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Abstract: The dialyzer is the core element in the hemodialysis treatment of patients with end-stage
kidney disease (ESKD). During hemodialysis treatment, the dialyzer replaces the function of the
kidney by removing small and middle-molecular weight uremic toxins, while retaining essential
proteins. Meanwhile, a dialyzer should have the best possible hemocompatibility profile as the
perpetuated contact of blood with artificial surfaces triggers complement activation, coagulation and
immune cell activation, and even low-level activation repeated chronically over years may lead to
undesired effects. During hemodialysis, the adsorption of plasma proteins to the dialyzer membrane
leads to a formation of a secondary membrane, which can compromise both the uremic toxin removal
and hemocompatibility of the dialyzer. Hydrophilic modifications of novel dialysis membranes
have been shown to reduce protein adsorption, leading to better hemocompatibility profile and
performance stability during dialysis treatments. This review article focuses on the importance of
performance and hemocompatibility of dialysis membranes for the treatment of dialysis patients
and summarizes recent studies on the impact of protein adsorption and hydrophilic modifications of
membranes on these two core elements of a dialyzer.

Keywords: dialysis; performance; hemocompatibility; membrane; protein fouling; end-stage kidney
disease; polyvinylpyrrolidone; hydrophilicity

1. Introduction

The global prevalence of end-stage kidney disease (ESKD) is rising steadily, mainly
caused by the increasing prevalence of ESKD risk factors such as hypertension and diabetes
mellitus, higher life expectancy of the general population and better survival of ESKD
patients due to improved treatment options [1,2]. While kidney transplantation is the
preferred treatment option for eligible ESKD patients, most patients depend on a renal
replacement therapy [2]. This therapy can be performed at home with peritoneal dialysis
or by extracorporeal treatments, such as low- and high-flux hemodialysis (HD), including
low dialysate flow daily HD [3], or hemodiafiltration (HDF), which are the predominant
treatment options for patients with ESKD [2,4,5]. In these extracorporeal treatments,
a dialyzer replaces the function of the malfunctioning kidney, that is, elimination of a
wide range of uremic toxins, e.g., ß2-microglobulin, urea, uric acid, or creatinine, and
of excess fluid, while preventing loss of essential proteins, such as albumin [6,7]. This
function of a dialyzer is called the performance and is generally described by clearance and
sieving coefficient values in the instructions for use of the manufacturers. Performance
factors are primarily influenced by the dialyzer membrane, including its composition,
membrane morphology and structure (e.g., mean pore size, pore size distribution, surface
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area, membrane thickness) and adsorptive properties [8–13]. Besides strong performance,
hemocompatibility is another core element of a dialyzer. Contact of human blood to artificial
surfaces of the dialyzer may activate the immune system, leading to complement activation,
coagulation and inflammation, with negative clinical consequences for the patients [14–17].
Additionally, here, the membrane has the strongest effect on the hemocompatibility profile
of the dialyzer, as it has the largest contact surface with the patients’ blood during dialysis.

During hemodialysis treatment, the adsorption of plasma proteins to the blood-side
surface of the dialyzer membrane can strongly impact both performance as well as the
hemocompatibility profile of the dialyzer. In the present review we discuss the two core
properties of a dialyzer and show how protein adsorption impacts performance and hemo-
compatibility. We summarize recent findings how hydrophilic membrane modifications
reduce protein adsorption and improve the performance and hemocompatibility profile of
a dialyzer. Given that hydrophilic modifications are primarily applied for synthetic dialysis
membranes, such as polysulfone (PS) or polyethersulfone (PES) membranes, this review
article mainly focuses on this type of membranes and modifications. Due to their innate
hydrophilicity, such modifications are not required for membranes containing or made
from natural materials such as cellulose and its derivatives. Therefore, such membranes
are not in the scope of this present review. For further details about structures and features
of other types of synthetic (e.g., polyacrylonitrile (PAN), polymethylmethacrylate (PMMA),
polyester polymer alloy (PEPA), ethylene-vinyl alcohol co-polymer (EVAL)), cellulose-
based or composite membranes, the interested reader is referred to excellent reviews in this
field [9–13,18–20].

2. The Importance of Dialyzer Performance and Hemocompatibility for the Treatment
of ESKD Patients

Patients with ESKD undergoing hemodialysis treatment are a complicated patient
population with many comorbidities, as investigated in various international cohort stud-
ies [1,5,21–23]. Cardiovascular complications are a major problem among this patient
population, and a leading cause of death [21,24–27]. The mortality rate in this population
is approx. 6 times higher than in the general population [28].

A pivotal reason for the high rate of complications and reduced life expectancy of
patients with ESKD is the accumulation of uremic toxins in the blood. Performance
characteristics, i.e., removal of those uremic toxins which accumulated due to the loss of
kidney function, is a critical feature of a dialyzer that has impacts on the ESKD-related
complications [29]. Although the dialyzer consists of many different parts, such as housing,
flange caps or blood/dialysate ports, the membrane is the main determinant for the
performance characteristics of the dialyzer. Special focus has been placed on the removal
of middle molecules, represented by markers such as ß2-microglobulin (~12 kDa), given
that middle molecule accumulation has been associated with increased inflammation,
cardiovascular risk and mortality among dialysis patients [29–33]. During the evolution of
membranes, pore size increased to allow elimination of such larger uremic toxins. However,
such increase in the pore size of the membranes also increases the risk to lose essential
larger size proteins such as for example albumin (~68 kDa). Repeated protein loss may lead
to the development of malnutrition, which is associated with increased mortality among
ESKD patients [34–36]. Therefore, albumin has become an established key parameter of
nutritional status of hemodialysis patients and has also been used in studies investigating
protein leakage into the dialysate [37]. Thus, the performance of a dialyzer is not sufficiently
described by its clearance or removal of middle size toxins and should consider its sieving
properties overall, including its permeability cut-off for larger size proteins.

A further important aspect in achieving favorable patient outcomes is the dialyzer’s
hemocompatibility. Contact of blood with non-body surfaces triggers a wide range of
reactions, including immune cell activation, coagulation and activation of the complement
system. The complement system is part of human innate immunity, modulating the im-
mune response and promoting the clearance of invading pathogens as well as the removal
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of damaged or dying cells, immune complexes, and cell debris [38–40]. To this end, the
complement system releases complement factors and induces cytokines as well as coagula-
tion factors [15,41]. In parallel with complement activation, PMN elastase as a marker of
inflammation is released from leucocytes in patients on hemodialysis [42–44]. Of note, other
markers of inflammation, oxidative stress, or of tissue damage such as hCRP, interleukin-6,
tumor necrosis factor-α, myeloperoxidase, or troponin-T showed a positive correlation with
the accumulation of uremic toxins, such as ß2-microglobulin, pointing towards the impor-
tance of strong dialyzer performance in the context of hemocompatibility [33]. Moreover,
these inflammatory markers were associated with makers of cardiovascular disease such as
carotid intima-media thickness and the ankle-arm blood pressure index [33,45–49]. Such
associations were also seen with regard to complement activation; in a prospective ran-
domized study with 260 hemodialysis patients [50], higher baseline complement factor C3
levels were associated with subsequent cardiovascular events over the following 12 months
(cox-regression analysis: hazard ratio 1.20 [1.01–1.42] per 0.1 mg/mL). Furthermore, an
observational clinical study with 55 patients on hemodialysis found that those patients
who developed cardiovascular events during a maximum follow-up of 45 months (n = 17)
had significantly increased C3d/C3 levels 30 min after hemodialysis start (p < 0.05), as
compared to those patients who did not develop cardiovascular events during follow-up
(n = 38) [51]. Additionally, those patients who experienced a cardiovascular event during
follow-up had a higher pro-inflammatory and pro-thrombotic response during dialysis
treatment than those patients who did not experience a cardiovascular event (cardiovas-
cular event group: IL-6/IL-10-ratio significantly higher at 60 min [p < 0.05], TNF-α levels
significantly higher at 180 min [p < 0.05], von Willebrand factor significantly higher at
180 and 240 min after dialysis start [p < 0.05]). An ex vivo dialysis model found that this
C3d/C3 complement activation contributed to the pro-inflammatory and pro-thrombotic
response (induction of TNF-α levels, IL-6/IL-10-ratio and von Willebrand factor levels),
pointing towards causal role of complement activation in inflammation and cardiovascular
disease [51]. Further indication for a causal role of the complement system in inducing
cardiovascular events is coming from animal studies, where the inhibition of complement
C5a activation (via an complement C5a receptor antagonist) significantly reduced arterial
plaque formation (lesion size and lipid content) in atherosclerosis prone mice by ~40%
(p < 0.05) [52]. In addition to the activation of the complement system, contact of blood
with non-body surfaces activates platelets and the coagulation system. Typically, platelet
counts show a drop during the dialysis session while thrombin-antithrombin-complex
(TAT) concentrations increase despite systemic anticoagulation with heparin, as seen in
a recent clinical study [42]. As the activation of the coagulation system during dialysis
may contribute to the high cardiovascular event rate of patients with ESKD, dialyzers
hemocompatibility need also to address the coagulation activation path. Comparable to
dialyzer performance, dialyzers’ hemocompatibility profile is mainly determined by the
membrane, given that it has the largest surface which comes in contact with patients’ blood.
Different types of membranes exist, which have a different hemocompatibility profile. Most
current dialyzers use synthetic membranes with polysulfone (PS) or polyethersulfone (PES)
polymers. These polymers are associated with less transient complement activation and
drops in leukocyte counts than cellulose-based membranes, so that their hemocompat-
ibility is superior to the latter [19,53–57]. Besides the membrane material, other factors
such as geometry, the amount and arrangement of hydrophilic and hydrophobic areas on
the membrane surface or the membrane surface charge (zeta potential) contribute to the
hemocompatibility profile of the membrane [54].

3. Impact of Membrane Fouling on Dialyzers’ Performance and Hemocompatibility

During a hemodialysis treatment, the contact of blood components with the membrane
of the dialyzer leads to the formation of a secondary membrane, which is composed of
plasma proteins adsorbed to the dialyzers’ membrane. This secondary membrane is
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composed of a milieu of different plasma proteins, such as albumin or fibrinogen, and has
strong implications for the performance and hemocompatibility profile of a dialyzer.

To describe the performance characteristics of a dialyzer, manufacturers present clear-
ance values for different solutes such as for urea, creatinine, or phosphate in the respective
instructions for use. However, it is important to emphasize that those clearance values
are measured in an aqueous solution, which does not contain any plasma proteins. In
contrast, during hemodialysis treatment, plasma proteins in the patients’ blood lead to a
buildup of a secondary membrane within minutes, which adds an additional barrier to
uremic solute exchange [58–64]. This accumulation of adsorbed proteins at the membrane
surface significantly reduces dialyzer performance as compared to the pristine membrane
or “native performance” (Figure 1a).
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Figure 1. Schematic illustration of the impact of protein adsorption on molecular weight retention
curves and effective pore size distribution. Protein adsorption to the membrane during dialysis
treatment leads to a reduction in permeability of the membrane (a). The secondary membrane leads
to a shift in molecular weight retention curves (b) and the effective pore size distribution (c).

That toxin removal capacity of a dialyzer is not a constant value but diminishes
during dialysis treatment due to the adsorption of plasma proteins and the buildup of a
secondary membrane is known for many years. More than three decades ago, Röckel et al.,
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showed that during the first 10 min of hemofiltration, the investigated polysulfone dialyzer
was permeable to substances up to 66 kDa, which reduced to less than 30 kDa within
20 min [59]. Here, the impact of the secondary membrane is more pronounced on the
permeability for larger molecules, such as proteins, than on smaller solutes such as urea
or Vitamin B12 [59–62]. In a recent experimental study with three different synthetic dia-
lyzers, we confirmed these previous findings, by measuring sieving coefficient changes
over 240 min of the three proteins albumin, myoglobin and β2-microglobulin for three
different synthetic dialyzers [58]. For all dialyzers, strongest decrease in sieving coefficients
was found in the first 20–30 min of plasma recirculation, with a stronger decrease for
larger molecules than for smaller proteins (e.g., 94% mean relative decrease in albumin
[~68 kDa] sieving coefficient vs. 57% mean relative decrease in myoglobin [~17 kDa] sieving
coefficient over 240 min and 8% mean relative decrease in β2-microglobulin [~12 kDa]
sieving coefficient over 120 min; n = 3 for each of the three dialyzers). When analyz-
ing molecular weight retention curves, such curves show a typical shift towards lower
molecular weight during the treatment [58,60,63]. Moreover, the effective pore size of the
membrane also shows a typical reduction after contact of plasma proteins to the membrane.
An illustration of this phenomenon is schematically presented in Figure 1b (molecular
weight retention curves) and Figure 1c (effective pore size). Of note, the characteristics
(e.g., thickness, density, composition) of the protein layer formed on the membrane sur-
face impacts the extent of performance reduction and shift in molecular weight retention
curves [58,60]. Membranes with a thicker protein layer have a stronger reduction in perfor-
mance, which is associated with stronger reduction in the effective pore size of the dialyzer
membranes [58,60]. Data from a recent randomized controlled trial with 52 hemodialysis
patients treated with three different synthetic dialyzers in a cross-over design, support
these findings, showing superiority in β2-microglobulin removal rate for that dialyzer that
had the lowest secondary membrane formation (75.5% vs. 74.0% and 72.7%; p = 0.0216
and p < 0.0001, respectively) [37]. Therefore, these blood-membrane interactions influence
the efficacy of the dialysis treatment and have to be taken into considerations beyond the
clearance values presented in the instructions for use of the dialyzers.

Besides the impact on performance, protein adsorption to the membrane also strongly
impacts the hemocompatibility profile of a dialyzer. The adsorption of proteins to the
artificial surface triggers conformational changes or denaturation of protein structures
which lead to their activation [16]. Contact activated proteins can then trigger different
pathways, such as activation of immune cells as well as of the complement and coag-
ulation system [16,65,66]. In addition to the amount of bound proteins and the degree
of contact activation, the type of bound proteins to the membrane may impact the im-
mune response. For example, it is well known that the adsorption of fibrinogen to the
membrane triggers binding and activation of platelets [16,67,68]. Therefore, to character-
ize the hemocompatibility profile of a dialyzer, quantitative and qualitative evaluation
of the adsorbed proteins to the membrane surface may help to understand differences
in hemocompatibility of different dialyzers. Recently, we characterized secondary mem-
brane formation and hemocompatibility profile of different synthetic and cellulose-based
dialyzers which are commonly used for the treatment of dialysis patients [54,58,69]. In
an in vitro approach, secondary membrane formation was characterized by measuring
changes in albumin sieving coefficients over 240 min, as a surrogate of protein adsorption.
Moreover, platelet loss and the activation of the complement system was measured by
determining levels of the complement factors C3a, C5a and sC5b-9 in an in vitro system
with human whole blood. In line with previous literature, those dialyzers which showed
a stronger secondary membrane formation induced higher platelet loss (dialyzer with
lowest secondary membrane formation: −225% less platelet loss than a reference dialyzer;
dialyzer with strongest secondary membrane formation: +95% more platelet loss than a
reference dialyzer; p < 0.05) and complement activation (dialyzer with lowest secondary
membrane formation: −39% [C3a], −57% [C5a] and −59% [sC5b-9] lower complement
activation than a reference dialyzer; dialyzer with strongest secondary membrane forma-
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tion: +56% [C3a], +268% [C5a] and +207% [sC5b-9] higher complement activation than a
reference dialyzer; p < 0.001, p < 0.01 and p < 0.01, respectively) than dialyzers with lower
secondary membrane formation [54,58,69]. Data from a recent randomized controlled trial
with 70 hemodialysis patients support these experimental findings in terms of complement
activation (significantly lower sC5b-9 complement activation 60 min after dialysis start with
synthetic dialyzer with lower secondary membrane formation vs. synthetic dialyzer with
higher secondary membrane formation; p = 0.021), indicating that protein adsorption to the
membrane during hemodialysis treatment is a key determinant for the hemocompatibility
profile of the dialyzer [42].

4. Reduction in Membrane Fouling by Hydrophilic Modifications

Over the course of the last several decades, dialyzer membrane research has focused
on improving both performance and hemocompatibility. As protein adsorption to the
membrane impacts both–performance and hemocompatibility–membrane modifications
with the aim to reduce secondary membrane formation during dialysis treatment were in
the focus of latest dialyzer development. For synthetic membranes, such as polysulfone-
or polyethersulfone-based membranes, polyvinylpyrrolidone (PVP) is commonly used
as a hydrophilic agent. PVP has good physiological inertness and reduces protein ad-
sorption via repulsive hydration force of the formed water layer [67,70–74]. Wang et al.
fabricated polyethersulfone-based membranes with increased PVP content and found that
those membranes with higher PVP content showed stronger water adsorption (membrane
with 0% PVP content: ~90 µg/cm2 water adsorption; membrane with 6% PVP content:
~160 µg/cm2 water adsorption) and were associated with reduced albumin adsorption
(membrane with 0% PVP content: ~120 µg/cm2 albumin adsorption; membrane with 6%
PVP content: ~80 µg/cm2 albumin adsorption) as well as increased blood coagulation time
(membrane with 0% PVP content: ~40 s activated partial thrombin time; membrane with
6% PVP content: ~95 s activated partial thrombin time) [74]. In line, Zhu and colleagues
prepared and characterized polysulfone membranes with different amounts of PVP and
found that membranes with higher PVP content showed lower protein adsorption, reduced
platelet adhesion and deformation as well as improved blood clotting characteristics [70].
Differences in PVP content in polysulfone-based membranes also affect the roughness of
the membrane in dry or wet condition and are strong determinants for the swelling of the
membrane after contact with water [67,73]. These findings are schematically summarized
in Figure 2.

Hydrophilicity of the dialyzer membrane is generally characterized by contact angle
measurements. Figure 3 schematically shows the principle and the measurement of contact
angle in dialysis membranes. Increasing hydrophilicity of the membrane is associated with
a lower contact angle as shown in Figure 3a. To determine contact angle, one end of a
hollow fiber is placed for a defined time in a water reservoir containing a dye, for example
methylene blue (Figure 3b). Based on the capillary height, measured with a scale, the con-
tact angle can be determined. Here, two membranes with the same geometry but different
hydrophilicity will have different capillary heights and different contact angles, as exem-
plarily shown for two membranes (Figure 3c), a polysulfone-PVP membrane (Helixone®plus
membrane of the FX CorDiax 600 dialyzer (Fresenius Medical Care, Bad Homburg, Ger-
many)) and a polysulfone-PVP membrane with the same geometry but with increased
PVP content on the blood-side surface of the membrane (Helixone®hydro membrane of
the FX CorAL 600 dialyzer (Fresenius Medical Care)), which we recently characterized
in experimental and clinical studies [37,42,54,58,69]. These studies found that secondary
membrane formation of the membrane with increased PVP content on the blood-side
surface (as characterized with X-ray photoelectron spectroscopy) was smaller as compared
to dialyzers with lower PVP content (membrane with highest PVP content: −0.015 albumin
sieving coefficient slope as marker for secondary membrane formation; membrane with
lowest PVP content: −0.104 albumin sieving coefficient slope; p < 0.001) [54,58,69]. This
lower protein adsorption was moreover associated with lower complement activation,
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lower platelet loss and also lower loss in performance in experimental studies [54,58,69].
These experimental findings were supported by two randomized controlled trials with in
total 122 dialysis patients, which found that the reduced secondary membrane formation of
the more hydrophilic membrane was associated with efficient removal of small and middle
molecules and with a favorable hemocompatibility profile [37,42].
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Figure 2. Schematic illustration of complement activation, coagulation and immune cell activation
by a membrane with strong protein adsorption as compared to a hydrophilic membrane with
lower protein adsorption. Increase in hydrophilicity can be achieved by an increased content of the
hydrophilic agent polyvinylpyrrolidone (PVP) on the blood-side surface of the membrane, which
reduces protein adsorption via repulsive hydration force of the formed water layer. Protein binding
to the membrane leads to conformational changes or denaturation of protein structures which can
subsequently trigger complement activation, coagulation, and immune cell activation.
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blue) and the capillary height is measured with a scale after a defined time (b). Based on the capillary
height and other parameters such as membrane geometry, the contact angle can be determined. When
comparing two membranes with the same geometry but different hydrophilicity, the more hydrophilic
membrane will have a higher capillary height and lower contact angle, as shown exemplarily for two
membranes with the same geometry but different hydrophilicity (n = 30 membranes, each; p < 0.001
(t-test)) (c). * Shown are a polysulfone-PVP membrane (Helixone®plus of the FX CorDiax 600 dialyzer,
Fresenius Medical Care) and a polysulfone-PVP membrane with increased PVP content on the blood
side surface (Helixone®hydro of the FX CorAL 600 dialyzer, Fresenius Medical Care).

5. Maintaining Hydrophilic Modification of Dialysis Membranes

While the increase in PVP content on the blood-side surface of the membrane leads
to increased hydrophilicity and subsequently to lower protein fouling and better hemo-
compatibility as well as performance stability, the PVP must remain on the blood-side
membrane surface in order to have an effect. Unfortunately, it has been well established
that PVP can be eluted from the membrane during dialysis treatment [75,76]. This section
discusses both the potentially undesirable effects of eluted PVP, as well as the predominant
factors that lead to the phenomenon.

5.1. Undesirable Effects of Elutable PVP

The reduction in PVP content caused by PVP elution comes not only with negative
implications for the hemocompatibility profile and performance of the membrane, but PVP
may itself have direct negative impacts on the patient.

It has long been understood that PVP can be taken up by, e.g., macrophages and lead to
storage disease by accumulation of PVP in different tissues or organs such as liver, kidneys
or lymph nodes. This disorder has been seen in patients who received PVP injections
as plasma substitute in former times [77,78], but up to now no data is available which
shows that the elution of PVP from dialyzers may lead to a significant accumulation in the
patients’ body.

More recently some reports speculated that eluted PVP could be a cause for adverse
reactions, such as hypersensitivity reactions or thrombocytopenia, which rarely occur
during treatment with synthetic membranes [12,79–83]. Konishi et al. [84] investigated this
potential impact of PVP elution on patient reactions by recruiting patients who previously
experienced adverse reactions during treatment with synthetic membranes (defined as
hypotension, malaise or symptoms of anaphylactic shock). By performing a skin prick
test with PVP, the authors found that none of the 7 patients reacted positive on this test.
Therefore, the authors concluded that not PVP, but other factors should be causative for
these infrequently occurring adverse patient reactions during treatment with synthetic
membranes. Despite the suspicion surrounding PVP, there is currently no clinical study
which showed a causal relationship between PVP elution and adverse patient reactions.
Nevertheless, there is good reason to avoid elution of PVP from the membrane even if it is
only to avoid the negative implications for the performance and hemocompatibility profile
of the dialyzer.

5.2. Factors Influencing PVP Elution

The polymer backbone of PVP can undergo free-radical oxidation. Blood-side oriented
chains of PVP that are especially important for binding water and generating the protein-
repulsive layer of PVP-bound water (hydrolayer) are susceptible to polymer chain breaks
that leave these chains no longer anchored to the membrane. These unanchored PVP
fragments can be eluted from the membrane during dialysis treatment, leaving gaps in the
protective hydrolayer of the membrane. Generation of elutable PVP fragments can occur
either relatively quickly during high-energy sterilization processes, or more slowly over
long periods of time. Additionally, shear stress within the capillary membrane has been
shown to influence PVP elution. These factors are considered in more detail below.
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The type of dialyzer sterilization is a strong determinant for PVP elution. For example,
gamma sterilization has been discussed to stabilize PVP in the membrane, by crosslinking
PVP with the membrane and was shown to induce lower PVP elution than autoclave
sterilization [69,76,85]. We recently also investigated PVP elution across six synthetic
dialyzers sterilized with gamma, autoclave steam or INLINE steam [69]. In agreement with
previous reports, we observed that autoclave steam sterilization was associated with approx.
3.5-fold higher PVP elution than gamma sterilization. Moreover, lowest PVP elution was
found for the INLINE steam sterilized dialyzers (p < 0.001 vs. gamma and autoclave
steam sterilized dialyzers), where all measurements were below the quantification limit
of the method. The low PVP elution from membranes that were sterilized with INLINE
steam may be explained by the fact that during the sterilization process the membranes are
continuously rinsed with steam and sterile water, that allow efficient removal of any PVP
generated during the manufacturing process [86].

Storage time over the shelf life of dialyzers is another determinant for PVP elution
from the membranes. Miyata et al. [85] investigated the impact of storage time on PVP
elution from autoclave steam and gamma sterilized dialyzers. The authors found a strong
correlation between the amount of PVP eluted by washing and the storage period for both
dialyzers (r = 0.958, p < 0.001 and r = 0.952, p < 0.001). Here, oxidation of PVP over time is a
factor which leads to the increased PVP elution during storage [85,87]. Therefore, novel
membranes have been developed which shall prevent this oxidation and stabilize PVP in
the membrane [37,42,54,58,69]. This stabilization was achieved by adding small amounts of
the anti-oxidant α-tocopherol to the membrane. In contrast to bioactive membranes, which
also use α-tocopherol to achieve therapeutic effects [88,89], the concentration in these novel
membranes is much lower, as it just has the aim to stabilize PVP in the membrane. In
combination with INLINE steam sterilization, such membranes show no detectable PVP
elution [69]. This is also the case when investigating the complete shelf-life of three years of
the dialyzers. Figure 4 summarizes these findings on PVP elution and the effects of storage
time and different sterilization methods.

Finally, elution of PVP can also be exacerbated through shear stress and filtration,
which was investigated by Matsuda et al. [75] in an experimental approach by using a
dextran solution as blood substitute. In shear-stress loading experiments up to 144 h, the
authors found a correlation between lower PVP retention in the membrane with higher
shear-stress loading time and higher magnitude of shear stress. Such results were confirmed
by Namekawa et al. [76] showing that increasing shear stress directly increases the elution
of PVP. Moreover, the authors investigated the hardness and adsorption force of human
serum albumin on membrane surfaces with atomic force microscopy. Here, they found that
with increasing shear stress the hardness and the adsorption force of albumin increased,
indicating that shear stress induced PVP elution may lead to increased protein adsorption
on the membrane during dialysis treatment, which may then have negative implications
on the hemocompatibility profile and performance characteristics of the membrane.

Low PVP elution should be an aim of dialyzer membranes both to maintain the
benefits of increased hydrophilicity on the performance and hemocompatibility profile of
dialyzer membranes during treatment, and to avoid the potentially deleterious effects of
eluted PVP.
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6. Discussion, Conclusions, and Future Directions

In summary, to improve well-being of the highly comorbid dialysis patients, good
performance and hemocompatibility profile are two most important functions of a dialyzer.
The membrane is the core component of the dialyzer and is mainly responsible for the
performance characteristics and hemocompatibility profile. Through advances in material
and production technologies, membranes are undergoing continuous development and
refinements to become better replacements for the healthy human kidney. The pivotal
characteristics of membranes are defined by their material, their membrane morphology
and structure, including their pores and their blood-facing surface. Moreover, protein
adsorption to the membrane strongly impacts both, the performance stability and the hemo-
compatibility profile of the dialyzer during dialysis treatment. Most synthetic membranes
materials (e.g., PS, PES) are hydrophobic and are converted to hydrophilic by adding
polyvinylpyrrolidone (PVP) to the membrane spinning mass. Increase in hydrophilicity
reduces protein fouling and improves the hemocompatibility profile of the dialyzer, such as
reduction in complement activation and decrease in platelet loss. To reduce the elution of
PVP, α-tocopherol is added as an anti-oxidant and stabilizer to the spinning mass of novel
membrane fibers.

Future studies need to investigate whether these improvements in membrane design
will also result in long-term reduction in the chronic inflammation and cardiovascular bur-
den of dialysis patients. Currently, a randomized controlled trial (eMPORA III, Comparison
of Clinical Performance and Hemocompatibility of Dialyzers Applied During Post-dilution
Online Hemodiafiltration, NCT04714281) is ongoing, which investigates performance and
hemocompatibility of such a novel dialyzer over a longer period as compared to currently
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available clinical studies [37,42]. Moreover, given the potential positive impact of hy-
drophilic modification on the coagulation system, future clinical studies need to investigate
whether such novel membranes are associated with improvements in the coagulation of
dialysis patients, and may results in less need for anticoagulation. Finally, more experi-
mental data are warranted to characterize structural features of modified membranes in
more detail as well as the differences in amount, activation and type of proteins, adhering
to different types of membranes.

Of note, while this review article is focusing on hydrophilic modifications of synthetic
dialysis membranes and their positive impact on hemocompatibility and performance, also
other membrane innovations may result in improvements of these two core properties of a
dialysis membrane and improve the well-being of dialysis patients. Recent research with
silicone nanopore membranes aims to develop an implantable hemofilter with selective
solute permeability and good hemocompatibility. First experimental and animal studies
showed promising results of such implantable hemofilter, also in terms of solute clearance
and hemocompatibility [90–92]. Furthermore, while hydrophilic membranes may have
the potential to reduce the need for anticoagulation during dialysis treatment, also other
membrane modifications may lead to less need of anticoagulation. Early approaches used
heparin-coated membrane surfaces [93–96], while recently a new hemodialyzer membrane
modified with surface modifying macromolecules (SMMs) has been developed [97,98]. This
membrane contains the fluorinated polyurethane SMM EndexoTM, which was designed to
reduce protein and platelet adsorption [99]. Recent experimental data show that this novel
membrane shows lower platelet adsorption and activation (15–60 min, p < 0.05) and higher
clotting time (p < 0.05) as compared to a standard polysulfone dialyzer [97]. Moreover, data
from a prospective clinical study comparing a standard polysulfone dialyzer (12 hemodial-
ysis sessions) with the EndexoTM dialyzer (38 hemodialysis sessions) demonstrated that
while having a safe treatment profile, this dialyzer showed good performance (corrected
mean β2-microglobulin removal rate was 47% higher during the EndexoTM period) [98].
Finally, further research also focusses on the removal of larger toxins, such as protein-bound
uremic toxins (PBUTs), which can be challenging with current dialysis membranes and
modalities. The increase in pore size to increase the removal of such PBUTs face the problem
of losing essential proteins, such as albumin [13,100]. Novel approaches try to remove such
toxins by using PBUTs adsorbing multilayer membranes or other absorptive methods to
remove these toxins from the patients’ blood [101–103].

In summary, hydrophilic modification of synthetic dialysis membranes is an effective
way to improve performance and hemocompatibility, which are the two major features of
a dialyzer membrane. Future research is needed to investigate how these improvements
in performance and hemocompatibility will translate into long-term clinical benefits for
patients with end-stage renal disease.
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