decrease in WCA from 78.1◦ to 23.6◦, while the
thin-film coating lessened membrane surface roughness. The membrane permeability
and rejection of 100HPMA-PVDF membranes were increased by 50.8 L/m2 h and 83.1%,
respectively. Owing to its considerably increased surface hydrophilicity and decreased
surface roughness, the 100HPMA-PVDF membrane showed consistently high permeation
and rejection performances after four filtration runs.
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Figure 9. (a) Synthetic route of PES-g-PSBMA [152], (b) Schematically illustration of iCVD sys-
tem [153], (c) Schematically preparation of PSF-N3, alkynyl-functionalized polymers, and modified
PSF membrane by click chemistry [127].

T. Xiang et al. [127] reported using ATRP and click chemistry to incorporate ZW poly-
mers of PSBMA, negatively charged polymers of poly(sodium methacrylate) (PNaMAA),
and/or poly(sodium p-styrene sulfonate) (PNaSS) into PSF membranes to enhance protein
resistance and hemocompatibility of PSF membrane (Figure 9c). Because click chemistry
is a facile and one-step process to quickly and reliably binding materials together, the
combination of ATRP and click chemistry outperformed other techniques such as blending,
coating, and surface-initiated ATRP. The modified membranes have good antifouling and
bacterial adhesion properties, as well as increased blood compatibility, particularly anti-
coagulant properties. S. Zheng et al. [154] reported an anti-fouling silicon surface using
a zwitterionic polymer, polySBMA by clicking chemistry. The following three steps were
used to functionalize the silicon surface with polySBMA: (1) RAFT polymerization was used
to make an alkyne-terminated polySBMA; (2) a self-assembled monolayer with bromine
end groups was formed on the silicon surface, and then the bromine functional groups
were modified with azide parts; and (3) the polySBMA was bonded to the silicon surface
via an azide–alkyne cycloaddition click reaction. For both BSA protein and bacterial cells,
the polySBMA-modified silicon surface was proved to possess anti-nonspecific adsorption
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capabilities. The polySBMA-modified silicon surface demonstrated better biocompatibility
and powerful antifouling properties in whole-blood adsorption studies.

In conclusion, the iCVD technique and radical polymerization have also been widely
employed for grafting ZW monomers onto membrane surfaces using an appropriate initia-
tor. Unlike uncontrolled radical polymerizations, which lead to radical recombination and
disproportionation, living radical polymerization allows enhanced control over molecular
weight as well as three-dimensional architecture. Chemical modification methods RAFT
and ATRP are popular because of the immobilized initiator on the surface that makes it
possible to generate brush patterns on the membrane with precision [151,153,155–159]. The
graft ratio of ZW polymers on membrane surfaces is determined by the number of initiators
immobilized on membrane surfaces, whereas the degree of polymerization is determined
by ATRP reaction time [160–162]. Furthermore, despite harmful organic solvents, these
controlled procedures are compatible with aqueous media, making them environmentally
friendly processes. The ATRP method provides a benign reaction condition and fewer
operational stages, and most chemicals are readily available [163]. ATRP is one of the
most powerful ways of functionalizing membrane surfaces with ZWs polymers. However,
in this process, copper ion removal is still challenging. Although RAFT polymerization
rate is slower than ATRP’s, it is suited for a broad range of monomers and can control
polymerization without using metal catalysts [164–166]. To achieve active polymerization,
RAFT uses standard initiators like AIBN to invoke radicals, and the chain transfer agent
4-cyanopentanoic acid dithiocarbamate (CPADB) to accomplish the reaction [167,168]. The
membranes modified by living/controlled radical polymerization show stable antifouling
properties as well as the controlled introduction of high-density graft chains. The complex
modification techniques, on the other hand, inhibit large-scale application. Furthermore,
due to membrane pore blocking produced by grafted zwitterionic polymers, most surface
grafting procedures result in a decrease in permeation flux [169]. The grafting content is
a critical factor in “surface grafting” that is directly connected to membrane permeability
and antifouling effectiveness and should be taken into account. Almost all studies indi-
cate that the antifouling capabilities of membranes improve with increasing ZW grafting
density due to a thicker hydration shell and increased strict hindrance, and then remain
nearly unchanged after the grafting density reaches a specific level. However, as the ZW
grafting density grows, the permeate flux increases at first and then declines, which can
be described by improved hydrophilic efficiency, clogging, and shrinking of membrane
pores [26,170]. Consequently, permeability and antifouling are competing goals in all types
of grafting methods. Furthermore, increasing grafting density causes a decline in surface
roughness [171,172], which may be beneficial to antifouling. So when ZW grafting density
is raised, it is difficult to tell whether the improvement in antifouling qualities is due to a
reduction in surface roughness or an enhancement in hydrophilicity.

Using radical polymerization (e.g., ATRP) in combination with click chemistry repre-
sents a big step forward in modification chemistry, as the initiator site on the membrane
can be employed as a reaction group for several copper-catalyzed reactions. When the
membrane surface is modified with click chemistry, multiple reaction sites are provided
on the membrane surface and ATRP enables control of the process. This method permits
the grafting of polymers with various conformations and structures onto membranes with
specific compositions. Click chemistry has been applied to many membrane materials and
provides an effective technique for membrane surface modification (e.g., PES [173,174],
PSF [175,176]). The potential of click chemistry to give greater site selectivity and essentially
quantitative transformation under mild conditions, with almost no reactions or by-products,
is a significant benefit [177]. The one-step click chemistry reaction holds significant potential
for cost-effective and long-term surface modification. Overall, click chemistry is a grafting
technique that has many of the benefits and drawbacks of other grafting techniques.
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3.1.2. Mussel-Inspired Chemistry

Researchers have been interested in the mussel-inspired hydrophilic modification
strategy because of the moderate experiment settings, high modification efficacy, universal-
ity, and robust bio-adhesion of marine mussels [178,179]. PDA and heparin are well-known
“bio-glues” that adhere to a variety of materials and surfaces. In recent years, much research
has gone into studying the mussel adhesion mechanism and expanding its applicability in
the production of hemocompatible membranes. The method is simple and easy to control
by changing the temperature, pH, deposition length, and environment. Dopamine and
its derivatives have been shown to be useful, facile, and stable adhesives for anchoring
ZW polymers onto membrane surfaces, providing strong antifouling capabilities to the
membranes [180,181]. Biomimetic adhesives are typically useful to make or modify dense
membranes because they cover the entire surface with a long deposition period, sealing
and shrinking membrane pores while also reducing surface roughness. One of the most ex-
tensively used ways for attaching a ZW layer to the membrane surface via thiol and amine
chemistry is the employment of a mussel-inspired dopamine adhesive functional layer.
According to recent research, there are four main methods to dopamine and zwitterion
conjugation [182]: (1) conjugation of dopamine with ZW via direct modification of ZWs
with the dopamine functional moiety; (2) codeposition of dopamine with ZW polymers;
(3) zwitterionic post modification of the PDA coated surface; and (4) surface-initiated
polymerization of zwitterionic polymers using dopamin modified initiators (Figure 10).
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The simplicity of directly attaching ZW polymers with adhesive layers to the surface
in one step to produce an antifouling surface coating with improved packing density is
particularly appealing. Because zwitterionic polymers are very water-soluble, a robust
surface binding group on the polymer is required to promote increased packing den-
sity and stability. Gao et al. [183] synthesized two catechol groups including a polymer
(pCB2catechol2) with two zwitterionic poly(carboxy betaine) (pCB) arms to increase the
grafting density of catechol-containing polymer. pCB2–catechol2 had the strongest non-
fouling capabilities on the grafted surface, with robust surface binding and improved
surface coverage, due to the increased surface anchoring group DOPA in the polymer chain
(Figure 11a). Dopamine-assisted co-deposition simplifies zwitterionic polymer grafting
and enables a coating to attain maximum functionality by simultaneously depositing and
functionalizing in a single step. This method is more resilient, and flexible, and can be
easily modified by modifying the pH, deposition duration, concentration, and environ-
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ment than the usual ‘grafting to’ approach. W. Xu et al. [184] studied PVC modification
by grafting zwitterion polymer (PESX) after co-deposition treatment of PDA and PESX
with an optimum feeding ratio, resulting in PDA/PESX-PESX coatings. According to the
results, the modified membrane prevents blood components and bacteria from adhering
to the surface and maintains high hemocompatibility and cytocompatibility. In another
study, Y. Xie et al. [185] used a co-deposition of PDA and zwitterionic polymer, followed by
the incorporation of bactericidal silver nanoparticles, to create a unique mussel-inspired
antibacterial and non-fouling PES membrane (Ag-NPs). To create an antifouling surface,
polyethyleneimine-graft-sulfobetaine methacrylate (PEI-SBMA) was first crosslinked with
PDA and co-deposited onto the PES membrane surface. The Ag-NPs were then synthesized
in situ on the membrane surface without the use of any external reducing agents, making
mussel-inspired antifouling and antibacterial membranes simple to create.

It is more advantageous to use the catechol motif of PDA in post-modification strate-
gies, especially when conjugating it with thiol or amine-containing molecules.
N. Shahkaramipour et al. [71] modified the PES membrane with the newly synthesized
zwitterionic polymer using a direct attachment approach. They produced copolymers
out of hydrophilic zwitterionic phosphobetaine methacrylate (MPC) and thiol functional
groups, the latter of which was used to react with catechol and covalently graft the ZW
polymers onto the PES membrane surface via the Michael addition reaction (Figure 11b).
Because of the PDA layer, the surface coating reduced pore size and porosity, which de-
creased water permeance. The surface coating, on the other hand, became more hydrophilic
as a result of ZW polymers, as it was illustrated by the decrease in WCA. The modified
membranes were able to be used for long periods due to covalent bonding between PDA
and water-soluble ZW polymers, which is a major concern in the co-deposition technique,
which uses noncovalent linkages to form thin films of PDA and zwitterionic polymers on
the membrane surface.

Grafting ZW monomers from a surface via SI-ATRP is among the most powerful
ways to avoid biofouling. This SI-ATRP has been extensively applied to produce fouling-
resistance polymer brushes with high packing densities and adjustable film thicknesses
owing to its controlled/living characteristic [182,186]. The combination of SI-ATRP, which
is used for selective substrate surfaces, with powerful adhesive dopamine chemistry has
been widely investigated to deposit the PDA layer on a variety of surfaces and to serve
as a platform for subsequently immobilizing ATRP initiators [187,188]. Catecholamine-
initiated ATRP can be applied to practically any substrate, regardless of surface chem-
ical properties, forms, or sizes, providing unique, powerful, and versatile methods for
functionalizing a wide range of materials [46,189,190]. PVDF membranes with enhanced
antifouling properties and hemocompatibility were reported by Jiang et al. [191] by using
polydopamine-mediated ATRP. In the first step, PDA was initially synthesized by oxidation
and self-polymerization under basic conditions. PDA was used as an additive to prepare
PVDF membranes via NIPS. Then, using ATRP, a commonly used zwitterionic polymer, PS-
BMA was effectively grafted from the trapped PDA in the membrane (Figure 11c). Because
of the chemical reactivity of PDA and its robust interactions with a wide range of solid
substrates, this method represents a versatile strategy for hydrophilic and biocompatible
modification of hydrophobic polymer membranes. D. M. Davenport et al. [192] also used
surface SI-ATRP and PDA to graft PSBMA brushes to the PVDF membrane surface. To
immobilize bromine initiator groups to UF membrane surfaces, researchers used PDA
and SI-ATRP with varying reaction periods to graft PSBMA brushes of various lengths.
N. Li et al. [193] recently published a universal technique for making stable zwitterionic
polymer brushes that combines the benefits of both PDA chemistry and ARGET-ATRP.
In this study, the PDA layer was first dip-coated on a substrate, then 3-trimethoxysilyl
propyl 2-bromo-2-methylpropionate (SiBr, ATRP initiator) was covalently immobilized on
the PDA-coated surface via a condensation process between the silicon hydroxyl and the
PDA hydroxyl groups. Next, without deoxygenation, SI-ARGET-ATRP was carried out in
a zwitterionic monomer solution catalyzed by CuBr2. The stability, good antifouling, and
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excellent blood compatibility of these easily produced zwitterionic polymer brush coatings
were proven.
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Figure 11. (a) Au surface grafted with pCB2-catechol2-Direct modification method [183], (b) Schemat-
ically preparation of PES modified ZWs using PDA as a Bio-glue intermediate layer [71], (c) Grafting
of PSBMA zwitterions onto PVDF/PDA blend membrane via PDA-ATRP [191].

Heparin is well-known for its anticoagulant qualities, and its primary application for
surface modification of polymers is to enhance biocompatibility, owing to the anti-adhesive
qualities of heparinized surfaces toward platelets. In membrane modification, heparin is
usually immobilized by surface covalent bonding and polymerization or by interaction with
surface ions. Because heparin contains acidic mucopolysaccharides of different lengths,
a layer of amino group can be added to the surface, which subsequently reacts with the
polysaccharide chain end. The connecting procedure is straightforward and applicable to a
wide variety of chemicals [194]. The biomedical sector is particularly interested in research
into the design of heparin and heparin-like/mimicking polymer-functionalized biomedical
materials, which is motivated by the potential for a wide range of biomedical applications
such as HD membranes, cardiovascular stents, artificial organs, and other biomedical
medical equipment. Cheng et al. [195] have published an overview of the most notable
achievements in the field of surface heparinization. Surface coating is a facile and effective
approach for heparinizing polymeric membranes, although its stability is not always
adequate. The coated heparin stability can be increased by the electrostatic interaction
between the negatively charged heparin and the positively charged polymer surface [196].
According to Huang et al. [197], heparin was covalently immobilized on the PSF membrane
for specific adsorption of low-density lipoprotein (LDL). To produce accessible functional
groups attached to heparin, the activation of PSF with successive chloromethyl ether and
ethylenediamine treatments was required (Figure 12). The wettability of the PSF membrane
was increased after heparin immobilization. Moreover, the heparinized PSF membrane
considerably improved LDL adsorption in comparison to the pure PSF membrane. J.
Li et al. [198] also reported heparin immobilization on the PSF surface via atmospheric
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pressure glow discharge (APGD). The disadvantage of using heparin is that it is exclusively
obtained from animal tissues, posing a danger of virus infection and severe effects, such
as thrombocytopenia for long-term therapies and hemorrhages in people receiving a high
heparin dose. Heparin has also been demonstrated to block solely plasma-free thrombin
but not clot-bound thrombin [199].
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As a result, Heparin-mimic compounds have been developed in recent years due to
improved structure, sulfation, and purity control. Recently, by one-step radiation-induced
homogeneous polymerization of sodium styrene sulfonate, acrylic acid, and N-pyrrolidone,
J. Wang et al. [200] modified PES using sulfonate and carboxylic functional groups to
produce a heparin mimic structure. Flat-sheet and hollow fiber membranes were made,
and the prepared membranes demonstrated excellent biocompatibility.

This research group in another work used in situ cross-linked copolymerizations
of acrylic acid (AA) and 2-acrylanmido-2-methylpropanesulfonic acid to create heparin-
mimicking PES membranes in both flat-sheet and hollow fiber geometries (AMPS) [44]
(Figure 13a). H. Ji et al. [201] modified PES membranes using an in situ ring-opening
reaction approach to create a heparin mimic layer on PES and produce a low-fouling, hemo-
compatible membrane. To begin, poly (glycidyl methacrylate) (PGMA) was introduced into
PES membranes using a phase inversion technique and an in situ cross-linking polymer-
ization. Next, by simply soaking the membranes in the PAA-AMPS solution, poly (acrylic
acid-co-2-acrylanmido-2-methylpropanesulfonic acid) (PAA-AMPS) was covalently coated
onto the PES membrane surfaces via an in situ ring-opening reaction between the PAA and
PGMA. The protein attachment was lowered when compared to virgin PES membranes;
while, the FRR and resistance to blood cell and bacterium adsorption grew dramatically
(Figure 13b). The modified membrane demonstrated considerably better hemocompat-
ibility, including self-anticoagulant characteristics, as a result of the heparin-mimicking
modification.
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All in all, Heparin as a linear glycosaminoglycan with high carboxylic and sulfonate
groups is one of the most commonly used anticoagulants in HD therapy, and its anticoagu-
lant ability is thought to be due to the functional groups. Heparin-like bulk modification
has a stable modification impact as an old-fashioned modification technique. But using
dangerous organic solvents, harsh reaction conditions, and time-consuming processes
render this technique unsuitable. Furthermore, degradation, chain disruption, and side
reactions are inevitable, all of which might have an impact on membrane mechanical
characteristics [89,144].

3.1.3. Plasma Technique

Almost any gas can be brought into a plasma state if it is given enough energy. Plasma
is a combination of electrons, ions, and exciting species, including free radicals. Plasma
modification is a versatile surface treatment that is widely employed to add chemically
reactive functional groups to polymer surfaces in order to promote hydrophilicity and
achieve low-fouling membrane surfaces [202]. Low-temperature plasma-induced grafting
has been reported to increase the permeance and antifouling property of the PVDF and
PES/PSF membranes by Z. Zhao et al. [203]. The activation of the polymer support by
plasma (production of radicals) and the deposition of a new ZW layer on the membrane
surface by polymerization are the two basic procedures in plasma-induced grafting of
poly(zwitterion) chains on the membrane surface. The plasma gas composition and the
applied processing variables can be changed to balance these effects. So, plasma variables
such as power, pressure, treatment duration, sample distribution, polymerization settings
(like monomer concentration), solvent selection, and grafting time can determine the
amount of grafting and the length of zwitterionic chains. Therefore, the poly(zwitterionic)
layer thickness can be reduced to the angstrom (Å) scale [204]. P. Salimi et al. [205] used
SBMA monomers to modify the surface characteristics of the PES membrane to enhance
the anti-fouling property utilizing the crona air plasma method. PES membranes were
first made utilizing the phase inversion approach in this study. Following that, corona
discharge initiation activated the PES membrane surface by peroxide groups, which was
measured by DPPH (2, 2-diphenyl-1-picrylhydrazyl). The SBMA was covalently grafted
onto the surface of the PES membrane, and PSBMA polymer was produced as a result
(grafting- from method) (Figure 14a). For achieving an appropriate grafting layer to boost
the membrane performance characteristics, four distinct applied powers and three different
corona times were investigated. Changes in corona conditions resulted in a variety of
grafting yields and thickness of the generated layer on the membrane surface, affecting
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permeation flux, fouling capacity, and other properties. A. Venault et al. [206] prepared a
novel fouling resistance pseudo-zwitterionic PVDF membrane, using the surface grafting
of 2-(methacryloyloxy) ethyl] trimethylammonium (TMA) and sulfopropyl methacrylate
(SA) copolymer through glow dielectric barrier discharge (GDBD) plasma-induced surface
copolymerization to improve the antifouling properties and the hemocompatibility of
PVDF membrane. Through the initial molar content, it was possible to fairly control the
membrane surface charge, and thus prepare either pseudo-zwitterionic membranes or
membranes with positive or negative charge bias. The hemocompatibility of pseudo-
zwitterionic membranes was outstanding (resistance to blood cells, proteins, and low
activity of hemolysis).
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and atmospheric plasma treatment [202].

S. H. Chen et al. [202] used plasma-induced surface zwitterionization to create PSBMA-
grafted PP fibrous membranes with tunable grafting characteristics and hemocompatibility
(Figure 14b). The correlation between the membrane blood compatibility with surface graft-
ing structures, charge neutrality, hydrophilicity, and hydration capabilities was carefully
evaluated. The results showed that applying a brush-like PSBMA layer to the PP membrane
surface using atmospheric plasma is a hopeful method for preparing membranes with
low cross-linking, good stability, and high balanced charge neutrality of PSBMA-grafted
structures. N. Saxena et al. [207] showed that Argon–oxygen (Ar–O2) plasma treatment
of PES membranes improved their hydrophilicity, resulting in decreased solute particle
deposition and increased flow. Increased O2 contents and longer exposure times (60% O2
for 10 min) during plasma treatment had a major impact on the hydrophilic improvement
of the surface.

The plasma technique can be used to alter polymer surfaces in several ways due
to its multiple advantages, including (a) the outermost surface layer can be modified
without affecting the bulk qualities; (b) plasma would influence the surface of any polymer;
(c) based on the gas supplied, selecting the type of chemical modification for the polymer
surface is simple; (d) using gas plasma, wet chemical issues such as residual solvent on the
surface and swelling can be eliminated; and (e) uniform modification across the surface.

However, the requirement for vacuum technology, which has a substantial impact on
the overall cost of the treatment and makes large-scale production difficult, is one of the
main downsides of plasma treatment.
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3.1.4. Enzymatic Treatment

Enzymatic treatment is a kind of grafting technique for modifying the surface of mem-
branes. An enzyme initiates surface hydrolysis and a chemical/electrochemical grafting
reaction on the membrane [4]. By employing enzymes during the functionalization pro-
cess, it will be possible to either directly introduce monomers/polymers to the membrane
surface or create reactive free radicals, which are then reacted with the membrane via
nonenzymatic reactions [208]. Using enzymes to modify membranes has various potential
advantages. (1) enzymes have the ability to eliminate the need for reactive chemicals and
toxic solvents in place to ensure safety; (2) enzymatic reactions are ecological friendliness
since their selectivity can be used to remove the requirement for costly protection and
deprotection processes, and (3) enzymes allow precise modification of macromolecular
structure to improve polymer function.

N. Nady et al. proposed an environmentally friendly approach for grafting PES
membranes using an enzyme-based method [209]. In this research, laccase was utilized to
generate free radicals and graft phenolic acid monomers (such as 4-hydroxybenzoic acid) to
the membrane. In comparison to more traditional procedures, the modification approach in
this study was highly mild and ecologically friendly; it can be done at ambient temperature
and requires just oxygen and water, with no hazardous chemicals. C. Amri et al. [210]
developed alginate-based biopolymers with enhanced physical and chemical features after
esterification with polyvinyl alcohol to be used as a biocompatible HD membrane. As
a polymer modifier, PVA was selected for its high mechanical strength and biocompat-
ibility, as well as its non-toxic nature. PVA hydroxyl groups should react with alginate
carboxyl groups to generate an ester derivative. The esterification reaction is expected to
improve the mechanical strength of the generated membrane. The hydrophobicity of the
membrane increased after PVA modification, as evidenced by a decrease in the WCA. Low
protein attachment and platelet adhesion showed that PVA-Alg membranes were more
hemocompatible than native alginate membranes. Y. Dai et al. [211] used a PDA approach
to graft argatroban (AG) and methoxy polyethylene glycol amine (mPEG-NH2) onto a
non-thrombogenic PES dialyzer membrane. They successfully reduced heparin-induced
thrombocytopenia by using PDA as an intermediate linker to graft AG to modify PES
membrane. After immersing the PES substrates in an alkaline dopamine solution for 24
h, AG and mPEG-NH2 were covalently grafted onto the resulting membrane (Figure 15).
Platelet adhesion and activation were suppressed, clotting times were prolonged, and
thrombin production and complement activation were inhibited, demonstrating the modi-
fied membrane’s superior antithrombotic qualities.
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However, there are also drawbacks to these green and sustainable technologies, in-
cluding high costs and strict requirements (e.g., narrow working temperature window).

4. Conclusions and Perspectives

Our critical review has thoroughly covered the recent studies on membrane surface
immobilization techniques and their impact on hemodialysis membrane hemocompatibil-
ity. Commercial membrane surface modification seeks to obtain the desired qualities and
maintain its stability throughout a particular separation process. A modified membrane
can also be used to overcome the shortcomings of the untreated membrane such as its low
mechanical strength, poor hydrophilicity, fouling, and wetting. Therefore, we critically
compared various methods of surface modification and their resulting hemocompatibility.
In addition, we have summarized the influence of each modification technique on different
ways of assessing hemocompatibility as summarized in Tables 1–4 presented our overall
analysis of the literature presented in this review paper. The majority of physical methods
are straightforward, cost-effective, and environmentally friendly (no organic chemicals,
toxic solvents, or residual substances), however, the improved surface qualities that these
alterations provide are less stable than chemical methods. Chemical approaches, on the
other hand, can lead to practically permanent membrane modification, but the modification
reactions typically require organic solvents and chemicals. Only a few procedures, such as
blending, coating, photochemical, and enzyme treatment, show similar advantages (facile,
cheap, and eco-friendly). Blending, in particular, is a simple and effective strategy for im-
proving both flat and hollow fiber membranes that may be used on large scale. The coating
can boost membrane hydrophilicity and antifouling properties, but it usually diminishes
pure water flux due to the inevitable deposition of the coating layer in membrane holes
and microstructures. Furthermore, the coating stability throughout separation operations
is a critical challenge, as the coating layer adheres to the membrane via non-covalent forces.
Grafting and surface modification of polymer membranes using plasma, UV, ozone, and
high-energy irradiation are efficient, facile, and controllable procedures for improving
membrane chemical stability and performance during hemodialysis therapy. Nevertheless,
their technical complication, environmentally friendly aspects, and sometimes high cost
have limited their industrial-scale uses.

Table 4. Qualitative comparison of different membrane modification methods.

Modification Flux after Antifouling Simplicity/ Chemical Functiona- Eco-Friendly Cost Industrialization
Method Modification Property Versatility Stability lization Process Effectiveness Potential

Blending
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ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 
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ifications by changing the solution in which the membrane is submerged. Several cross-
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membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 
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tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 
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can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-
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modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-

links produced by grafting altered the hydrophobicity and hemocompatibility of the 

coated membranes. Due to the limited control during the experimental process, the 
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As can be seen in Figure 16, the coating is the most exploited technique to modify 

membrane surfaces in the last five years. The increased number of coating modifications 

can be explained by the fact that coating includes easier and lower-cost procedures to 

modify membrane surfaces. The dip-coating procedure, for instance, requires no addi-

tional equipment than standard laboratory equipment. It provides a wide variety of mod-

ifications by changing the solution in which the membrane is submerged. Several cross-
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coated membranes. Due to the limited control during the experimental process, the 

: Good : Excellent : Poor 

Membranes 2022, 12, x FOR PEER REVIEW 33 of 45 
 

 

4. Conclusions and Perspectives 

Our critical review has thoroughly covered the recent studies on membrane surface 

immobilization techniques and their impact on hemodialysis membrane hemocompatibil-

ity. Commercial membrane surface modification seeks to obtain the desired qualities and 

maintain its stability throughout a particular separation process. A modified membrane 

can also be used to overcome the shortcomings of the untreated membrane such as its low 

mechanical strength, poor hydrophilicity, fouling, and wetting. Therefore, we critically 

compared various methods of surface modification and their resulting hemocompatibil-

ity. In addition, we have summarized the influence of each modification technique on 

different ways of assessing hemocompatibility as summarized in Tables 1–4 presented our 

overall analysis of the literature presented in this review paper. The majority of physical 

methods are straightforward, cost-effective, and environmentally friendly (no organic 

chemicals, toxic solvents, or residual substances), however, the improved surface qualities 

that these alterations provide are less stable than chemical methods. Chemical ap-

proaches, on the other hand, can lead to practically permanent membrane modification, 

but the modification reactions typically require organic solvents and chemicals. Only a 

few procedures, such as blending, coating, photochemical, and enzyme treatment, show 

similar advantages (facile, cheap, and eco-friendly). Blending, in particular, is a simple 

and effective strategy for improving both flat and hollow fiber membranes that may be 

used on large scale. The coating can boost membrane hydrophilicity and antifouling prop-

erties, but it usually diminishes pure water flux due to the inevitable deposition of the 

coating layer in membrane holes and microstructures. Furthermore, the coating stability 

throughout separation operations is a critical challenge, as the coating layer adheres to the 

membrane via non-covalent forces. Grafting and surface modification of polymer mem-

branes using plasma, UV, ozone, and high-energy irradiation are efficient, facile, and con-

trollable procedures for improving membrane chemical stability and performance during 

hemodialysis therapy. Nevertheless, their technical complication, environmentally 

friendly aspects, and sometimes high cost have limited their industrial-scale uses. 

Table 4. Qualitative comparison of different membrane modification methods. 

Modification 

Method 

Flux after 

Modification 

Antifouling 

Property 

Simplicity/ 

Versatility 

Chemical 

Stability 
Functionalization 

Eco-Friendly 

Process 

Cost 

Effectiveness 

Industrialization 

Potential 

Blending  xxxx  xxxx xxxx xxxx xxxx zzzz 

Coating  zzzz zzzz yyyy zzzz xxxx zzzz xxxx 

Grafting zzzz zzzz xxxx zzzz zzzz yyyy xxxx yyyy 

Click chemistry zzzz zzzz xxxx zzzz xxxx yyyy xxxx yyyy 

Radical 

polymerization 
zzzz zzzz xxxx zzzz xxxx yyyy xxxx xxxx 

Plasma zzzz zzzz yyyy zzzz xxxx yyyy yyyy yyyy 

Ozone zzzz zzzz yyyy zzzz xxxx yyyy xxxx yyyy 

Enzymatic 

treatment 
xxxx xxxx zzzz zzzz xxxx zzzz zzzz yyyy 
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but the modification reactions typically require organic solvents and chemicals. Only a 

few procedures, such as blending, coating, photochemical, and enzyme treatment, show 

similar advantages (facile, cheap, and eco-friendly). Blending, in particular, is a simple 

and effective strategy for improving both flat and hollow fiber membranes that may be 

used on large scale. The coating can boost membrane hydrophilicity and antifouling prop-

erties, but it usually diminishes pure water flux due to the inevitable deposition of the 

coating layer in membrane holes and microstructures. Furthermore, the coating stability 

throughout separation operations is a critical challenge, as the coating layer adheres to the 

membrane via non-covalent forces. Grafting and surface modification of polymer mem-

branes using plasma, UV, ozone, and high-energy irradiation are efficient, facile, and con-

trollable procedures for improving membrane chemical stability and performance during 

hemodialysis therapy. Nevertheless, their technical complication, environmentally 

friendly aspects, and sometimes high cost have limited their industrial-scale uses. 
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As can be seen in Figure 16, the coating is the most exploited technique to modify
membrane surfaces in the last five years. The increased number of coating modifications can
be explained by the fact that coating includes easier and lower-cost procedures to modify
membrane surfaces. The dip-coating procedure, for instance, requires no additional equip-
ment than standard laboratory equipment. It provides a wide variety of modifications by
changing the solution in which the membrane is submerged. Several cross-links produced
by grafting altered the hydrophobicity and hemocompatibility of the coated membranes.
Due to the limited control during the experimental process, the coating technology has
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the potential to negatively impact the membrane thickness and porosity. It seems to be
the most viable modification process for the industrial sectors since it does not involve
high temperature, pressure, or energy for its design, resulting in the easiest fabrication pro-
cess. Grafting ranks second among popular membrane modification procedures, possibly
due to the enhanced stability of the resulting membrane, which is attributed to covalent
bonding. The modification techniques trend in hemodialysis membrane technology has the
same trend.
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for membrane surface modification in the last five years.

Because ZW polymers are an important category of the modified materials of HD
membrane with improved fouling resistance to human serum protein deposition; in ad-
dition to enhanced biocompatibility properties, PES-SB and PSF-SB were used as models
to study the impact of different modification methods on membrane hemocompatibility
reported in the literature (Table 5).

Several factors can be used to evaluate the effectiveness of an approach, such as
its ease of synthesis, chemical stability, the use of room-temperature procedures, and
lower costs, the desired outcome and hemocompatibility are key parts of modification
strategies in human health technology. Nevertheless, the most critical factor in defining
membrane hemocompatibility is human serum protein adsorption, which elicits and cat-
alyzes a complex cascade of biological responses in the HD process. Furthermore, the
growing adherence to fibrinogen is one of the main reasons for platelet adhesion and even
thrombosis. As a result, the key indicator for assessing the effect of different methods on
hemocompatibility in this study was protein inhibition, which is typically observed as a
result of ZW membrane immobilization (Figure 17). Based on Table 5 and Figure 17, the
coating method shows the least amount of BFG absorption on the surface of SB modified
membrane, which can be explained by its simple procedure and high grafting density of the
ZWs on the membrane surface in comparison to the other methods. Even though grafting
has a better antifouling ability than blending (Table 5, Figure 17), it cannot be applied to
the entire as a definitive result because no comprehensive data or consistent results exist on
the synthesis of a specific membrane using different methods under the same conditions.
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Table 5. Comparison of different modification methods on the hemocompatibility of PES-SB and PSF-SB membranes.

Membrane-ZW Immobilization Method
ZW

ZW
Density(mg/cm2)

Water Contact
Angle

Protein
Adhesion

Platelet
Adhesion

Pure Water Flux
(L m−2 h−1)

Antifouling
Properties (%)

FRR *
Ref.

PES/PES-SB Blending - 37.8
9 µg/cm2 BSA

(17% Reduction)
& 7 µg/cm2 BFG

Significantly decreased 243.4 93.8%. [212]

PES/PES-SBMA Blending - 59 90% BSA reduction - 1157 ± 5.6 84% [213]

PES/PSBMA Blending 78% weight ratio 25.8 ± 4.6◦ 3.88 µm3/µm2 BSA - - - [214]

PES/DMMSA-BMA Blending - 48 >95% rejection of BSA - 82.8% [215]

PES/TA-SB
(M-TA/PEI-S) Dip-coating - 24 3.9 µg/cm2 BFG Very little [216]

PES/PGMA-SB
Grafting,

In situ cross-linking
polymerization

43
0.60 lg/cm2 BSA and

0.37 l g/cm2 BFG
Suppressed platelet

adhesion 43 mL/m2 h mmHg 100% [217]

ES-b-PHEM/PSBMA Grafting,
SI-ATRP High density 51 9 µg/cm2 BSA

Remarkably suppressed
and almost no

platelets adhered
39 L/m2 h 99% [152]

PES/SBMA
Grafting, In situ

cross-linking
polymerizatio

High density 76
7 µg/cm2 BSA &
10 µg/cm2 BFG

Significantly decreased 705.21 mL/m2 h
mmHg 99.11% [218]

PES/SBMA Radical graft
polymerization 0.22 54

5 µg/cm2 BSA and
4 µg/cm

BFG
2 × 105 cells/cm2 - [141]

PES/POEGMS-P(SBMA-
co-AA)

LbL thiol-ene “click”
chemistry - 40

4.9 µg/cm2 BSA &
4.6 µg/cm2 BFG,

90% reduction

Nearly no adhered
platelet 61 - [219]

PSF/SB-PA Blending - 56.2 9.6 µg/cm2 BSA,
95% reduction - 205 L/m2 h 85% [220]

PSF/DEPAS LBL & Click Chemistry - 38
4 µg/cm2 BSA and

2 µg/cm2 BFG,
Significantly decreased - - [221]

PSF/PSBMA Grafting, SI-ATRP 0.42 mg/cm2 42
2.7 µg/cm2 BSA&
2.4 µg/cm2 BFG

0.06 × 107 cell/cm2 Decreased Increased [222]

PSF/PSBMA Grafting High density 30 98% Reduction Significantly decreased 46.72 98.1% [223]

* First cycle of FRR measurements was mentioned if there were multiple cycles.
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Figure 17. Comparison of protein attachment on modified SB zwitterionic-PES/PSF via
different methods.

WCA was used as the key indicator of hydrophilicity in Figure 18. As can be observed,
the modified PES-SB by coating technique had the lowest WCA, which is in line with its
higher fouling resistance.
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Overall, extensive research has demonstrated that enhancing surface hydrophilicity,
altering membrane roughness, and integrating charged groups on the surface would signif-
icantly decrease human serum protein adsorption. Despite the substantial understanding
of the basic principle of surface modification techniques, however, it’s still a challenge to
correlate the produced long-term antifouling qualities and hemocompatibility. Further-
more, the long-lasting stability of the modification part, homogeneity, shelf life, and its
leaching from the membrane surface still issues.

The next generation of antifouling surfaces requires advanced modification technolo-
gies that allow for the construction of a precisely controlled three-dimensional structure
of the grafted nanolayer. From the economical perspective, instead of replacing the entire
membrane when fouling occurs, the grafted antifouling layer should be easily detached
from the membrane surface (reversible fouling). As an outlook, the scaling-up of mod-
ification techniques and their implementation using actual process feed streams can be
highlighted. Simpler methods, such as coating, will be likely used on commercial and
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industrial scales. Moreover, biomimetic membrane surfaces with novel antifouling capabil-
ities are anticipated to be developed. Future modification approaches are likely to rely on
green and aqueous solvents, resulting in environmentally friendly procedures.
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