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Abstract: Since 1 January 2020, the sulfur content allowed in exhaust gas plume generated by marine
vessels decreased to 0.5% m/m. To be compliant, a hybrid scrubber was installed on-board, working
in closed loop and generating a high volume of alkaline wastewater. The alkaline water suspension
was treated by a silicon carbide multitubular membrane to remove pollutants, and to allow the water
discharge into the natural environment. In this paper, membrane filtration behavior was analyzed
for the maritime scrubber wastewater. A range of operating parameters were obtained for several
feedwater quality-respecting industrial constraints. The objective was an improvement of (I) the
water recovery rate, (II) the filtration duration, and (III) the permeate quality. Thus, in high-fouling
water, a low permeate flow (60 L h−1 m−2) with frequent backflushing (every 20 min) was used to
maintain membrane performance over time. In terms of water quality, the suspended solids and
heavy metals were retained at more than 99% and 90%, respectively. Other seawater discharge criteria
in terms of suspended solids concentration, pH, and polyaromatic hydrocarbons were validated.
The recommended operating conditions from laboratory study at semi-industrial scale were then
implemented on a vessel in real navigation conditions with results in agreement with expectations.

Keywords: marine closed-loop scrubber wastewater; ultrafiltration; silicon carbine membrane;
exhaust gas cleaning systems; backflushing action

1. Introduction

Maritime transport represents one of the most efficient modes of large-scale transporta-
tion and plays a fundamental role in the world market trade, especially for its economic
interdependence. It has been estimated that maritime transportation accounts for more than
80% of the world market. For instance, the Suez Canal Authority revealed that 5303 vessels
used its shipping lane from January to the end of March 2022, representing an incremental
increase of 15.8% compared to 2021 [1]. International shipping accounts for more than 15%
of nitrogen oxides (NOx) emissions, approximately 10% of sulfur oxides (SOx) and almost
8% of particulate matter in total global emissions [2–4]. However, it is responsible for a
proportion of less than 3% of the total anthropogenic CO2 emissions [5]. Thus, to limit
marine, air, and water pollution, the International Maritime Organization (IMO) adopted
stricter emission regulations for maritime vessels. In the past decade, international rules
have been adopted to reduce the sulfur emission from ships’ plumes. Regulations are listed
in Annex IV of the International Convention for the Prevention of Marine Pollution from
Ships known as the MARPOL Convention [6]. On 1 January 2020, the sulfur concentration
allowed in exhaust gas plumes was reduced from 3.5% to 0.5% worldwide and even down
to 0.1% in sulfur emission controlled areas (SECA) [7,8]. This important energetic transition,
known as Cap Sulfur 2020, represents a major challenge for shipowners. Many studies
have been made to satisfy the limits defined by the MARPOL Convention regarding SOx
reduction [9–11]. The compliant option proposed is the exploitation of exhaust gas cleaning
systems (EGCS) also known as scrubber units directly installed in line with exhaust gas
piping on maritime vessels [12,13].
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Exhaust gas cleaning systems represent the most attractive option; the operational
costs are reduced and counterbalance the investment costs for retrofitted vessels [12,14,15]
According to Clarkson’s World Fleet Register (November 2019), nearly 3000 scrubbers
have already been installed on existing ships, which corresponds to around 3% of the total
number of operational vessels and supplementary vessels that are currently in retrofit
for this technology. Moreover, usage of scrubber units largely reduces ship pollution
emissions. It has been reported that seawater scrubber units commonly remove 90–95%
of SO2 content in exhaust gas, 10–20% of NOx, along with 80% of particulate matter and
around 10–20% of hydrocarbons [16,17]. When exhaust gas cleaning systems are operated
in closed loop (CL), mainly in port and coastal areas, the ship impact on marine biodiversity,
environment, and population is significantly reduced [18,19]. Indeed, port and coastal
areas are defined as sulfur emission control areas, where stricter regulations are set in terms
of water discharge and SOx atmosphere emission (0.1% S instead of 0.5% S) [7,8,20]. In
CL configuration, a certain volume of scrubbing water is continuously recirculated to the
absorption column, causing a pollutant accumulation and the acidification of wastewater.
Indeed, when engines’ exhaust gases meet the alkaline water, the gaseous molecules of
sulfur oxides (SOx) are converted to sulfurous acid ions (SO2

3−) and sulfuric acid ions
(SO4

2−), which causes the acidification of the scrubbing suspension and a decrease in gas
treatment efficiency [12,21]. An alkaline compound is added to process water to improve
the gas pollutant removal by neutralizing its acidic pH. Magnesium hydroxide (MgOH2)
is preferred as the alkaline agent for flue-gas desulfurization on board for its nontoxic
and high metal adsorption properties [22–24]. Additionally, mixed with seawater, 90% of
gaseous SO2 can be removed [25]. The CL wastewater is sent to a wastewater treatment
unit to decrease the particulate matter, hydrocarbons, and heavy metal concentration of
process tank water and allows the water to be discharged into the sea. The residual water
produced, highly concentrated with suspended solids and pollutants, is stored in a residue
tank on board and unloaded when the ship arrives in the port. The volume of residue
tanks is sometimes very low, which limits the CL operation capability for a few days.
In this study and for the first time, marine exhaust gas desulfurization units have been
coupled with a membrane process as a water treatment unit. Membrane filtration is well
known as being efficient for complex effluent water treatment. It has already been used
in many applications for wastewater treatment [26–28] because it allows the limiting the
toxic compounds and pollutants from wastewater and produces a good permeate quality
regardless of the water quality variation.

Some articles present in the current literature report a membranes process used to
treat marine effluent directly on board due to their large specific surface areas [29–31].
Accordingly, membrane filtration processes have been reported as the most efficient process
for oily wastewater treatment. For example, Tomczak and Gryta [32] reported that it
is possible to obtain a permeate without any trace of oil and with a reduction of 80% of
organic compounds, thanks to ceramic membrane treatment. The discharged water satisfied
the environmental regulations which require a maximum oil and grease concentration
of 15 mg L−1. Additionally, membrane filtration processes coupled with pretreatment
steps have been reported to be efficient to remove suspended solids, turbidity, and heavy
metals from wastewater. For instance, Abdullah et al. [33] presented a good retention rate
with heavy metals such as cadmium, mercury, lead, and chromium by using membrane
filtration after coagulation and complex metal formation pretreatment steps. Any research
reported the membrane performances for marine scrubbers’ water treatment. Moreover,
some studies deal with the usage of membrane technology, mainly with a succession of
treatment steps from ultrafiltration (UF) to reverse osmosis (RO) for flue-gas desulfurization
onshore [34–38]. In case of ultrafiltration applied to this field, researchers report good,
suspended solid removal and, according to Yin et al. [35], UF membrane permeability
stabilization is around 130 L h−1 m−2 bar−1.

The choice of membrane material is determined by their properties regarding the
treated suspension. In the field of membrane filtration, ceramic membranes are well
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established to treat wastewater containing a high proportion of organic matters mainly
due to their properties [39,40]. Furthermore, compared to conventional mineral ceramic
membrane materials, silicon carbide (SiC) membranes present the highest permeability
(>3000 L h−1 m−2) [41] due to their very low tortuosity, their good chemical resistance, and
their mechanical strength [42]. SiC membranes are currently used in multiple applications,
such as drinking water, heavy metal removal, food, and biotechnology treatment [43], and
microalgae production [44]. Regarding oil and grease treatment, SiC membrane removal
efficiency was demonstrated by Das et al. [45] for produced water treatment in which
they had an oil rejection between 89% and 94% from an initial feed water of 1.557 mg L−1

oil concentration. A suspension turbidity reduction of 94% was obtained. These studies
confirmed the choice of installing membrane filtration separation to treat the scrubber water
mainly composed of natural salty water, hydrocarbons, heavy metal, particulate matter,
and unburned fuel residue.

The novelty of this paper shows the membrane filtration process being studied for
the first time as an alternative process to treat scrubber wastewater in the maritime field
from a semi-industrial plant to an industrial-boarded scale plant. Membrane processes can
reach significant levels, well below the water discharge criteria, and can be easily adapted
to the various feedwater quality. Moreover, membrane separation units have a compact
design, and low operational costs [46]. In terms of membrane performances, the high SiC
membrane permeability allows one to maintain filtration for longer periods of time, which
can satisfy the navigation and effluent storage constraints. Indeed, as is shown by Hofs
et al. [40], the same membrane fouling can be obtained with higher permeate flux applied
on a SiC membrane surface in comparison to other membrane materials. This is why it
is important to study membrane operation performances for treating maritime scrubber
water and its industrial applications.

In this context, this study’s aims are: (I) to observe the behavior of SiC membranes
installed on marine vessels under different operative conditions as permeate flux, filtration
cycle duration, backflush action, and water quality, (II) to define the best operating parame-
ters that satisfy industrial marine constraints such as low concentrate volume produced,
the longest filtration time, good permeate water quality (hydrocarbons, turbidity, pH, and
heavy metal have been taken into consideration), and (III) to compare semi-industrial
scale results with the onboard membrane filtration for parameter validation and study the
membrane process flexibility during current ship navigation.

To perform the study, five effluents sampled from container vessels and representative
of the entire scrubber water fleet variability were filtered by SiC membranes on a semi-
industrial scale. Several operating parameters are applied to the membrane for each fluid
characteristic with the objective of defining the best parameter for an onboarded application.
First, regarding the filtration tendencies and physical and chemical analysis made on water,
effluents were categorized from high- to low-fouling capacity. Then, the impact of each
parameter was studied in each fluid category (from high- to low-fouling). A range of
operating parameters were obtained for high- and low-fouling fluid. To finish, parameters
defined for high-fouling fluid were applied on the onboarded unit to validate the results
and compare the filtration behavior.

2. Materials and Methods
2.1. Pilot Plant and Membrane Description

To evaluate sustainable operating conditions for filtration onboard, a semi-automatic
membrane filtration pilot plant (Figure 1) was designed to emulate the real membrane
process installed onboard. The filtration was carried out in cross-flow circulation mode. The
filtered water was continuously sent to the permeate tank, and the concentrate water was
only eliminated during backflushing. Respectively, onboard, the permeate water was sent
to a storage tank before being discharged into the environment. The concentrate water was
stored in a residue tank before being discharged once the ship arrived at the nearest port
awaiting further specific treatment onshore. For example, and to highlight the significance
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of this study, onboard, the feed flow of the membrane unit was around 8 m3 h−1 for an
available residue tank volume between 85 and 150 m3, even less in some ships, which
limits the number of closed loop scrubbers’ days in operation between two residue tanks
draining: 8–15 days respectively for a high recovery rate of 95%.
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Figure 1. Simplified pilot plant scheme.

Throughout the membrane filtration experiments, the inlet pressure was fixed at
1.5 bars and the fluid circulation was maintained at a turbulent regime on membrane
channels (Re = 7500), with a constant velocity at 2.5 m s−1. To emulate the operating
conditions present onboard, filtration tests were carried out at a constant permeate flow
rate, which represents an input variable of the system. Due to the high-fouling tendency
of membranes, a semi-autonomous backflush (BF) operation was performed to limit the
irreversible membrane fouling and to maintain the SiC membrane filtration performance
over time. Two modes of backflush actions were defined: backwash (BW) and backpulse
(BP). The backwash action was divided into two phases: first the injection of water was
accompanied by a permeate pressure rise, and then the injection of water under fixed
pressure of 3 bars throughout the desired time interval. Backpulse action worked in the
same way as the BW but with shorter duration. The permeate water was injected through
the membrane only when a permeate pressure of 3 bars was reached.

SiC membranes employed in this study were supplied by LiqTech (Liqtech Interna-
tional, Hobro, Denmark), and have been reported to be applied advantageously in process-
ing industrial wastewater [44]. The membrane used has a multichannel configuration, with
30 cylindrical channels of 3-mm diameter each, with a total length equal to 1178 mm and a
total active area equal to 0.33 m2. The average pore size was defined to be equal to 0.2 µm.
The clean water permeability was reported to be equal to 3200 L h−1 m−2 bar−1. This value
was taken into consideration when evaluating the membrane permeability recovery after
the chemical cleaning of each filtration test.

2.2. Experimental Tests and Analyses

Filtration tests were made in batch mode at constant permeate flow with a continuous
recirculation of the water suspension in the filtration membrane loop. SiC membrane
performance was estimated by evaluating the increase of the irreversible resistance (Rirr)
generated on the membrane after each backflush operation and in opposition to the re-
versible resistance (Rrev) (i.e., the variation of permeability over time) removed by a physical
cleaning action. The total resistance was defined as the sum of the irreversible, reversible,
and intrinsic resistance of the membrane. Rirr and Rrev can be fully removed by chemical
cleaning. To investigate the filtration efficiency over time, two recovery rates were defined:
the total filtration water recovery rate (Rw) calculated, including the total volume lost
during BF operation, and the filtration permeate recovery rate (Rfiltr), maintained at a high
value, close to 100% for all experiments.
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Samples of permeate and concentrate were taken before and after every BF to deter-
mine their physical and chemical characteristics of turbidity, conductivity, pH, dry matters
(DM) and dissolved metals. The turbidity of each sample was measured by using a tur-
bidimeter (WTW Lab Turbidity Meter Turb® 550 IR, Xylem Analytics, Weilheim, Germany).
Due to the high differences in turbidity present in treated effluents, concentrate samples
and feed samples were diluted by a factor of 50 due to the suspension opacity and ag-
gregation [35] and not to be above the detection limit. Complementary analyses such as
conductivity were measured by a conductimeter profiline 3100 (tetra cond. 325 sensors,
Xylem Analytics, Germany), and a pH analysis with a pHmeter HANNA HI 2221 with
HI 1121 (HANNA Instrument, Woonsocket, RI, USA) sensor and dry matter analysis
(from standard NF EN 12880) were made. Heavy metal concentration in permeate and
concentrate samples were determined by spectrometry (ICP/MS) in a certified laboratory
(Laboratoire Phytocontrol Waters, Nîmes, France) according to standards NF EN ISA 15587-
2 and NF EN ISO 17294-2. A panel of eight metals were measured, these being lead (Pb),
cadmium (Cd), arsenic (As), aluminum (Al), chrome (Cr), nickel (Ni), vanadium (V) and
zinc (Zn). It was noticed that vanadium and nickel metal are the main metals found in
the burned fuel of marine transportation vessels, and thus their concentrations have been
reported to be significant on samples analyzed [47]. At the end of each test, a chemical
cleaning procedure was performed (alkaline and acidic batch). Water permeability was
recorded after each step to evaluate the membrane cleaning efficiency.

2.3. Effluents

Feedwaters were collected directly from the exhaust gas treatment closed loop recir-
culation tanks (CL process tank) present onboard to evaluate the variability of process
water characteristics. A preliminary study, not presented in this paper, of scrubber water
characteristics showed a significant difference in water quality depending on the type of
vessels studied and, on the localization, where the sampling took place. Water suspensions
treated were sampled during European navigation routes which took place between the
Algeciras and Hamburg ports. Their main differences consisted of, in addition to their
composition, the type of bunkered fuel burned, localization, and the type of engine con-
sidered in each ship. At least two different types of engines are installed in transportation
ships—the main engine (ME) and the auxiliary engines (AE). Whereas the main engine
is responsible for the ship’s propulsion, auxiliary engines are used for electrical power
production onboard (which can represent up to 15% of the total fuel consumption). After
an extensive internal study of the effluent’s characteristics (more than 50 samples collected
from all over the world) and to overcome the large variability of real effluents treated
by water treatment units installed onboard, five representative fluids were chosen from
different ships and different engine process tanks (ME or AE). Their physical properties are
given in Table 1. Because the scrubber waters onboard are usually pretreated by coagulation
and the hydro-cyclone process before being sent to the filtration unit, the results obtained
in a semi-industrial scale study underestimate SiC membrane performance due to a higher
presence of suspended matter.

Table 1. Physical and chemical characteristics of effluents treated (TSS is made from NF EN 872
protocol and dry matter from NF EN 12880).

Vessel Turbidity (NTU) pH
(-)

Conductivity
(mS cm−1)

TSS *
(g L−1)

Dry Matters
(g L−1)

APL SINGAPURA—ME 85 8.5 47.7 0.47 36

APL VANDA—AE 306 6.0 55.8 0.59 67
APL SINGAPURA—AE 105 8.2 65.7 0.61 88

APL-VANDA—ME 553 8.8 59.4 1.15 87
CMA CGM KERGUELEN 214 7.6 81.9 0.55 127

* TSS, total suspended solid.
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3. Results and Discussion
3.1. Membrane Performances Overview

The variability of feed water quality on membrane performance was studied by
using five effluents coming from operational EGCS-coupled membrane filtration pro-
cess retrofitted vessels (Table 1). A large range of operating conditions were applied
based on the previous results obtained for each effluent and water quality. As examples,
low- and medium-fouling fluid properties were filtered with a permeate flux higher than
150 L h−1 m−2, whereas on the high-fouling water properties, permeate flux of 90 and
60 L h−1 m−2 were imposed on the membrane. Additionally, almost all BF operating
conditions were tested on the three water categories (low-, medium-, and high-fouling).
Regarding the BF duration, 20 s and 5 s were mainly used for BW action and 5 s for a BP
injecting respectively 13, 6, and 2 L from the permeate side through the membrane. The
BF frequency applied during filtration tests varied between 20 and 60 min. The lower BF
frequencies (20–40 min) refer to BP actions in order to compensate the lower water volume
injected and limit the irreversible fouling on membrane surface. As a consequence, a varied
range of membrane performance in terms of fouling behavior was obtained for each water
quality (Figure 2).

Effluents treated have been categorized by their fouling properties, depending on
the water quality and permeability variation observed throughout the filtration time.
High-fouling fluids were defined as the effluents from APL VANDA ME (V-ME) and CC
KERGUELEN (KERG). For theses effluents, a higher dry matter (DM ≈ 87 and 127 g L−1)
and suspended solid concentration (TSS ≈ 1.15 and 0.55 g L−1) were reported, and a lower
permeability range was observed, lower than 400 L h−1 m−2 bar−1 (Figure 2d,e). APL
SINGAPURA ME (S-ME) and APL VANDA AE (V-AE) waters were considered as a low-
fouling fluid. Indeed, the operating permeability measured for S-ME was higher (around
600 L h−1 m−2 bar−1 (Figure 2a) and suspended solid concentration was lower (0.4 g L−1)
in comparison to other effluent results. Regarding APL SINGAPURA AE effluent (S-AE), it
was described as medium-fouling effluent (Figure 2c).

Due to (I) the high permeability of silicon carbide membranes, (II) the fluids’ physico-
chemical characteristics, and (III) the operating conditions applied on the permeate side,
reverse flux effects can be observed on the membrane outlet. This phenomenon was mainly
noticeable during the first filtration cycles, during which the pressure measured in per-
meate was higher than the membrane module outlet pressure (Ppermeate > Poutlet). Under
this condition, the permeate volume produced is lower than the total volume of water
filtered by the membrane, which limits the membrane fouling and sometimes overestimates
performance. The reverse flow proportion decreases when the permeate pressure decreases
enough with a constant outlet pressure. This results in a higher membrane active area
fouling and a rapid decrease in permeability. Similar membrane filtration tendencies have
already been noticed by Ghidossi et al. [48] and Springer et al. [49] with difficulties in
measuring the initial permeability when the membrane was cleaned. The reverse flow in
the SiC membrane throughout the filtration was also observed in other applications, as
in food and beverages [43,50]. Regarding the results obtained, a high reverse flow was
mainly observed for a low-fouling effluent. For instance, the permeate pressure measured
throughout the filtration of S-ME water at 150 L h−1 m−2 permeate flow was in the same
order as the pressure outlet. (Figure 3a). This pressure range explained the higher perme-
ability mentioned around the time, 600 L h−1 m−2 bar−1. In case of high-fouling water
filtration, a high concentration of fouling particles in water limited reverse filtration flow in
the first minutes of each cycle, reducing the range of membrane permeability. For instance,
throughout the filtration of KERG fluids shown in Figure 3b, permeate pressure was quite
similar as the outlet pressure during the first filtration cycles due to a dilution effect. Thus,
the permeability measured was higher than 400 L h−1 m−2 bar−1. After 40 min of filtra-
tion, a high membrane-fouling appears, the permeate pressure rapidly decreases with the
permeability values, and no more reverse flow is observed on the membrane side.
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Figure 2. Overview of membrane behavior for all fluid quality tested by variation of the permeability
throughout the filtration time. T = 20 ◦C; SiC membrane 0.33 m2. (a) APL-SINGAPURA-ME; (b) APL
VANDA AE; (c) APL-SINGAPURA AE; (d) APL-VANDA ME; (e) CC-KERGUELEN. Jxx is permeate
flux at the xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration and zz the interval of
filtration between two BF (BW or BP as it is mentioned in the legend); and Rw is the total recovery
rate applied to the unit.
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Figure 3. Variation of permeate pressure, outlet pressure and permeability value measured through-
out the filtration time for (a) low-fouling water type, APL-SINGAPURA ME —J150—Rw = 79%;
and (b) high-fouling water, CC-KERGUELEN J150—Rw = 90%.1 BW 5 s/40 min; T = 20 ◦C; SiC
membrane 0.33 m2.

3.2. Filtration Repeatability

Performed scale filtration with real feedwater implied that one verified the effluent
quality in case of variability over time. In addition, two filtration tests were carried out,
at the beginning and the end of the campaign (after two months) with a permeate flux of
90 L h−1 m−2. A BW was triggered every 40 min with a duration of 5 s under pressure on
the membrane surface. The turbidity of the feed sample was measured at the beginning
of each filtration test to evaluate the water quality. The values obtained were in the
same range of turbidity, respectively equal to 200 and to 190 NTU for test 1 and test 2.
Membrane permeability variations versus filtration time are shown in Figure 4a, where
curves obtained are stackable. Indeed, permeability differences noticed after 170 min of
filtration can be explained by an increase of turbidity present in the membrane loop after
regulation deviation. Through the filtration test 2, a lower volume of clear water was
injected during the BW actions. An injection of 5 L for test 2 vs. 5.5 L for test 1 implies a
higher turbidity concentration factor in the loop (Figure 4b). In conclusion, filtration made
on the same membrane was considered repeatable, allowing the results to be compared in
this study.

3.3. Impact of Permeate Flow

The permeate flow was kept constant during filtration, as it is imposed on industrial
applications. According to the fluid quality and fouling properties previously determined,
the influence of permeate flux on filtration performances was studied for the S-ME and
KERG water, respectively, a low- and a high-fouling property fluid. For KERG scrubber
wastewater, three permeate flows were applied to the same membrane—150, 90, and 60 L
h−1 m−2, with similar BW conditions (1 BW 5 s/40 min). The application of a permeate flow
equal to 150 L h−1 m−2 (J150) on SiC membrane implies a strong permeability decline from
the first minutes of filtration, as is shown in Figure 5. Thus, a permeate flow around 150 L
h−1m−2 was not reported as viable for a long-term filtration. Regarding other operating
conditions, the decrease of the permeate flow from 90 to 60 L h−1 m−2 (J90 and J60) with a
similar feed water composition allows a lower permeability value stabilization, respectively
equal to 250 and 90 L h−1 m−2 bar−1. This phenomenon is mainly linked to membrane
properties such as high water permeability and to the pilot regulation system. In case of J60
experiments, the permeate flow rate required was too low for unit regulation. A transition
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phase with a lower permeate pressure was measured (larger gap between pressure outlet
and pressure permeate) and appears to strongly reduce the permeability values (Figure 5c).
In contrast, with a higher permeate flow, the permeate pressure was higher, and the filtration
behavior was positively impacted by reverse flow on the membrane. The fouling resistance
supports this idea: a lower permeate flow produces higher membrane-fouling mainly due
to the pressure ratio (Figure 5b). Indeed, the reversible and irreversible fouling resistance
created increased more rapidly throughout the filtration time when the permeate flow was
lower. Additionally, the global water recovery rate was lower, around 70% and 77% for,
respectively, J60 and J90, and a larger concentrate volume was generated in comparison to
the permeate volume produced. Experiment results showed that filtration was maintained
for a longer time.
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Figure 4. Repeatability experiment with a permeate flux of 90 L h−1 m−2. Variation of permeability
at 20 ◦C (a) and turbidity concentration factor from the feed value (b) throughout the time with
backwash water injected for 5 s every 40 min. T = 20 ◦C, feedwater from CC-KERGUELEN; SiC
membrane 0.33 m2. Jxx is permeate flux at the xx value in L h−1 m−2; 1BW yy s/zz min where yy
is the duration and zz the interval of filtration between two BF; and Rw is the total recovery rate
applied on the unit.

In comparison with low-fouling water, such as S-ME water, applying a permeate flow
higher than 150 L h−1 m−2 produced higher permeability value stabilization—approximately
250 L h−1 m−2 bar−1, as is shown in Figure 6. However, a lower water recovery rate of
67% was obtained. On the same effluent, implementing a permeate flow from 150 to
225 L h−1 m−2 increased the total filtration resistance and membrane fouling (Figure 6).
For a permeate flow of 225 L h−1 m−2, a higher reversible resistance was observed, which
highlighted an increased BW efficiency. The main part of the generated membrane-fouling
was the reversible one. Thus, despite the higher feed turbidity of 177 NTU, an important
part of suspended solids present on membrane surfaces were removed during physical
cleaning actions. In this situation, a higher permeability recovery after each BW sequence
was observed, followed by a rapid decrease throughout the filtration cycle until a lower
value of approximately 270 L h−1 m−2 bar−1 was reached. In comparison, for a perme-
ate flow of 150 L h−1 m−2 the final permeability cycle stabilization was approximately
400 L h−1 m−2 bar−1. From the results obtained, using a permeate flow of 225 L h−1 m−2

with physical cleaning every 40 min, allowed us to maintain the filtration for many hours
and reduced the concentrate volume produced, with a water recovery rate reaching 80%.
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Figure 5. Influence of permeate flux on membrane filtration behavior by variation of permeability at
20 ◦C (a), fouling resistance (b), and the pressure ration, difference between membrane outlet, and
permeate side pressure (c) throughout the time with backwash water injected for 5 s every 40 min. A
flux of 150 L h−1 m−2 (grey round), 90 L h−1 m−2 (red triangle) and 60 L h−1 m−2 (green square)
are applied to the membrane. T = 20 ◦C, feedwater from CC-KERGUELEN; SiC membrane 0.33 m2.
Jxx is permeate flux at the xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration and zz
the interval of filtration between two BF; and Rw is the total recovery rate applied on the unit; Rirr is
irreversible resistance; Rrev is reversible resistance and Rmbrn is the membrane resistance.

Fluid properties influenced the membrane filtration performance. According to fluid
characteristics and fouling properties considered, the optimum operating conditions are
different mainly in terms of permeate flow applied. Indeed, in low-fouling water, a good
filtration permeability was maintained with a high permeate flow, and a larger volume of
water was treated. For example, on S-ME water, a permeate flow of 250 L h−1 m−2 was
maintained with a high permeability value of 400 L h−1 m−2 bar−1. In comparison with
high-fouling water, a permeate flow value of 150 L h−1 m−2 cannot be applied for more
than 2 h without complete membrane fouling. From these results, treated scrubbers process
water, with a permeate flow less or equal to 90 L h−1 m−2, seems a good compromise for
onboarded filtration. Additionally, it is supposed that in cases of high-fouling water, using
a permeate flow of 90 L h−1 m−2 with harder backflush conditions could be too stressful
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for the membrane; thus, decreasing the permeate flow to 60 L h−1 m−2 would be more
appropriate. A lower permeate flux helps to increase the filtration time by reducing the
membrane fouling. Under these conditions chemical cleaning frequency can be reduced.
This is the first time that permeate flow values were prescribed for the treatment of exhaust
gas cleaning system wastewater. The division into three types of effluent may appear
simple, but it brings a simplified operation onboard. It has already been the case in other
fields such as wine [43].
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Figure 6. Influence of permeate flux on membrane filtration behavior by variation of permeability
at 20 ◦C (a) and fouling resistance (b) throughout the time with backwash water injected for 20 s
every 40 min. Flux of 225 L h−1 m−2 (round), 150 L h−1 m−2 (triangle) is applied to the membrane.
T = 20 ◦C, feedwater from APL-SINGAPURA-ME; SiC membrane 0.33 m2. Jxx is permeate flux at the
xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration and zz the interval of filtration
between two BF; and Rw is the total recovery rate applied on the unit; Rirr is irreversible resistance;
Rrev is reversible resistance and Rmembrane is the membrane resistance.

3.4. Impact on Backwashing Operating Duration

Backwashing is applied on the membrane surface to reduce the fouling. Water injection
in countersense of the filtration helps to remove the fouling layer and reduce the chemical
cleaning frequency. From an industrial point of view, it can be interesting to reduce
the chemical consumption and increase the operation time. Water injection time during a
backwashing action was reduced from 20 s to 5 s in order to evaluate the impact on the water
recovery rate, fouling removal efficiency and membrane performance. According to BW
definition, reducing the BW injection time significantly decreased the high constant pressure
injection duration with a similar transition time (required to obtain the BW pressure).
Filtration was made under similar conditions for different fluid quality. After considering
previous results, permeate flows of 150 and 90 L h−1 m−2 were set, respectively, on S-ME
and V-ME wastewater to prevent membrane fouling. In the case of high-fouling fluid (V-
ME), filtration results (Figure 7) highlighted an increase in water recovery rate when the BW
duration was reduced to 15 s. The water recovery rate also increased from 53% to a value
higher than 75%, which is the minimum requirement for industrial applications. In terms of
membrane-fouling behavior, except for the first filtration cycle (40 min), permeability and
reversible fouling resistance were in the same order for both filtration (Figure 7). Moreover,
a low permeability recovery was noticed after each physical cleaning action linked to the
high particle deposit on the membrane side. However, injecting more water was not a
solution to obtain a better BW efficiency, and the reversible resistance was low and similar
for both conditions tested, below 4.1011 m−1 (Figure 7b).
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Figure 7. Influence of BW duration on membrane filtration behavior by variation of permeability
at 20 ◦C (a) and fouling resistance (b) throughout the time to permeate flux of 90 L h−1 m−2, a BW
interval of 40 min and a BW duration of 5 s (orange round) and 20 s (blue diamond) are applied to
the membrane. T = 20 ◦C, feedwater from APL-VANDA-ME; SiC membrane 0.33 m2. Jxx is permeate
flux at the xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration and zz the interval of
filtration between two BF; and Rw is the total recovery rate applied on the unit; Rirr is irreversible
resistance; Rrev is reversible resistance and Rmembrane is the membrane resistance.

In cases of low-fouling water treatment (S-ME water, Figure 8), similar observations
were made. The water recovery rate increased from 67% for 1 BW 20 s/40 min to 80%
for 1 BW 5 s/40 min; thus, the membrane filtration behavior was impacted. Additionally,
it was found that the reversible fouling resistance formed was reduced when the BW
volume decreased. The measurement of the reversible resistance for each filtration cycle
was approximately 2.1011 and 3.5.1011 m−1 when the BW duration was 5 s and 20 s,
respectively. Thus, a part of the backwashing volume injected for a 20-s duration was not
helpful to remove the membrane-surface fouling. Consequently, under these conditions, a
permeability stabilization around 500 L h−1 m−2 bar−1 was observed. Applying a shorter
BW time also influenced the loop turbidity ratio, and membrane fouling. The turbidity
ratio measured in filtration (turbi/turbfeed, turbi is the turbidity of the sample, turbfeed is
the turbidity of the feed water) was around 10 for a 5-s BW, and only 6 for a 20-s BW. Thus,
for an average feed, water turbidity of 145 NTU and the same filtration time, the suspended
particle concentration was reduced when more water was injected. In both cases, the
backwashing action was sufficient to remove the fouling layer on the membrane surface.

From the results presented, it was observed that injecting more than 6 L of water into
the permeate, linked with a BW duration of 5 s, did not help in removing fouling layers on
the membrane side for both fouling water qualities. Additionally, it was assumed that only
half the water volume was needed to remove the fouling layer when a BW duration of 20 s
was used, and 12 L were injected. In conclusion, increasing the BW duration did not impact
the membrane filtration. This observation has already been demonstrated by Ye at al. [51]
and confirmed by Slimane et al. [52] for seawater ultrafiltration. They increased the BW
duration and BW frequency to their maximum value, and no membrane fouling reduction
was observed. The value of 5 L was the minimum value of the optimal volume range
(5–10 L) given by Slimane et al. [52], are in agreement since the SiC membranes used in this
study have larger permeability. That is why it is preferable to decrease the BW duration in
order to increase the water recovery. From an industrial point of view, an increase in the
recovery rate helped to reduce the volume of residue water produce. Because residue tank
storage is a critical point for onboarded filtration, we reduce the volume of water sent to
this tank increase the day of CL running. That is why these results are important.
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Figure 8. Influence of BW duration on membrane filtration behavior by variation of permeability at
20 ◦C (a) and fouling resistance (b) throughout the time with permeate flux of 150 L h−1 m−2, a BW
interval of 40 min and a BW duration of 5 s (squared) and 20 s (round) are applied to the membrane.
T = 20 ◦C, feedwater from APL- SINGAPURA-ME; SiC membrane 0.33 m2. Jxx is permeate flux at
the xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration and zz the interval of filtration
between two BW; and Rw is the total recovery rate applied on the unit; Rirr is irreversible resistance;
Rrev is reversible resistance and Rmembrane is the membrane resistance.

3.5. Impact of Backwashing Operation Frequency

The BW frequency refers to the delay between two successive reverse permeate water
injections on the membrane side. Decreasing the backwash frequency led to a higher
filtration cycle. The stress applied to the membrane surface was maintained over a longer
period; consequently, a greater fouling was observed, and the irreversible fouling pro-
portion increased more rapidly over time. Filtration cycles of 40 and 60 min, and BW
durations of 5 s were applied to low- and high-fouling water (respectively, S-ME and
KERG waters). The permeate flow was adjusted as a function of the feedwater quality,
according to previous results. The filtration was realized with a higher permeate flow rate
of 150 L h−1 m−2 flow for S-ME water, and a lower permeate flow of 90 L h−1 m−2 was
applied to the membrane for KERG water experiments. In both cases, previous estima-
tions were validated (Figures 9 and 10). For KERG water filtration, lower permeability and
higher irreversible fouling resistance values were observed when the BW interval was
increased from 20 min (Figure 9). For 60-min filtration intervals, it was noticed that after the
third filtration cycle, the permeability of the membrane dropped, and it became completely
fouled. The membrane was not able to maintain the permeate flow at the desired value.
Usage of BW allows a brief recovery of flow rate permeate, which validates its efficiency
to limit the membrane-fouling over time during a short filtration duration. Filtrating at
90 L h−1 m−2 with a high BW interval limited the concentrate volume produced, and thus a
water recovery rate of more than 80% was obtained. However, a higher membrane-fouling
was reported, and the filtration run was stopped after 3 h; this condition was not sustainable
in the long term.

In the cases of S-ME scrubber wastewater filtration, when the filtration cycle was
increased from 40 to 60 min, the total fouling resistance increased faster (Figure 10). A higher
irreversible fouling resistance was generated during filtration; thus, on the membrane side,
a large portion of particles were not removed by BW. Indeed, the turbidity ratio before
and after permeate injection was only decreased by 1.5 units. Nevertheless, filtration was
maintained around the time and a permeability stabilization higher than 400 L h−1 m−2

bar−1 was observed. Similarly, KERG water filtration results, showed that increasing the
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BW interval helps to obtain a higher permeate recovery rate, 10% higher with 60-min
intervals whereas 40-min intervals reached a percentage rate of 88%.
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Figure 9. Influence of BW frequency on membrane filtration behavior by variation of permeability at
20 ◦C (a) and fouling resistance (b) throughout the time with permeate flux of 90 L h−1 m−2 and a
BW duration of 5 s, every 40 min (red triangle) and every 60 min (blue diamond) are applied to the
membrane. T = 20 ◦C, feedwater from CC-KERGUELEN; SiC membrane 0.33 m2. Jxx is permeate
flux at the xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration and zz the interval of
filtration between two BF; and Rw is the total recovery rate applied on the unit; Rirr is irreversible
resistance; Rrev is reversible resistance and Rmbrn is the membrane resistance.
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Figure 10. Influence of BW frequency on membrane filtration behavior by variation of permeability
at 20 ◦C (a) and fouling resistance (b) throughout the time with permeate flux of 150 L h−1 m−2 and a
BW duration of 5 s, every 40 min (squared) and every 60 min (diamond) are applied to the membrane.
T = 20 ◦C, feedwater from APL-SINGAPURA ME; SiC membrane 0.33 m2. Jxx is permeate flux at the
xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration and zz the interval of filtration
between two BF; and Rw is the total recovery rate applied to the unit; Rirr is irreversible resistance;
Rrev is reversible resistance and Rmembrane is the membrane resistance.
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A similar filtration tendency was observed for both fluid characteristics. Increasing
the BW-triggered delay increased the membrane fouling and irreversible resistance created
on the membrane surface. These results are in agreement with Ye et al.’s [51] studies for
seawater in hollow membrane filtration. They have shown that a more compact fouling
cake was produced when the filtration cycle increased. However, increasing the filtration
time allows obtaining a higher recovery rate. Weschenfelder et al. [53] concluded that
usage of BF actions helped to increase the permeate flux, but its drawbacks were about
the permeate water loss throughout time. Indeed, because the BF are made with permeate
water, they triggered more BF in the same duration to generate a global water recovery
rate reduction. This could be an important issue for onboarded operation due to the higher
concentrate volume produced.

3.6. Impact of Backflushing Type: Backwash vs. Backpulse

Both physical cleaning actions, BW and BP, were performed on the membranes during
the filtration of water coming from KERG. A backflush duration of 5 s was applied to the
membranes every 40 min; thus, permeate water was injected with a fixed pressure during
5 s whereas the permeate flow was maintained at 90 L h−1 m−2. Usage of BP allowed for
the reduction of the volume injected from 5 L (BW volume) to 2 L in comparison to BW
which increased the permeate recovery rate from 77% to 90%. Filtration curves showed a
lower permeability value when BP was used (Figure 11a), but a higher membrane fouling
was generated. In fact, the filtration loop turbidity remained high due to the low volume of
permeate water injected during backpulsing. The turbidity ratio (turbi/turbfeed) measured
after 150 min of filtration was 5 units when BP was used, whereas 4 units were calculated
for BW actions. The higher suspended solids concentration on the membrane side, with
BP, also produced the higher irreversible fouling observed (Figure 11b). The reversible
fouling resistance shown in Figure 11b represents the BP efficiency in fouling removal, and
filtration performance maintenance for several hours. In comparison, BW shows good
performance, but it is less attractive for industrial applications due to the higher injected
volume which gives a lower water recovery rate of 77%.

In the case of KERG water filtration, the influence of permeate flow and BW parameters
have been discussed previously. Results have shown that applying 60 L h−1 m−2 as a
permeate flow allows one to maintain the membrane filtration by limiting the filtration
reverse flow perturbations thanks to the regulation parameter and an initial greater fouling.
BF mode and frequency of applications were studied in order to define the sustainable and
optimized physical cleaning operating conditions for a permeate flow of 60 L h−1 m−2.
Filtration with 5 s BW every 40 min has already been discussed and was compared to
other filtration tests performed with 5 s BP every 20 and 40 min, respectively (Figure 12).
A high initial membrane fouling and a low permeability value stabilization less than
100 L h−1 m−2 bar−1 over time were observed for each filtration (Figure 12a). The physical
cleaning action was efficient, the BF permeate water injection helped to reduce the fouling,
maintain filtration, and a high reversible fouling resistance was achieved, as is shown by
Figure 12b. For the same filtration interval, usage of BP instead of BW had no impact on
fouling tendencies, as was seen in the permeability curves and irreversible fouling value
(Figure 12). However, during backpulsing a lower volume of permeate was reinjected (1.7 L
against 5 L for BW action) on the membrane side. Consequently, the reversible resistance
generated was reduced, and the water recovery rate increased to a value of more than 80%.
Applying BP more often in the membranes (1 BP every 20 min) reduced the irreversible
fouling resistance in comparison to the other BW or BP conditions tested with 60 L h−1 m−2

as permeate flow and a high reversible fouling resistance were noticed (Figure 12b). For the
same condition (5 s BP/20 min) a high permeability recovery in the beginning of each cycle
was observed, accompanied by a significant decrease right after the restart of filtration. A
loss of 100 L h−1 m−2 bar−1 in 20 min of filtration was noticed. Nevertheless, this condition
seems ideal because a constant permeability drop during the filtration cycle and throughout
the time was observed.
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Figure 11. Influence of backflush mode (BP-BW) on membrane filtration behavior by variation of
permeability at 20 ◦C (a); fouling resistance (b) and the concentration factor over time with pressure
water injected for 5 s every 40 min and a permeate flux of 90 L h−1 m−2. Filtration is made with BW
action (white triangle) and BP action (grey triangle). T = 20 ◦C, feedwater from CC-KERGUELEN;
SiC membrane 0.33 m2. Jxx is permeate flux at the xx value in L h−1 m−2; 1BW yy s/zz min where
yy is the duration and zz the interval of filtration between two BF; and Rw is the total recovery
rate applied on the unit; Rirr is irreversible resistance; Rrev is reversible resistance and Rmbrn is the
membrane resistance.

For low- and medium-fouling water, initial results on V-AE water filtration shows low
water recovery rates around 50% and 65% (Figure 13b), respectively. Thus, permeate flow
was increased up to 250 L h−1 m−2, and BP actions were applied to the membrane with the
objective of concentrate volume limitations, and a strong increase in the water recovery rate.
First, under these permeate flow conditions, the permeate water recovery rate increased to
a value higher than 75%, increasing in the same way as the membrane fouling (Figure 13).
Then, different BF conditions were applied to permeate flow of 250 L h−1 m−2. Results
indicated that the usage of 5 s BP actions induced 2 L of permeate water used during
backpulsing, which was six times less than the volume used during a 20-s BW. Thus, even
if BP actions were executed more often on the membrane, as in every 20 min, the total
volume of water loss was reduced, which significantly increased the water recovery rate
to a value higher than 90%. In this condition (250 L h−1 m−2—5 s BP), a lower dilution
of the loop circulation water was observed, and the turbidity ratio increased by up to
14 (versus 6) units maximum for 20-s BW filtration (Figure 13d). Consequently, a higher
total fouling resistance was observed (Figure 13a,b). The irreversible fouling resistance
noticed was 30% higher when BP was used in comparison to BW in the case of V-AE water
filtration. The reversible fouling resistance was similar for both conditions tested; thus, BP
remained efficient to remove fouling on the membrane side. Results obtained from V-AE
water, considered as a low-fouling water, highlighted the role of reverse flow in filtration
performance stabilization. A rapid increase in membrane fouling was observed up to
complete loss of permeate flow (200 min) with (I) the high reversible fouling resistance
and (II) the permeability decreasing during the filtration cycle. This phenomenon appears
after 150 min of filtration time when the membrane reverse flow disappears (Figure 13).
Reducing the filtration cycle allows limiting the fouling between two BW or BP actions, even
when the volume injected is lower. In conclusion, from the results shown, despite the higher
irreversible fouling resistance generated on the membrane side, the filtration performance
was preserved. Frequent BP actions are beneficial in limiting the concentrate volume
produced during similar filtration time without impacting the filtration performance.
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Figure 12. Influence of backflush conditions on membrane filtration behavior by variation of perme-
ability at 20 ◦C (a); fouling resistance (b) throughout the time with pressured water injected during
5 s and a permeate flux of 90 L h−1 m−2. The filtration conditions as BF mode, frequency and volume
injected are, respectively, BW, 40 min, 5.5 L (squared); BP, 40 min, 1.7 L (round) and BP, 20 min, 1.7 L
(triangle). T = 20 ◦C, feedwater from CC-KERGUELEN; SiC membrane 0.33 m2. Jxx is permeate
flux at the xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration and zz the interval of
filtration between two BF; and Rw is the total recovery rate applied on the unit; Rirr is irreversible
resistance; Rrev is reversible resistance and Rmembrane is the membrane resistance.

Water coming from S-AE was considered as a medium-fouling water. Permeability
during its filtration varied between 1200 and 200 L h−1 m−2 bar−1 (Figure 2c). BF operating
conditions were studied with a permeate flow of 150 L h−1 m−2 and continually produced
a similar fouling behavior for all experiments (Figure 2c). Similar irreversible fouling
resistance over time were observed for each filtration (Figure 14). The BF frequency and
duration modification had no impact on irreversible fouling and membrane filtration
tendency; however, it helped for increasing the water recovery rate. The application of
short and frequent physical cleaning action (BP) on the membrane side allowed us to reach
a water recovery rate close to 100% (1 BP 0.5 s/20 min) and increased the turbidity ratio
inside the circulation loop up to 10 units. However, the membrane fouling over time was
increased in the same way as other conditions. BP was efficient to remove the membrane
fouling and recover the permeability value at the beginning of each filtration cycle. The
same observation was made for other operating conditions even when the filtration cycle
was longer (60 min). Application of a BW or a BP correctly removed fouling particles on
the membrane surface and limited the irreversible fouling creation.

3.7. Membrane Cleaning and Recovery

The membrane was completely cleaned in place (CIP) before each filtration test. Be-
cause a high membrane permeability was noticed and measurement difficulties appeared,
a validity range around 20% of the reference permeability was defined to validate the
washing efficiency (3,200 L h−1 m−2 bar−1 ± 20%). This limit was respected to start a new
filtration experiment. Regarding experimental conditions applied, two complete CIP were
sometimes required to recover a good water permeability value.

3.8. Membrane Retention Performances
3.8.1. Validation of Seawater Rejection

Several conditions were set for discharging wastewater from exhaust gas cleaning
systems, and it must be noted that regulations can change depending on the coastal state
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in which ships were located. Criteria for seawater discharging of exhaust gas cleaning
wastewater was regulated by MEPC 259 (68) resolution [54]. Thus, wastewater can be
discharged when the pH value is higher than 6.5, the polyaromatics hydrocarbon (PAH)
concentration is lower than 50 µg L−1 and turbidity value is not higher than 25 NTU.
Permeate samples were analyzed and results show a pH range between 7.5 and 8.5 for all
water filtered. The retention rate of suspended solids was close to 100% regardless of the
quality of the feed and the operating conditions (permeate turbidity was lower than 6 NTU).
Table 2 presents the average turbidity measured in concentrate and in permeate samples
and validated the suspended solid elimination after treatment. The PAH concentration was
measured in real conditions, and its concentration in permeate samples was lower than the
regulation limit. In conclusion, permeate water rejection in seawater is allowed.
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Figure 13. Influence of backflush mode (BP-BW) on membrane filtration behavior by variation of
permeability at 20 ◦C (a); fouling resistance (b), the pressure ratio (c) and the turbidity concentration
ration (d) throughout the time for a permeate flux of 250 L h−1 m−2 and a 1 BW 20 s/40 min (purple
round) and 1 BP 5/20 min (blue squared). T = 20 ◦C, feedwater from APL-VANDA-AE; SiC membrane
0.33 m2. Jxx is permeate flux at the xx value in L h−1 m−2; 1BW yy s/zz min where yy is the duration
and zz the interval of filtration between two BF; and Rw is the total recovery rate applied on the unit;
Rirr is irreversible resistance; Rrev is reversible resistance and Rmembrane is the membrane resistance,
turbi is the turbidity of the sample, turbfeed is the turbidity of the feed water.
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Figure 14. Influence of backflush mode (BP-BW) on membrane filtration behavior by variation fouling
resistance (a), and the turbidity concentration ration (b) throughout the time for a permeate flux of
150 L h−1 m−2 and a 1 BP 0.5 s/20 min (triangle); 1 BW 20 s/40 min (squared); 1 BW 20 s/60 min
(round); 1 BW 5 s/25 min (diamond). T = 20 ◦C, feedwater from APL-SINGAPURA-AE; SiC
membrane 0.33 m2. Jxx is permeate flux at the xx value in L h−1 m−2; 1BW (or BP) yy s/zz min
where yy is the duration and zz the interval of filtration between two BW (or BP); and Rw is the
total recovery rate applied to the unit; Rirr is irreversible resistance; Rrev is reversible resistance and
Rmembrane is the membrane resistance.

Table 2. Turbidity range in concentrate side and permeate side during experiments.

Range of Loop Turbidity Value
Throughout the Filtration Experiment

(NTU)

Average Permeate Turbidity Value
(NTU)

Effluent 1 ≈140–2200 0.7
Effluent 2 ≈306–4600 0.3
Effluent 3 ≈23–259 0.3
Effluent 4 ≈553–3300 2.2
Effluent 5 ≈180–1300 6.0

3.8.2. Heavy Metals Rejection

A panel of eight metals were chosen due to their presence in plume rejection, including
vanadium and nickel, the two main metals involved in the composition of heavy fuel oil
used for navigation. The results obtained indicate a retention rate higher than 80% for
almost all the metals tested, except for cadmium which was eliminated at 50% (Figure 15).
Greater retention was observed with advanced filtration. For instance, vanadium and nickel
removal rate increased respectively from 88% to 92% and from 86% to 91% throughout the
filtration time (200 min in average) (Figure 15). Similar results show heavy metal removal
was obtained with the addition of chemical compounds as an example. Tortora et al. [55]
have used surfactants to enhance ultrafiltration in removing zinc, nickel, chromium, and
cobalt metal from wastewater with the efficiency of around 88%. BF operations reduced
the membrane fouling, which helped to increase the removal rate. Thus, BF influence on
heavy metals retention was studied by analyzing permeate samples before and after the
water injection. According to Figure 15, the BW applied to the membrane did not impact
the retention properties. Heavy metals were adsorbed on the suspended solids surface
or were precipitated and perfectly retained by the membrane. According to the literature,
MgOH2 when used to increase the seawater alkalinity for exhaust gas treatment, helped to
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precipitate the metal ion by formation of metal hydroxides throughout the time [24,56,57].
In conclusion, the usage of the membrane process with high absorptive and nontoxic
suspended solids can replace the addition of chemical compounds for the elimination of
heavy metals from wastewater.
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3.9. Performances Validations on Onboarded Membrane Separation Units

Membrane filtration is used on maritime vessels, such as the CC-LOUIS BLERIOT
(CC-LB), to treat process water and reduce the suspended solids concentration. Units
installed on maritime vessels used SiC membranes, and they treat around 8 m3 h−1 of
process water when the scrubber unit is running in closed loop. Approximately 5% of
this water flow is continuously eliminated as concentrate water and goes to the residue
tank. The remaining 95%, considered as permeate water, is either discharged to seawater,
reinjected into the unit during BW action, or returned back to the process tank. BW actions
are usually performed every 20 min on units which correspond to a filtration interval of
80 min on each membrane module (1 unit is composed of 2 lines in series with 2 modules
k99 in parallel). Because BW water is sent to a process tank, the average residue volume
produced in 1 h of filtration is around 400 L. This value is quite important due to the
low residue tank volume available on marine vessels. For instance, on a CC-LB container
ship, the residue volume is 85 m3 which allows the CL to run for only eight days without
issues. Due to the time spent in European SECA, around 15 to 20 days, a function of port
availability, the eight-day CL limitations are critical values for the ship navigation. Indeed,
in SECAs, sulfur concentration allowed in ships’ plume rejection is 0.1%; thus once the
residue tank is full, the ship must switch from high sulfur fuel to diesel or low sulfur fuel
which is more expensive (around 200$ t−1 difference). Currently, to limit the membrane
fouling and residue volume, the membrane unit is operated with low permeate flow, lower
than 29 L h−1 m−2 with only one filtration line in service, which reduces the membrane
operation flexibility.

Membrane feedwaters were analyzed, and a value of turbidity at 170 NTU was found,
with suspended solids at 1.2 g L−1 and dry matter at 55 g L−1, which were in the range of
high-fouling fluid. Thus, the filtration performance of CC-LB can be compared to KERG
or V-ME results obtained from semi-industrial scale experiments even though the CC-LB
membrane feedwater was pretreated (coagulation, precipitation, and hydro-cyclone) before
the membrane separation. For the reasons of low residue tank volume and high-fouling
effluent, the ship CC-LB was chosen to validate the scale results. The onboard membrane
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filtration unit was studied under different scrubber running conditions, in OL with constant
process water quality, in CL during the navigation with both engines started, and in CL
during port stay with scrubber 1 (ME) out of service. Permeate flow was increased from
29 to 63 L h−1 m−2, a value recommended from scale tests. To get as close as possible to
semi-industrial scale experiments and decrease the residue volume, no concentrate water
was eliminated continuously from the unit. The filtration loop was only purified during
BW action. Results obtained confirm the conclusion of semi-industrial scale tests. A low
membrane fouling throughout the filtration time was observed no matter the scrubber
operation (OL/CL). Permeability measured was between 70 and 130 L h−1 m−2 bar−1 and
the TMP values were lower than 0.7 bar, the maximum TMP value for making a CIP.

To illustrate the membrane performance, Figure 16 shows the filtration tendency
in terms of permeability, TMP, and fouling resistance for the onboard membrane unit
when scrubber 2 was run in CL in hoteling. The unit runs with a permeate flow of
63 L h−1 m−2 bar−1 for 17 h with only a slow increase in membrane fouling over time
thanks to the BW application. After 13 h of filtration, the maximum BW TMP (0.65 bar)
was reached many times before the end of the filtration step delay (BW initiated with
timers) and resulted in an irreversible resistance stabilization. Nevertheless, the maximum
CIP TMP (0.7 bar) was not reached. Additionally, reducing the permeate flow allows for
decreasing the membrane filtration constraints; consequently, the treatment of process
water was maintained for extra hours, giving time to quit controlled areas and switch to
OL for instance.
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Figure 16. Variation of permeability at 20 ◦C and TMP (a), fouling resistance (b) throughout the
filtration time with BW initiate every 20 min on the entire membrane filtration unit −1/80 min
on one filtration module, a permeate flux of 63 L h−1 m−2. T = 20 ◦C, feedwater from CC-LOUIS
BLERIOT process tank 2 after pre-treatment steps; 1 line of 2 module k99 in parallel SiC membrane
32.67 m2/module. FMx is the line considered, Mx is the membrane, Lp is the permeability value, TMP
the transmembrane pressure and Rw is the total recovery rate applied on the unit; Rirr is irreversible
resistance; Rrev is reversible resistance and Rmembrane is the membrane resistance.

A similar permeate flow is applied to both units (semi-industrial and onboarded unit)
for high-fouling water filtration. In both cases a permeability stabilization over time is
observed and maintained thanks to the BW actions. Usage of shorter filtration cycles
helps the membrane to maintain a lower TMP value in cases where more polluted water
needed to be treated. Moreover, in comparison with the semi-industrial scale experiment,
onboarded feedwater is pretreated, which decreases the fouling particle concentration in
feedwater. However, due to the longer filtration cycle required by the unit configuration
(two BW in 40 min and then no BW for 60 min) the recovery rate was higher. A global
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recovery rate of 90% was obtained and led to a reduction of the residue volume produced.
The suspended solids in the filtration were significant, approximately 16 g L−1. Permeate
quality was always within discharge criteria range with an alkaline pH (8.7), a turbidity of
10.5 NTU (<25 NTU), and a PAH concentration lower than 50 µg L−1. Membrane-retention
properties were not influenced by the feedwater quality, and the permeate produced was
still compliant with discharge regulations. Heavy metal removal efficiency was also studied.
The analysis highlights, first their higher concentration in real water than in the process
water received for scale tests (for example, between 24 and 130 mg L−1 for vanadium) and
the membrane was able to retain 94, 96, and 99%, respectively, of nickel, vanadium, and
aluminum metal ions having the highest concentration in treated suspension (>5 mg L−1).
Experiments done on CC-LB validate the scale filtration results and highlight a good
membrane operational flexibility for the crew. Results show that the membrane was able
to maintain a higher permeate flow if, for instance, it was needed to drain the process
tank with the limitation of residue volume production. Additionally, the limitation of
eight closed loop days can be increased as a function of the process water quality and
filtration condition.

4. Conclusions

In this paper, SiC membrane filtration was studied as an alternative for treating scrub-
ber wastewater. This is the first time that filtration and separation performance are reported
in the literature for maritime scrubber’s water treatment applications. A large range of
water quality was filtered, and the influence of operating conditions such as permeate
flux, BF frequency, and duration types were studied for each effluent categorized as high-
and low-fouling water. The results obtained highlight the following points: (I) increase
in permeate flow and the filtration step led to an increase in the irreversible resistance;
(II) reduction of BW duration until a certain value did not impact membrane performance
in the long term because the fouling layer cake was correctly removed; and (III) usage of
BP instead of BW helps to maintain the filtration performance by reducing the concen-
trate volume eliminated. Permeate flow values and BF conditions were prescribed for
the treatment of scrubber water from a semi-industrial study and validated under real
operating applications on an onboarded vessel filtration unit. Thus, for the first time,
flexible operating conditions applicable to the entire fleet are defined. For high-fouling
fluid properties, a maximum permeate flow of 65 L h−1 m−2 is applied with frequent and
rapid BF action as BP. The BP action helping to reduce the membrane fouling through the
time for longer filtration duration. Under these conditions, a recovery rate of 96% can
be obtained on an industrial scale, which largely reduces the residue volume production
in comparison to current conditions where the recovery rate is around 90%. According
to semi-industrial scale experiments, operating conditions are also defined for low- and
medium-fouling fluid properties. For lower-fouling fluid, higher permeate flow can be
applied up to 150 L h−1 m−2 with BW initiated every 40 or 60 min helping to quickly drain
process tanks. Cases of medium-fouling water 150 L h−1 m−2 appear as the best permeate
flux. Coupling this permeates flux with a short BP action every 20 min can greatly increase
the water recovery, up to 99%, which reduces the concentrate volume. In terms of perme-
ate water quality, the analysis performed allows its rejection to the natural environment.
Discharge criteria were validated, the membrane particle retention was close to 99%, and
heavy metal removal higher than 80% from the beginning of the filtration step for each
operating condition.

Usage of the membrane process coupled with the exhaust gas cleaning system is
useful to uphold environmental regulations (air and water). Studying and understanding
the membrane filtration tendency is important and initially described in this paper. The
tests carried out with these high values of permeate flow confirm the results obtained with
high water-recovery rates, and without major consequences for the membrane installation,
giving greater freedom of action. Onboard, the operational constraints are strong with
four tanks to manage simultaneously. Individually, the two process tanks must not be too
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empty to ensure the very high recirculation flow rates of the scrubbers (400 and 1400 m3

h−1 respectively for ME and AE scrubber), nor too full, which would force them to work in
closed loop and generate residues and permeate. The volume in the residue tank must not
increase too quickly, as this would lead to frequent emptying at the port or the use of more
expensive fuel. The permeate tank must not fill up too quickly at the pier, as emptying is
prohibited. This freedom of action also eases the stress, as only 40 people manage a vessel
such as the CC LOUIS BLERIOT.
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