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Abstract: The Rigid Adsorbent Lattice Fluid model has been shown to comply with all the require-
ments for thermodynamic consistency in the case of an adsorbent that does not undergo structural
changes. This is achieved by introducing a correction to the reduced density function that multiplies
the combinatorial term. A procedure to calculate the predicted adsorbed mixture activity coefficients
has been presented that allows the production of excess Gibbs energy plots at a constant reduced
grand potential. The predicted nonideality is structurally consistent with the Non-Ideal Adsorbed So-
lution Theory of Myers in terms of both its dependence on concentration and reduced grand potential.
The ability to generate excess Gibbs energy values allows linking the new Rigid Adsorbent Lattice
Fluid model to the traditional Real Adsorbed Solution Theory providing an alternative approach to
predicting multicomponent adsorption based solely on pure component data.
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1. Introduction

A new thermodynamic framework for pure and mixed gas adsorption, the Rigid Adsor-
bent Lattice Fluid (RALF) model was presented in [1], adapting to a non-distributing solid
the Non-Equilibrium Lattice Fluid (NELF) approach for polymers developed and applied
extensively by Professor Sarti and his colleagues at the University of Bologna [2–5], including
a recent extensive review [6]. Since its introduction, which considered the adsorption of gases
and vapours in the zeolite silicalite, the RALF model has been used to correlate adsorption in
breathing metal–organic frameworks [7]; to demonstrate that it allows predicting different
types of isotherms depending on the physical parameters of the adsorbates [8]; and more
recently, it was shown to capture the behaviour of ZSM-25 in dynamic experiments [9] as well
as water adsorption with stepped behaviour [10]. The emphasis of these publications [1,7–10]
has been to investigate the applicability of RALF to a range of challenging adsorption sys-
tems as well as test the prediction capability for multicomponent adsorption, thus focusing
primarily on the phase equilibria of the adsorbates.

The purpose of the present contribution was to study in greater detail the case of the
frozen solid, where the adsorbent does not undergo structural changes, and focus on:

1. The requirements for thermodynamic consistency, which as will be shown lead to a
small modification to the adsorbed phase expression for multicomponent mixtures.

2. Demonstrate how it is possible to determine the adsorbed phase excess Gibbs
energy from RALF, thus providing the means to bridge this approach to the classical Real
Adsorbed Solution Theory (RAST).

It is hoped that this contribution will be of interest to both adsorption and membrane
communities that have developed thermodynamic approaches for phase equilibria between
the gas (and liquid) and solid phases with limited attempts at reconciling the apparently
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different approaches. One would hope as well that this will not lead to a sense of bewil-
derment in the reader [6] as in both cases the assumption made is that the solid phase
(membrane or adsorbent) is considered to be a lattice fluid.

2. RALF Model for a Frozen Adsorbent

A basic assumption in the thermodynamics of adsorption is that the adsorbent does
not undergo structural changes [11] and in the RALF framework this corresponds to the
frozen solid limit [1]. The volume of the system, V, is assumed to be the volume occupied
by the solid, including the micropores, VS, [12] and

V = VS =
mS
ρS

=
∑j mj

ρ
(1)

where ρS is the density of the solid including the micropores, ρ is the density of the adsorbed
phase, including the adsorbates. mS is the mass of the solid, while mj are the masses of all
components, including the solid. In the frozen solid limit VS is a constant [1].

The RALF model was derived from the Lattice Fluid model of Sanchez and La-
combe [13–15] and the following expression for the residual Gibbs energy for fluid was
obtained in [1]

GR(T,P,N)
RT = rN

[
− ρ̃

T̃
+ (1−ρ̃) ln(1−ρ̃)

ρ̃ + 1
]

+Nρ̃ ∑j xj ln
(

φj
xj

)
+ N(z− 1− ln z)

(2)

with → ρ̃ = ρ
ρ∗ → → T̃ = T

T∗ → → z = PV
NRT = r P̃

ρ̃T̃
→ → P̃ = P

P∗ . where ρ∗ is the

characteristic density; T∗ is the characteristic temperature, related to an energy; P∗ is the
characteristic pressure, related to an energy density; φj are the volume fractions of each
specie; rj are the number of lattice sites occupied by each specie while r is the same for
the mixture.

The following relationship links the characteristic parameters

P∗v∗ = RT∗ (3)

Equation (2) has a +1 in the first parenthesis [16] included so that the first term cancels
in the limit of zero pressure. The combinatorial term is pre-multiplied by ρ̃ to ensure that
at zero pressure the ideal gas state is recovered [1]. While these are minor changes from the
NELF formulation, the basis for the RALF model is to define Equation (2) for the adsorbed
phase. First the volume occupied by adsorbed molecules at close packing, v∗i , is corrected
to take into account confinement constraints.

v∗iA = (1 + ξiA)v∗i →→ and →→ ρ∗iA =
ρ∗i

1 + ξiA
(4)

The second important modification is that the combinatorial contribution needs to
reflect the fact that due to the rigid nature of the solid it does not contribute to the com-
binatorial term, but has the effect of reducing the volume available to the molecules in
the lattice. Therefore, in the original RALF framework, the residual Gibbs energy of the
adsorbed phase was specified as

GR
A(T,P,N)

RT = rN
[
− ρ̃

T̃
+ (1−ρ̃) ln(1−ρ̃)

ρ̃ + 1
]

+Nρ̃ ∑i xi ln φi
(1−φS)xi

+ N(z− 1− ln z)
(5)

Here, (1−φS) is highlighted to identify the additional deviation from the case of
a polymer.
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In the model sums over the index i include only the adsorbates, while sums over j
include also the solid, which is the last component. In the LF model component, 0 is used
for the vacancies.

What is not immediately apparent is the fact that for multicomponent mixtures
Equation (5) does not reduce to the Ideal Adsorbed Solution Theory (IAST) [17], which is
one of the requirements for thermodynamic consistency [18]. The issue comes from the
combinatorial term, which does not cancel as in the limit of zero pressure the reduced
density is ρ̃ = ρ̃S = ρS

ρ∗S
and not zero.

To ensure thermodynamic consistency the residual Gibbs energy of the adsorbed
phase has to be corrected so that the combinatorial term is zero at zero pressure and a
suitable expression is:

GR
A(T,P,N)

RT = rN
[
− ρ̃

T̃
+ (1−ρ̃) ln(1−ρ̃)

ρ̃ + 1
]

+N
[
ρ̃− ρ̃S

(
1 + ln ρ̃

ρ̃S

)]
∑i xi ln φi

(1−φS)xi
+

+N(z− 1− ln z)

(6)

The term multiplying the combinatorial part ensures that both the residual energy and
the chemical potential of the adsorbates have the correct limit at zero pressure since

lim
P→0

ρ̃− ρ̃S

(
1 + ln

ρ̃

ρ̃S

)
= 0 (7)

This modification does not affect the single adsorbate case as the combinatorial term
for a pure adsorbate is zero given that for a single adsorbate φ1 = (1− φS). For mixtures at
high adsorbed concentrations the correction is small, thus all numerical results presented
in the original RALF model [1] are not affected by this correction.

The mathematical structure of the correction term leads to an equation of state term
given by

zEoS
A − 1 = r

[
− ρ̃

T̃
− ln(1−ρ̃)

ρ̃ − 1
]

+(ρ̃− ρ̃S)∑i xi ln φi
xi(1−φS)

(8)

for which the combinatorial term of the adsorbed phase cancels in the limit of zero pressure.
To apply Equation (6), mixing rules for the model parameters need to be specified.

These are [1]
riv∗ = r0

i v∗iA (9)

which conserves the close-packed molecular volume of each component;

∑j r0
j Nj = rN (10)

which preserves the number of pair interactions in the close-packed state; and

P∗ = ∑j ∑k φjφkP∗jk (11)

with→ P∗jk = P∗kj = (1− κkj)
√

P∗k P∗j → and κkk = 0. which is the classical quadratic mixing

rule [19].
The reduced residual chemical potentials can be obtained by derivation

µR
k

RT
=

1
RT

(
∂GR

A
∂Nk

)
T,P,Nj 6=k

= ln ϕk →→→
µRm

S
RT

=
1

RT

(
∂GR

A
∂mS

)
T,P,Nj 6=S

(12)

where ϕk is the fugacity coefficient of adsorbate k. Note that an asymmetric convention is
used with moles for the adsorbates and mass for the adsorbent.
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The expressions for the reduced residual chemical potential of the adsorbates in the
case of a frozen solid are:

µR
k

RT = − ρ̃

T̃
rk

(
2

∑j φjP∗kj
P∗ − 1

)
+
[
(1−ρ̃) ln(1−ρ̃)

ρ̃ + 1
]
r0

k

+ rk
r
(
zEoS

A − 1
)

+
[
ρ̃− ρ̃S

(
1 + ln ρ̃

ρ̃S

)](
ln rk

r(1−φS)
+ 1

− rk
r(1−φS)

)
− ln z

(13)

Equation (13) is all that is needed for phase equilibrium calculations but to establish the
connection between RALF and RAST what is important is the expression for the reduced
residual chemical potential of the solid, which for a frozen solid is given by:

µRm
S

RT = ρ̃φS
ρSv∗S

[
(1−ρ̃) ln(1−ρ̃)

ρ̃ + 1
]
− ρ̃

T̃

[
2

∑j φjP∗Sj
P∗ − 1

]
ρ̃φS
ρSv∗

+n(φS − 1)
(
zEoS

A − 1
)
− n + P

RTρS

(14)

where n = N
mS

is the total absolute adsorbed amount in moles/kg of adsorbent and
P

RTρS
= nz.
From Equation (14) it is possible to define also the reference state for the solid as that

of the solid phase without adsorbates at the same pressure of the system [20] as in this limit
φS = 1; ρ̃ = ρ̃S; v∗ = v∗S and N = 0, therefore

µRm
S0

RT
=

1
v∗Sρ∗S

[
(1− ρ̃S) ln(1− ρ̃S)

ρ̃S
+ 1− ρ̃S

T̃S

]
+

P
RTρS

(15)

These last two expressions lead to the reduced grand potential [20]

ψ =
µRm

S0
RT −

µRm
S

RT
= 1

v∗Sρ∗S

[
(1−ρ̃S) ln(1−ρ̃S)

ρ̃S
+ 1− ρ̃S

T̃S

]
− ρ̃φS

ρSv∗S

[
(1−ρ̃) ln(1−ρ̃)

ρ̃ + 1
]

+ ρ̃

T̃

[
2

∑j φjP∗Sj
P∗ − 1

]
ρ̃φS
ρSv∗ − n(φS − 1)

(
zEoS

A − 1
)

+n

(16)

which is a fundamental quantity [11] in the thermodynamics of the adsorbed phase as it
allows to define the reference state relative to which activity coefficients can be obtained.
One should note that Equation (15) is only a function of composition and the total adsorbed
amount and does not depend explicitly on the system pressure.

For completeness and to be able to reproduce all the terms needed in the calculations
Table 1 includes all the steps and expressions required to calculate the reduced residual
potentials of the adsorbates and the reduced grand potential in the RALF model for the
frozen solid. In what follows the numerical calculations will be based on the parameters for
silicalite obtained following the procedure in [1] from experimental data including Henry
law constants, adsorption energies and pure component isotherms for several adsorbates
including normal alkanes [21–23].

Table 1. RALF frozen solid multicomponent steps and expressions.

Sequence

1 Specify parameters : T∗i ; P∗i ; ρ∗i , Mwi; T∗S ; P∗S ; ρ∗S and κij

2 Specify variables : T; P; ni; mS
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Table 1. Cont.

Sequence

3 v∗S =
RT∗S
P∗S

4 P∗iA =
P∗i

1+ξiA
; v∗iA =

RT∗i
P∗iA

; ρ∗iA =
ρ∗i

1+ξiA
; r0

iA = Mwi
v∗iAρ∗iA

5 Define mi = ni Mwi and mT = ∑j mj

6 ρ∗ = mT

∑i
mi

ρ∗iA
+

mS
ρ∗S

; φi =
mi
ρ∗iA

ρ∗

mT
; φS = mS

ρ∗S

ρ∗

mT
; ρ = mT

mS
ρS

7 P∗ = ∑j ∑k φjφkP∗jk with P∗jk = P∗kj = (1− κkj)
√

P∗k P∗j → and κkk = 0.

8 1
v∗ = ∑j

φj
v∗j

; T∗ = P∗v∗
R ; T̃ = T

T∗ ; P̃ = P
P∗ and ρ̃ =

ρ
ρ∗

9 ri = r0
iA

v∗iA
v∗ ; 1

r = ∑i
φi
ri

; rN = mS
ρS

ρ̃
v∗ and z = r P̃

ρ̃T̃

10 xi = r φi
ri

and zEoS
A − 1 = r

[
− ρ̃

T̃
− ln(1−ρ̃)

ρ̃ − 1
]
+ (ρ̃− ρ̃S)∑j xj ln φj

xj(1−φS)

µR
k

RT = − ρ̃

T̃
rk

(
2

∑j φj P∗kj
P∗ − 1

)
+
[
(1−ρ̃) ln(1−ρ̃)

ρ̃ + 1
]
r0

k +
rk
r
(
zEoS

A − 1
)
− ln z +[

ρ̃− ρ̃S

(
1 + ln ρ̃

ρ̃S

)](
ln rk

r(1−φS)
+ 1− rk

r(1−φS)

)
Ψ =

µRm
S0

RT −
µRm

S
RT = 1

v∗Sρ∗S

[
(1−ρ̃S) ln(1−ρ̃S)

ρ̃S
+ 1− ρ̃S

T̃S

]
− φS

ρS

ρ̃
v∗S

[
(1−ρ̃) ln(1−ρ̃)

ρ̃ + 1
]
+

ρ̃

T̃

[
2

∑j φj P∗Sj
P∗ − 1

]
φS
ρS

ρ̃
v∗ − n(φS − 1)

(
zEos − 1

)
+ n

3. Thermodynamic Consistency of an Adsorbed Phase

Talu and Myers [18] cover in some detail the requirements for consistency of adsorp-
tion experimental data. The requirements for experimental data apply equally to the results
from a model and are the following [18]:

1. Single-gas adsorption isotherms should reduce to Henry’s law at the limit of
zero pressure.

2. Multicomponent isotherms should display continuity with single-gas isotherms.
3. At fixed temperature and pressure, thermodynamically consistent x-y diagrams

should intersect the predictions from the IAST at least once.
4. In the limit of zero pressure, the IAST should be obtained.
5. Activity coefficients in the adsorbed phase are a function of composition and the

reduced grand potential.

The last condition requires a method to determine the activity coefficients of the
adsorbed phase from the RALF model and this will be covered in a separate section.

Condition 1 is fulfilled as the RALF model reduces to a Henry law constant at low
pressure [1] or

n1 =
N1

mS
= KP(T)P (17)

At infinite dilution and in the limit of low pressure, for a single adsorbate, it is possible
to obtain [1]

ln KP1 = ln 1 kg
ρSRT + ρ̃S

RT r0
1v∗12P∗1S −

[
(1−ρ̃S) ln(1−ρ̃S)

ρ̃S
+ 1
]
r0

1

+r0
1

v∗1
v∗S

[
ln(1−ρ̃S)

ρ̃S
+ 1
] (18)

Given that the RALF model is formulated in terms of thermodynamically consistent
mixing rules, there is continuity when one component in the mixture becomes very dilute,
i.e., a ternary mixture reduces correctly to the binary mixtures and a binary mixture reduces
correctly to the single component isotherms, thus condition 2 is automatically fulfilled.

Condition 3 stems from the integral consistency test and the Gibbs–Duhem equation
which requires that at least at one point the activity coefficients of the two components are
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the same [18]. As a result, the binary selectivity is equal to that of the IAST at least at one
point. Figure 1 shows the difference between the gas phase mole fraction calculated from
RALF and IAST for the binary ethane/n-butane in silicalite using the RALF parameters
reported in [1] at 300 K and 350 kPa. The two models cross at x = 0.574. The IAST
prediction was obtained using a nested-loop calculation [24] where the reduced grand
potential of the ideal mixture, ψIAST , requires the solution of

1−∑Nc
i=1

f 0
i (ψIAST)xi

ϕF
i P

= 0 (19)

where ϕF
i is the fugacity coefficient of each component in the fluid phase and f 0

i is the
reference fugacity calculated from the pure component isotherm. In the RALF model,
this last term requires the intermediate calculation of the adsorbed amount for each pure
adsorbate from the knowledge of ψIAST . The multicomponent calculations for the RALF
model require the solution of the equilibrium relationships given in [1]. For convenience,
the fluid phase was described using the Sanchez–Lacombe equation of state modified to be
consistent at zero pressure [1].

Membranes 2022, 12, x FOR PEER REVIEW 7 of 14 
 

 

𝜇𝑘
𝑅0

𝑅𝑇
= −

�̃�𝑆

𝑅𝑇
𝑟𝑘

0𝑣𝑘
∗2𝑃𝑘𝑆

∗ + [
(1 − �̃�𝑆) ln(1 − �̃�𝑆)

�̃�𝑆
+ 1] 𝑟𝑘

0

− 𝑟𝑘
0

𝑣𝑘
∗

𝑣𝑆
∗ [

ln(1 − �̃�𝑆)

�̃�𝑆
+ 1] − ln 𝑧 = ln (

1 𝑘𝑔 ∑ 𝑛𝑖𝑖

𝐾𝑃𝑘𝑃
) 

(20) 

When this is combined with the equilibrium relationship one obtains the correct lim-

iting behaviour of an ideal mixture in the Henry law region 

𝑛𝑘 = 𝐾𝑃𝑘𝑃𝑦𝑘 (21) 

As a final internal thermodynamic consistency check, one can also verify that the 

reduced grand potential obtained from Equation (16) is consistent with the Gibbs adsorp-

tion isotherm [11,25]: 

ψ = ∫ ∑ 𝑛𝑖
𝐴𝑑𝑙𝑛𝑓𝑖

𝑖

𝑃

0

 (22) 

It is relatively straightforward to test this relationship for a single component iso-

therm and this is a useful check especially in verifying the correct implementation of the 

RALF model. 

 
Figure 1. Difference in gas phase mole fraction of ethane calculated from RALF and IAST as a func-

tion of adsorbed phase mole fraction. Ethane/n-butane binary mixture at 300 K and 350 kPa. 

4. RALF and RAST 

In this section, a procedure to obtain the activity coefficients of the adsorbed compo-

nents from the RALF model will be derived. As the RALF model is a combination of an 

energy term of a regular solution with the combinatorial term of an athermal solution [1], one 

would expect that a simple excess Gibbs energy expression should suffice. The picture in an 

adsorbed phase is complicated by the fact that the excess Gibbs energy will be a function 

also of the reduced grand potential. Myers has shown that to a very good approximation 

𝑔𝐸𝑥 models from liquid phase correlations [19] can be used for the concentration depend-

ence of adsorbed phase provided that an additional term is included [26–28] 

–0.020

–0.015

–0.010

–0.005

0.000

0.005

0.00 0.20 0.40 0.60 0.80 1.00

Figure 1. Difference in gas phase mole fraction of ethane calculated from RALF and IAST as a
function of adsorbed phase mole fraction. Ethane/n-butane binary mixture at 300 K and 350 kPa.

Condition 4 is fulfilled and this can be demonstrated considering the limit as pressure
goes to zero of Equation (13).

µR0
k

RT = − ρ̃S
RT r0

kv∗k 2P∗kS +
[
(1−ρ̃S) ln(1−ρ̃S)

ρ̃S
+ 1
]
r0

k

−r0
k

v∗k
v∗S

[
ln(1−ρ̃S)

ρ̃S
+ 1
]
− ln z = ln

(
1 kg ∑i ni

KPk P

) (20)

When this is combined with the equilibrium relationship one obtains the correct
limiting behaviour of an ideal mixture in the Henry law region

nk = KPkPyk (21)
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As a final internal thermodynamic consistency check, one can also verify that the
reduced grand potential obtained from Equation (16) is consistent with the Gibbs adsorption
isotherm [11,25]:

ψ =

P∫
0

∑i nA
i dln fi (22)

It is relatively straightforward to test this relationship for a single component isotherm
and this is a useful check especially in verifying the correct implementation of the RALF model.

4. RALF and RAST

In this section, a procedure to obtain the activity coefficients of the adsorbed compo-
nents from the RALF model will be derived. As the RALF model is a combination of an
energy term of a regular solution with the combinatorial term of an athermal solution [1], one
would expect that a simple excess Gibbs energy expression should suffice. The picture
in an adsorbed phase is complicated by the fact that the excess Gibbs energy will be a
function also of the reduced grand potential. Myers has shown that to a very good approxi-
mation gEx models from liquid phase correlations [19] can be used for the concentration
dependence of adsorbed phase provided that an additional term is included [26–28]

gExA

RT
=
(

1− e−Cψ
) gEx

RT
= ∑i xi ln γA

i (23)

One can see that the additional term ensures that at low pressure the IAST is recovered
in compliance with condition 4.

To calculate the activity coefficients of the RALF model one has to consider the defini-
tion of the fugacity of the adsorbed phase from RAST, which requires the reference state of
the pure components at the same reduced grand potential of the mixture. Therefore, the
two adsorbed phase fugacities can be equated

γA
k ϕA0

k P0
k = ϕA

k P (24)

This expression can be rearranged to a more convenient form

ln γA
k =

µR
k

RT
+ ln z− ln

nRTρS

f A0
k

(25)

With the pure component reference fugacity f A0
k = ϕA0

k P0
k . Equation (25) depends

only on the adsorbed phase concentrations and the total adsorbed amount as is the case for
the reduced grand potential.

It is now possible to calculate the excess Gibbs energy by assigning the adsorbed phase
mole fractions and the reduced grand potential. The procedure is as follows

6. Determine the total adsorbed amount from Equation (16).
7. Repeat this for the pure component case in order to determine the pure component

adsorbed amounts at the same reduced grand potential of the mixture.
8. From the pure component isotherm, calculate the reference pressure and fugacity

corresponding to the adsorbed amounts obtained in step 2.
9. Calculate the activity coefficients of all components from Equation (25).

Steps 1 and 2 are fairly easy to implement as each corresponds to the solution of a
single nonlinear equation with a function that increases monotonically with the number
of moles adsorbed. The physically valid range of the adsorbed amounts will lie between
0 and the finite saturation capacity values for the mixture and for each pure component,
respectively. The saturation capacities are obtained by inspection and from the definition
of the close-packed state:
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nSat ∑i
xi Mwi

ρ∗iA
=

1
ρS

(
1− ρS

ρ∗S

)
(26)

For a single adsorbent [1]

nSat
1 =

1
Mw1

ρ∗1A
ρS

(
1− ρS

ρ∗S

)
(27)

Step 3 is slightly more complicated as the adsorption isotherm is an implicit function of
pressure, but the adsorbed amount increases monotonically with pressure and this makes
the numerical solution robust.

Spanning the compositions at a fixed reduced grand potential is the most convenient
way to see the composition dependence of the excess Gibbs energy of the adsorbed phase.
An alternative is to assign increasing values of the total adsorbed amount and determine at
a fixed mole fraction the dependence with respect to the reduced grand potential. In this
case, Step 1 is replaced by direct computation of the reduced grand potential of the mixture
having specified the total amount adsorbed and composition of the adsorbates.

While a detailed investigation of all possible cases that can be generated using the
RALF model including the use of the mixture parameters is beyond the scope of this study,
here it is possible to investigate the behaviour of the binary mixtures of alkanes in silicalite,
which should be represented well by the Non-Ideal Adsorbed Solution Theory, NIAST,
of Myers [28]. NIAST is a predictive model based on the simplest expression for activity
coefficients, which at a fixed temperature can be written as

gExA

RT
= −4δ12x1x2

(
1− e−C12ψ

)
(28)

With

δ12 =

∣∣∣∣∣ψ0.5
1

nSat
1
− ψ

0.5
2

nSat
2

∣∣∣∣∣ ;→ C12 =
e−δ12

nSat
12

;→ 1
nSat

12
=

1
2

(
1

nSat
1

+
1

nSat
2

)
(29)

ψ0.5
k is the reduced grand potential of pure component k at an adsorbed concen-

tration of 0.5nSat
k . Therefore, the NIAST parameters can be calculated from the pure

component isotherms of the RALF model providing an alternative means of predicting
the binary mixtures.

As the deviations from ideality are mild in the alkanes silicalite systems considered,
calculations were carried out on the methane/n-butane mixture which shows the largest
deviations. Figure 2 shows the excess Gibbs energy predicted at three mole fractions (0.25,
0.5 and 0.75) as a function of the reduced grand potential of the mixture at 300 K.

As can be seen from Figure 2 the RALF model shows a more complex behaviour than
the NIAST approach, as the excess Gibbs energy includes some asymmetry that is more
pronounced as the adsorbed amount increases (at the same reduced grand potential the
curves at 0.25 and 0.75 should overlap in the case of symmetry), and there is also a small
region at low reduced grand potential (low pressure and adsorbed amount region) where
positive deviations are predicted. Overall, though negative deviations are predicted where
typical experimental measurements are carried out. To see more clearly the exponential
dependence with respect to the reduced grand potential, Figure 3 shows the normalised
excess Gibbs energy for a mole fraction of 0.5.

Structurally the RALF model contains the correct dependence on the reduced grand
potential but the predictions are of smaller deviations from ideality at lower pressures
compared to the NIAST formulation.
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Figure 2. Reduced excess Gibbs energy as a function of the reduced grand potential at mole fractions
of methane of 0.25 (dotted line), 0.5 (continuous line) and 0.75 (dashed line). Methane/n-butane
binary mixture.
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Figure 3. Normalised reduced excess Gibbs energy as a function of the reduced grand potential at
a mole fraction of methane of 0.5. RALF predictions for the binary methane/n-butane (continuous
line) are compared to simple exponential decay curves with C = 0.066 (dotted line) and the predicted
NIAST C12 = 0.328 (dashed line).

Figure 4 shows the comparison at high adsorbed amounts for ψ = 150 mol/kg. It
is very interesting to note that both NIAST and RALF models predict the same infinite
dilution activity coefficient for n-butane in methane (region close to x = 1), while RALF
predicts a slightly smaller infinite dilution activity coefficient at the other limit, with a
resulting asymmetric excess Gibbs energy that can be matched well with a two-parameter
Margules binary activity coefficient expression [29] (dotted line). Including the effect of the
reduced grand potential the approximate expression is given by

gExA

RT
= −(A21x1 + A12x2)x1x2

(
1− e−Cψ

)
(30)
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Figure 4. Normalised reduced excess Gibbs energy as a function of the mole fraction of methane
at a fixed reduced grand potential ψ = 150 mol/kg. RALF prediction (continuous line) and
two-parameter Margules equation (dotted line) are compared with NIAST predictions (dashed
line) based on RALF pure component isotherms.

Matching the excess Gibbs energy at high reduced grand potential A21 = 0.156 and
A12 = 0.229.

At lower reduced grand potential values, the excess Gibbs energy predicted from
RALF becomes nearly symmetric as shown in Figure 5 for ψ = 10 mol/kg. The dotted line
close to the RALF data points is calculated using Equation (29) and the deviation is small.
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Figure 5. Normalised reduced excess Gibbs energy as a function of the mole fraction of methane at a
fixed reduced grand potential ψ = 10 mol/kg. RALF prediction (continuous line) and two-parameter
Margules equation (dotted line) are compared with NIAST predictions (dashed line) based on RALF
pure component isotherms.

Structurally RALF is a rather complex model that produces the correct mixture be-
haviour for the systems considered with similar quantitative results when compared to the
NIAST of Myers [28]. The key advantage of RALF is that it is formulated as a multicompo-
nent model and is not limited to binary systems [1].
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5. Conclusions

A correction to the reduced density function that multiplies the combinatorial term
in RALF was shown to lead to a formulation that passes all thermodynamic consistency
checks. As the Sanchez–Lacombe equation of state was derived starting from the close-
packed limit it was important to carry out these checks and identify the incorrect zero
pressure limit of the original formulation.

A procedure to calculate the predicted adsorbed mixture activity coefficients has been
presented that allows for the production of excess Gibbs energy plots at a constant reduced
grand potential. This calculation does not require the knowledge of the pressure of the
system as the problem can be solved by specifying the mole fractions of the adsorbed phase
and the total adsorbed amount.

Results from the NIAST model of Myers indicate that the RALF model for frozen
solids contains the correct structure in terms of the dependence of non-ideality with respect
to composition and the reduced grand potential. In addition to providing the means
to analyse the RALF model, the procedure presented can also be used to link the new
framework to the traditional non-ideal adsorbed phase approach if an excess Gibbs energy
generated from RALF can be matched to a suitable RAST model.
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Glossary

f fugacity (Pa)
GR residual Gibbs energy (J)
GR

A residual Gibbs energy of the adsorbed phase (J)
K dimensionless Henry law constant (–)
KP Henry law constant (mol kg–1 Pa–1)
ni adsorbed amount of component i (mol kg–1)
nsat

i saturation capacity of component i (mol kg–1)
N number of moles (mol)
Nj number of moles of species j (mol)
Nr size of lattice in mole equivalents (mol)
mj mass of species j (kg)
mS mass of solid (kg)
Mwi molecular mass of species i (kg mol–1)
P pressure (Pa)
P0 reference pressure (Pa)
P̃ reduced pressure (–)
P∗ characteristic pressure of the mixture (Pa)
P∗i characteristic pressure of component i pure (Pa)
P∗iA characteristic pressure of component i in the adsorbed phase (Pa)
P∗S characteristic pressure of the solid (Pa)
P∗ij pair characteristic pressure (Pa)
r average number of mers in a molecule (–)
rj number of mers in molecule j in the mixture (–)
r0

j number of mers in molecule j pure (–)
R ideal gas constant (J mol–1 K–1)
T temperature (K)
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T̃ reduced temperature (–)
T∗ characteristic temperature of the mixture (K)
T∗i characteristic temperature of component i pure (K)
T∗S characteristic temperature of the solid (K)
ṽ reduced molar volume (–)
v∗ average close-packed volume of mers in a mixture (m3 mer-mol–1)
v∗j close-packed volume of mers molecule j pure (m3 mer-mol–1)
v∗jA close-packed volume of mers molecule j in the adsorbed phase (m3 mer-mol–1)
V volume of the lattice (m3)
V∗ close-packed volume for the mixture (m3)
VS volume of the solid (m3)
wj mass fraction of species j (–)
xi mole fraction of species i in the adsorbed phase (–)
yi mole fraction of species i in the fluid phase (–)
z compressibility factor (–)
zEoS compressibility factor derived from the Helmholtz energy (–)

Greek Letters
βT isothermal solid compressibility (Pa–1)
∆H0 adsorption enthalpy at zero loading (J mol–1)
∆U0 adsorption energy at zero loading (J mol–1)
ϕi fugacity coefficient of species i (–)
φj volume fraction in the lattice occupied by species j at close-packing (–)
φS volume fraction in the lattice occupied by the solid at close-packing (–)
φL

j volume fraction in the lattice occupied by species j (–)
κij pair interaction coefficient (–)

µR
i residual chemical potential of species i in the adsorbed phase (J mol–1)

µR
iF residual chemical potential of species i in the fluid phase (J mol–1)

µR
i∞ residual chemical potential of species i at infinite dilution in the adsorbed phase (J mol–1)

µRm
S residual chemical potential of the solid on a mass basis (J kg–1)

µRm
S0 residual chemical potential of the solid without adsorbates (J kg–1)

ρ̃ reduced mass density (–)
ρ∗ average close-packed mass density in a mixture (kg m–3)
ρ∗j close-packed mass density of molecule j (kg m–3)
ρ∗jA close-packed mass density of molecule j in the adsorbed phase (kg m–3)
ρS mass density of the solid (kg m–3)
ξ jA volume correction due to confinement constraints (–)
Ψ reduced grand potential (mol kg–1)
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