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Abstract: Uncontrollable Zn dendrite formations and parasitic side reactions on Zn electrodes 

induce poor cycling stability and safety issues, preventing the large-scale commercialization of Zn-

ion batteries. Herein, to achieve uniform Zn deposition and suppress side reactions, an electrospun 

ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer, a P(VDF-TrFE) nanofiber 

layer, is introduced as an artificial solid–electrolyte interface on a Cu substrate acting as a current 

collector. The aligned molecular structure of β-P(VDF-TrFE) can effectively suppress localized 

current density on the Cu surface, lead to uniform Zn deposition, and suppress side reactions by 

preventing direct contact between electrodes and aqueous electrolytes. The half-cell configuration 

formed by the newly fabricated electrode can achieve an average coulombic efficiency of 99.2% over 

300 cycles without short-circuiting at a current density of 1 mA cm−2 and areal capacity of 1 mAh 

cm−2. Stable cycling stability is also maintained for 200 cycles at a current density of 0.5 A g−1 in a 

full-cell test using MnO2 as a cathode. 

Keywords: artificial interface; coulombic efficiency; electrospinning; MnO2 cathode; PVDF 

 

1. Introduction 

In recent years, due to environmental pollution, climate change, and the energy 

crisis, the demand for environmentally friendly energy storage devices with high 

performance has dramatically increased [1–4]. Since 1991, when the first commercial 

lithium-ion batteries (LIBs) were revealed, LIBs have dominated the energy storage 

market and various industrial applications due to their longevity and high energy density 

[5–7]. However, due to the high cost, toxicity, and flammability of LIBs, environmentally 

friendly and nonflammable aqueous alternatives to LIBs have attracted considerable 

interest [8–12]. Among the various types of aqueous batteries, Zn-ion batteries (ZIBs) have 

been intensely studied as next-generation energy storage devices due to their high specific 

capacity (825 mAh g−1), low redox potential (−0.76 V vs. SHE), high abundancy of Zn 

metal, and low costs [13–19]. However, Zn dendrite formation during battery operation 

can cause an internal short-circuit and lead to severe problems in terms of cell 

performance and safety. 

These dendrites are mainly formed by the accumulation of electric charges on the 

protrusion of the electrode to create a local current density, and the Zn ions are intensively 

electrodeposited at the same site, which is called the ‘tip effect’ [20]. In addition, parasitic 

side reactions such as the hydrogen evolution reaction (HER) and zinc hydroxide sulfate 
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(ZHS) byproduct formation between the electrolyte and the electrode interface also 

adversely affect cell performance and safety [18]. Recently, the most popular strategy for 

mitigating localized current density and side reactions on Zn electrodes has been to 

introduce an artificial interface between the electrode surface and the electrolyte [19,21–

24]. From the material aspect, polymers are suitable as artificial interface layers because 

they induce uniform Zn deposition through functional groups and offer better adhesion 

properties due to flexibility, which is advantageous in terms of electrode durability [25]. 

Poly(vinylidene fluoride) (PVDF) and its copolymer are known for their high 

dielectric constant (εr ≈ 10 at 1 kHz), superior mechanical strength, thermal stability, and 

chemical resistance [26,27]. In particular, highly polar β-crystalline phase PVDF-based 

polymers with all-trans conformations have outstanding ferroelectric properties among 

their various phases [28,29]. As a result of the aligned structure, β-PVDF has the high 

dipole moments between the hydrogen and fluorine moieties, which are aligned almost 

perpendicular to the carbon axis, and when an external electric field above a certain 

intensity is applied, electric displacement occurs [30–32]. Ascribed to these unique 

characteristics of β-PVDF-based polymers, many recent articles have focused on their 

potential application in energy storage devices [33–37]. There have been several attempts 

to apply the characteristics of β-PVDF in LIBs and ZIBs. Song et al. demonstrated that β-

PVDF could induce high-rate Li-ion diffusion [33]. Hwang et al. reported that β-PVDF 

effectively drives dense and uniform Li deposition [34]. Wang et al. reported that 

modifying a typical Zn anode with a PVDF-based polymer can homogenize the current 

distribution and suppress parasitic side reactions on the Zn anode surface [38]. The critical 

point of these studies is that the intense polarization of β-PVDF on an electrode is 

advantageous for metal ion diffusion during battery cycling. However, since the 

thermodynamically stable α-phase is the dominant phase in raw PVDF materials, 

applying heat or an electric field is needed to form the β-phase from the α-phase [30–32]. 

Herein, we apply a poly(vinylidene fluoride-co-trifluoroethylene) copolymer, a 

[P(VDF-TrFE)] nanofiber layer (PNF), to achieve a high β-crystalline fraction. The 

introduction of trifluoroethylene (TrFE) to copolymerize with PVDF can increase the 

fraction of the β-phase compared to pure PVDF, ascribed to the strong steric hindrance of 

fluorine atoms [39]. Additionally, electrospinning using a high applied voltage is an 

efficient technique for forming a high β-crystalline fraction and is able to provide a highly 

porous nanofiber layer, which enables facile electrolyte penetration into the layer [29,40–

43]. In our cell design, a uniform PNF layer is electrospun onto a Cu substrate acting as a 

current collector, which is known as a metal that has a high binding energy to Zn2+ ions 

[44]. As a result, during cell operation, the PNF layer acts as a passivation layer, and the 

oriented dipole moments vectors of the PNF along the localized electric field on the 

electrode surface effectively relieve the localized current density, thereby leading to 

uniform Zn deposition and achieving a superior lifecycle under various current densities. 

2. Experimental Section 

2.1. P(VDF-TrFE) and PVDF Nanofiber Fabrication 

The electrospinning solution containing 11 wt.% P(VDF-TrFE) (FC30, Piezotech, 

Indianapolis, IN, USA) with MW = 450,000 g mol−1 (70:30 mol %) was prepared by 

dissolving the polymer in a 60:40 weight ratio of N,N-dimethylformamide (DMF) and 

acetone under intense magnetic stirring for 3 h at 50 °C. In addition, 1 wt.% pyridine 

formate buffer was added to the solution to increase the solution conductivity and to 

produce uniform and beadless nanofiber mats with an average fiber diameter of ~400 nm 

on copper foil wrapped over the drum collector. The thickness of the electrospun 

nanofiber layer was ~5 μm. The as-prepared solution was fed into a 12 mL plastic syringe 

attached to a 23-gauge steel needle and pumped to a spinneret using a syringe pump with 

a flow rate of 0.5 mL/h at 18 kV with a tip-to-collector distance (TCD) of 12 cm at 100 rpm. 

The as-spun nanofiber mat was annealed for 2 h at 120 °C in a vacuum oven before use to 
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enhance the high β-crystalline phase. To prepare the PVDF nanofiber layer, a similar 

operating procedure was followed, except that 12 wt.% PVDF (Sigma Aldrich, St. Louis, 

MI, USA) with MW = 534,000 g mol−1 was employed at an applied voltage of 23 kV, with 

a flow rate of 0.8 mL/h and a TCD of 17 cm. 

2.2. Preparation of MnO2 Electrode 

The cathode slurry was prepared by mixing 70 wt.% MnO2 (US Research 

Nanomaterial, Houston, TX, USA), 20 wt.% Super C (MTI Co., Tokyo, Japan), and 10 wt.% 

PVDF (Solef 5130, Solvay, Brussels, Belgium). The slurry was cast on 30 μm Ti foil by the 

doctor blade method with a loading density of 1.9–2.1 mg cm−2. 

2.3. Cell Assembly 

The half cells were assembled using the Zn electrode and Zn@Cu or Zn@PNF-Cu 

electrodes. Two M ZnSO4 (Ducksan, Gwangju, Korea) in deionized water was employed 

as the electrolyte, and glass fiber filter paper (Watman, Saukkola, Finland) was employed 

as the separator. The symmetric cells were assembled using two identical Zn@Cu or 

Zn@PNF-Cu electrodes with the same electrolyte. Zn (5 mAh cm−2) was first deposited on 

Cu and PNF-Cu and cycled under various current densities with an areal capacity of 1 

mAh cm−2. The full cells were assembled using a MnO2 cathode and Zn@Cu or Zn@PNF-

Cu electrodes. Then, 2 M ZnSO4 + 0.1 M MnSO4 (Daejung Chemicals & Metals Co., 

Siheung, Korea) in DI water was used as the electrolyte to reduce the Mn2+ dissolution of 

MnO2. All the cells were assembled in an open atmosphere and kept at 25 °C for 24 h to 

allow electrolyte penetration after assembly. 

2.4. Electrochemical Measurements 

All electrochemical measurements were conducted using a two-electrode system 

assembled in CR2032-type coin cells (U&S Energy Co., Cheonan, Korea). A galvanostatic 

battery cycler (WBCS 3000, Wonatech, Seoul, Korea) was used to measure the cycling 

performance. The Zn plating/stripping process was conducted using a half cell. In the half-

cell test, Zn was deposited onto the Cu electrode at 1 mA cm−2 for an hour and stripped to 

1 V at the same current density, repeatedly. For long-cycle galvanostatic charge/discharge 

tests of symmetric cells and full cells, 5 mAh cm−2 Zn was deposited onto Cu and PNF-Cu 

electrodes at 1 mA cm−2 before cell assembly to provide a Zn source. Symmetric cells were 

charged/discharged under various current densities (0.1, 1, 5, and 10 mA cm−2) with an 

areal capacity of 1 mA cm−2. The electrochemical performance of the full cells was 

evaluated in a voltage range between 0.8 and 1.9 V at 0.5 A g−1. The LSV and CV 

measurements were carried out on a VSP-300 instrument (Biologic, Orlando, FL, USA). 

LSV for the Tafel plot was conducted at a scan rate of 0.5 mV s−1 with a voltage range from 

−0.1 to 0.1 V. CV for the half-cell test was conducted at a scan rate of 1 mV s−1 with a voltage 

range from −0.2 to 0.45 V. CV for the full-cell test was conducted at a scan rate of 0.1 mV 

s−1 with a voltage range from 0.6 to 1.8 V. Electrochemical impedance spectroscopy (EIS) 

measurements were conducted using a VSP-300 with an impedance frequency range of 

100 kHz to 0.01 Hz and an alternating perturbation of ±10 mV. All electrochemical 

measurements were carried out in a 25 °C thermostatic chamber. 

2.5. Material Characterization 

The cycled cells were carefully disassembled for post-cycling measurements. The 

electrodes were rinsed using deionized water to remove residual electrolytes, followed by 

drying using pressed air to prevent oxidation. After disassembly of the cells, the PNF layer 

was carefully removed to observe the morphology of the deposited Zn. The morphologies 

of the materials were observed using FE-SEM (JSM-7500F, JEOL) and EDS (Ultim Max 65, 

Oxford Instrument, Abingdon, UK). XRD (D8 Advance, Bruker, Billerica, MA, USA) with 

a Cu Kα radiation source and FTIR (Vertex 70, Bruker, Billerica, MA, USA) were 
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conducted to analyze the β-phase formation of the PNF layer. Contact angle measurement 

was executed to analyze the hydrophilicity of the electrodes using DI water at room 

temperature (25 °C). Electric field (P-E) hysteresis loops of the fabricated Pt/P(VDF-

TrFE)/Cu capacitor were measured using a ferroelectric tester (Precision LC, Radiant 

Technology, Albuquerque, NM, USA) with triangular pulses with an amplitude of 180 V 

and a frequency of 2.5 kHz. 

3. Results and Discussion 

3.1. Characterization of the PNF-Cu Electrode 

Cu foil was selected as the current collector for P(VDF-TrFE) electrospinning (PNF-

Cu). Figure S1 shows the nucleation overpotentials of the Zn‖Zn cell and the Zn‖Cu cell. 

When Zn ions are deposited on the Cu foil, they show a lower nucleation potential than 

when they are deposited on the Zn foil. This is due to the high binding energy between 

Zn2+ and Cu foil, suggesting that adopting a zincophilic Cu substrate can be an effective 

method to suppress Zn dendrite formation [34,45]. Figure 1a shows the surface of bare Cu 

foil: grooves or protrusions were observed on the surface, which led to the formation of 

dendrites by creating an environment where Zn ions can be intensively electrodeposited 

[46].  

 

Figure 1. (a) Top-view SEM images of bare Cu foil and (b) PNF, (c) cross-sectional SEM image, (d) 

XRD pattern, (e) FTIR spectra, and (f) hysteresis loop of PNF. 

An electrospun PNF layer was introduced on the Cu foil surface to suppress dendrite 

formation, and Figure 1b,c show the morphology and thickness of the PNF layer, 

respectively. PNFs with a diameter of ~400 nm and a layer thickness of ~5 μm were 

uniformly electrospun on the Cu substrate. To verify that the PNF layer has a crystalline 

β-phase for ferroelectricity, the β-phase crystallinity was determined using X-ray 

diffraction (XRD). Figure 1d shows the characteristic peak of β-P(VDF-TrFE), which is 

located at ~20°, revealing that the crystalline β-phase of P(VDF-TrFE) was effectively 

formed [47]. To induce higher crystalline β-phase, heat treatment of the PNF layer was 

conducted at 120 °C for 2 h after the electrospinning process [45]. Equation (1) was used 

to calculate the β-phase content in the PNF layer through the FTIR spectra (Figure 1e) [48]: 

  𝐹(𝛽) =  
𝐴𝛽

(
𝐾𝛽
𝐾𝛼

)𝐴𝛼+𝐴𝛽

  (1) 
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where F(β) is β-phase content, Kα and Kβ are the absorption coefficients for each phase, 

which were 7.7 × 104 and 6.1 × 104 cm mol−1, respectively, and Aα and Aβ are the the 

absorbance peaks of nonpolar α and polar β phases at 766 and 840 cm−1, respectively. 

The β-phase ratio of PNF was calculated to be 94%, which is generally higher than 

that when heat-treated in the form of a film, indicating that the β-phase was effectively 

generated through electrospinning [49,50]. On the other hand, the β-phase ratio of the 

electrospun PVDF nanofiber layer under a similar fabrication process was 83%, which 

shows the ease of β-phase formation of PNF due to the introduction of TrFE (Figure 1e). 

The polarization vs. electric field (P-E) hysteresis loop in Figure 1f shows that the dielectric 

response of the PNF layer under an external electric field can limit the localized current 

density on the tip of the protrusion, which is a key factor in reducing the dendrite growth. 

When the external electric field was removed, very low remanent polarization was 

observed (≈1.0 μC cm−2), which infers that it had a limited effect on increasing the 

overpotential during the cell operation. 

To check the compatibility with the electrolyte, contact angle and EIS measurements 

were conducted. The bare Cu substrate and PNF-Cu contact angles are 74.5° and 104.4°, 

respectively, as determined using deionized water (DI water) at room temperature (Figure 

2a,b). The high contact angle of the PNF-Cu electrode is due to the hydrophobic properties 

of the PNF layer. The ionic conductivity of the PNF layer was measured by EIS 

measurements with a Cu symmetric cell and PNF-Cu symmetric cell (Figure S2). Despite 

the hydrophobic property of PNF, it exhibited an ionic conductivity of 2.59 × 10−2 S cm−1, 

which is large enough for Zn2+ conduction, which was achieved due to the small thickness 

and porous structure of the PNF layer [19]. Since very thin PNF was introduced on the Cu 

foil, there was a very slight increase in the bulk resistance (Rb). The steeper slope in the 

low-frequency region of the PNF-Cu electrode than that of the bare-Cu electrode indicates 

the capacitive response from the high dielectric constant of the P(VDF-TrFE), and the 

polarity of the PNF layer possibly alleviates the localized current density around the 

protrusion of the electrode. 

 

Figure 2. Contact angle measurement for aqueous solutions on (a) bare Cu and (b) PNF-Cu, (c) 

linear polarization curves showing the corrosion on bare Cu and PNF-Cu, and top-view SEM images 

of (d) bare Zn after immersion in the electrolyte for 7 days and pristine Zn (inset), (e) PNF-Zn after 

immersion in the electrolyte for 7 days, and (f) FTIR spectra of the bare Zn and PNF-Zn after 

immersion in the electrolyte for 7 days. 
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3.2. Suppression of Side Reactions 

The hydrophobic property of the PNF layer can effectively block direct contact 

between the electrode and the electrolyte, which is expected to suppress the HER and the 

generation of byproducts. Linear sweep voltammetry (LSV) was conducted to evaluate 

the HER reaction behavior of the PNF-Cu electrode. The Tafel curves measured in 2 M 

ZnSO4 at a scan rate of 0.5 mV s−1 showed a more negative corrosion potential and lower 

current of PNF-Zn (Figure 2c) than those of the bare Cu electrode, suggesting that the PNF 

layer can effectively suppress the HER. 

Additionally, to investigate the corrosion resistance property of PNF in the 

electrolyte, bare Zn foil and Zn foil electrospun with PNF (PNF-Zn) were immersed in 2 

M ZnSO4 electrolyte for 7 days, followed by surface analysis. Figure 2d shows that a 

number of byproducts were generated on the bare Zn surface, which is known as ZHS, 

such as (Zn(OH)2)3(ZnSO4)(H2O)3 or (Zn(OH)2)3(ZnSO4)(H2O)5 [35]. The ZHS formed on 

the electrode can deteriorate cell performance due to its insulating property and 

continuous water consumption [51]. However, in Figure 2e, some corrosion occurred, but 

it was confirmed that the pristine surface of Zn was maintained relatively well after 

removing the PNF layer from PNF-Zn. The FTIR spectra and XRD data further confirmed 

that the byproducts formed on the Zn surface are ZHS and that PNF has superior 

corrosion resistance, prohibiting ZHS formation on the surface of PNF-Zn (Figures 3f and 

S3). In FTIR spectra, the peaks related to H2O (O-H stretching vibrations and H2O bending 

vibrations) and SO4 (S-O bending vibrations and O-S-O stretching vibrations) were 

significantly reduced with the PNF-Cu electrode. The XRD data in Figure S3 also showed 

that the intensity of the ZHS-related peaks at 16.2, 24.4, and 32.7° was substantially 

suppressed in the PNF layer compared to the bare Zn [52]. 

3.3. Zn Deposition Morphology 

After electrodeposition of 5 mAh cm−2 Zn on the PNF-Cu electrode under various 

current densities, the PNF layer was carefully removed to observe the morphology of Zn 

deposition, and it was confirmed that Zn deposition occurred below the PNF layer (Figure 

S4). 

The SEM and digital images in Figures 3 and S5 show a uniform and compact surface 

without dendrites with the PNF layer, indicating that the PNF layer effectively suppresses 

dendrite formation and induces uniform Zn deposition. In contrast, a non-uniform and 

loose deposition morphology was observed on the bare Cu electrodes. In particular, the 

difference in Zn deposition morphology between the Cu electrode and the PNF-Cu 

electrode at a high current density (20 mA cm−2) was significant. On the surface of the Cu 

electrode, sharp dendrites were observed, while a smooth surface was observed on the 

PNF-Cu electrode. Considering that Zn is easily deposited at the initial nucleation site and 

protrusion grows, it can be inferred that PNF made the electric field uniform in the PNF-

Cu electrode, leading to uniform Zn electrodeposition. To verify the effectiveness of the 

PNF layer, we constructed a Zn‖Cu half cell with two glass fiber separators that have a 

fiber morphology similar to that of PNFs but have a higher thickness than that of PNFs 

and observed a Zn deposition morphology under 1 mA cm−2 with a capacity of 5 mAh 

cm−2 (Figure S6). The nonuniform Zn morphology was observed in the cell, as shown in 

Figure S7, and the result indicates that the PNF layer is not a simple mechanical barrier, 

and the uniform Zn deposition comes from the high polarity of the PNF layer. 
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Figure 3. Top-view SEM images of Zn deposition morphology on (a–d) bare Cu electrode and (e–h) 

PNF-Cu under various current densities and fixed areal capacity of 5 mAh cm−2. 

3.4. Electrochemical Properties of the Half Cells and Symmetric Cells 

Zn‖Cu and Zn‖PNF-Cu half cells were constructed to evaluate the reversibility of 

Zn plating/stripping of the PNF-Cu electrode. The PNF-Cu electrode exhibited a high 

average coulombic efficiency (CE) of 99.2% over 300 cycles and a stable cycling 

performance without a short-circuit, while the Zn‖Cu half-cell and Zn‖Cu half-cell 

specimens using two separators showed a short-circuit from dendrite formation before 

the 300th cycle under 1 mA cm−2 with a capacity of 1 mAh cm−2 (Figures 4a,c,d and S8a). 

These results indicate that when Zn ions are electrodeposited on the Cu electrode surface, 

dendrites are formed by the localized current density around the tip. In contrast, in the 

case of the PNF-Cu electrode, the aligned molecular structure of the PNF layer can 

respond to the localized electric field, relax the localized current density, and inhibits 

dendrite formation, leading to reversible Zn plating/stripping. The PVDF-Cu electrode 

was also tested to examine the effect of the β-phase ratio on cell performance, and a short-

circuit occurred at approximately 160 cycles, demonstrating poor cycling stability 

compared to the PNF-Cu electrode (Figure S8b) due to the fact that the fraction of the β-

phase of PVDF nanofibers is approximately 10% lower than that of PNF, signifying the 

importance of the β-phase for performance improvement. 

The cyclic voltammetry (CV) test was carried out with the Cu or PNF-Cu and Zn 

electrodes as working and counter electrodes, respectively (Figure 4b). This showed that 

the shape of the CV graph was well-maintained after the introduction of the nanofiber 

layer, so the PNF layer remained stable during battery operation and did not affect the 

reversible Zn/Zn2+ reaction. A crossover point (a) can be observed in the positive potential 

sweeping. The PNF-Cu electrode showed a slightly higher nucleation overpotential (a-b) 

than the bare Cu electrode (a-b′) due to the hydrophobic nature of the PNF layer. 
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Figure 4. (a) Coulombic efficiency, (b) cyclic voltammetry, and voltage profile of (c) Zn‖Cu half cell 

and (d) Zn‖PNF-Cu half cell. 

The electrochemical stability of the PNF-Cu anode was further investigated by 

galvanostatic cycling of the symmetric cell under diverse current densities (Figure 5). 

Before the cell assembly, 5 mAh cm−2 Zn was electrodeposited on the Cu electrode and the 

PNF-Cu electrode at a rate of 1 mA cm−2. Under 1–10 mA cm−2, the PNF-Cu showed stable 

plating/stripping cycles with a steady voltage–time profile but high overpotential derived 

from the hydrophobicity of the PNF layer. It is noticeable that at a current density of 0.1 

mA cm−2, the PNF-Cu symmetric cell showed a shorter lifecycle than that of the bare Cu 

symmetric cell. The shorter lifecycle of the symmetric cell using Zn@PNF-Cu indicates 

that the low current density of 0.1 mA cm−2 is not sufficient to make oriented dipole 

moments along the external electric field. 

This result implies that a moderate current density is required to utilize the PNF 

layer, and further research to make PNF hydrophilic is required to utilize the PNF layer 

to reduce the overpotential of the cell. The voltage–time profiles in Figure 5a–d show that 

as the current density increased, the overpotential of the Zn@Cu symmetric cells during 

cycling dramatically increased due to nonuniform dendritic Zn growth. However, in the 

case of the Zn@PNF-Cu symmetric cell, it was confirmed that the increase in the 

overpotential by the current density was not significant compared to the Zn@Cu 

symmetric cell due to uniform Zn deposition, although it showed a larger overpotential 

than the Zn@Cu symmetric cell, ascribed to the hydrophobic nature of PNF (Figure 5a–d). 

As a result, at a high current density of 10 mA cm−2, the Zn@PNF-Cu symmetric cell 

maintained a stable voltage profile over 250 h, while Zn@Cu symmetric cells failed only 

after 40 h with increasing voltage hysteresis. Thus, the results imply that the PNF layer 

can suppress dendrite formation for a longer time without short-circuiting under various 

current densities. 
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Figure 5. (a) Voltage–time curves of symmetric cells of zinc-deposited bare copper and P(VDF-TrFE) 

electrospun Cu at (a) 0.1, (b) 1, (c) 5, and (d) 10 mA cm−2. 

3.5. Full-Cell Test 

To validate the practical use of the PNF-Cu electrode as an anode material for 

aqueous ZIBs, a full-cell performance test was conducted after pairing it with a MnO2 

cathode. Figure 6a presents the charge–discharge profiles of the Zn@Cu cell. The voltage 

gap rapidly increased, and the capacity decreased as the cycle progressed. However, in 

the cell using the Zn@PNF-Cu electrode (Figure 6b), the increase in the voltage gap and 

the decrease in capacity during repeated cycling were restrained. At a current density of 

0.5 A g−1, the cell using the Zn@PNF-Cu electrode showed moderate capacity fading 

during cycling, delivering 79.18 mAh g−1 after 200 cycles, whereas the cell using the 

Zn@Cu electrode showed rapid capacity fading after 120 cycles, delivering only 53.16 

mAh g−1 after 200 cycles (Figure 6c). This is because when a Zn@PNF-Cu electrode is used, 

reversible Zn plating/stripping occurs, and side reactions between the electrode interfaces 

can be curbed. 

Additionally, the CE in the case of Zn@Cu often exceeds 100%, which seems to be 

due to a side reaction between the electrode and the electrolyte interface, and this 

phenomenon is not observed in the Zn@PNF-Cu electrode system. The CV curves are 

shown in Figure 6d, illustrating the high reversibility of the full cells. Both electrodes 

displayed the two characteristic redox peaks of MnO2 ascribed to multiple phase 

conversions with similar peak currents and positions, confirming that the PNF layer on 

the anode does not affect the reversible electrochemical reactions of the MnO2 cathode 

[52–54]. The performance of the electrospun Zn@PNF-Cu anode is superior to many 

previous works, as summarized in Table S1. Some of the previous zinc anodes presented 
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excellent cycling stability under low current density, whereas some anodes worked at 

higher current density, and they could only deliver a limited number of cycles. These 

promising results verify the remarkable electrochemical performance and possible use in 

practical applications of the Zn@PNF-Cu electrode in ZIBs. 

 

Figure 6. Zn-MnO2 full-cell performance: charge and discharge curves of the cells using (a) Zn@Cu 

and (b) Zn@PNF-Cu, (c) cycling performance at 0.5 mA g−1, and (d) CV curves at a scan rate of 0.1 

mV s−1. 

4. Conclusions 

In summary, we introduced electrospun PNF onto a Cu electrode to address the 

dendrite formation issue in ZIBs. We confirmed that a high proportion of β-crystalline 

phase was formed in PNFs through electrospinning followed by heat treatment. After the 

introduction of the PNF layer, the formation of dendrites was effectively suppressed by 

alleviating the local current density with its unique aligned molecular structure. 

Moreover, ascribed to its hydrophobic properties, the PNF layer can suppress the side 

reaction between the electrode and electrolyte. As a result, the PNF-Cu‖Zn half-cell 

configuration achieved an average coulombic efficiency of 99.2% over 300 cycles. 

Additionally, the possibility of practical use was confirmed by maintaining cycling 

stability for 200 cycles at 0.5 A g−1 when a full cell was constructed with the MnO2 cathode. 

Based on the above results, we anticipate that the PNF-Cu electrode can provide a 

practical and meaningful approach to safe and highly efficient ZIBs. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/membranes12101014/s1: Figure S1: The voltage-time curves 

during Zinc nucleation at 1 mA cm-2 on Zn and Cu substrate; Figure S2: Ionic resistivity 

measurement of the bare Cu and PNF-Cu symmetric cells with the glass fiber as a separator. Nyquist 

plots were tested at open circuit voltage (OCV) over the frequency range of 100 kHz to 0.1 Hz; Figure 

S3: XRD data of the bare Zn and PNF-Zn after immersion in the electrolyte for 7 days; Figure S4: 
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Digital images of Zn deposition on the (a) bare Cu and PNF-Cu (b) before removal and (c) after 

removal of the PNF layer; Figure S5: Top-view SEM images of Zn deposition morphology on (a-d) 

bare Cu electrode and (e-h) PNF-Cu under various current densities; Figure S6: Top-view SEM 

image of glass fiber; Figure S7: Top-view SEM images of Zn deposition morphology of Zn‖Cu cell 

using two glass fibers as a separator; Figure S8: Coulombic efficiencies of long-term cycles at 1 mA 

cm−2 of the (a) Zn‖Cu half cell using 2 separators and (b) Zn‖PVDF-Cu half cell; Table S1: 

Comparison table for the electrochemical performances by various materials used for surface 

modification of Zn anode.and PNF-Cu under various current densities. References [55–73] are citied 

in the Supplementary Materials. 
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