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Abstract: In this study, the characteristic frequencies of the electrochemical impedance of ion-
exchange membrane systems constituted by the membrane and two diffusion boundary layers
adjacent to the membrane were investigated. Approximations of the impedance of the Randles equiv-
alent electric circuit in multiple frequency ranges were considered, and the characteristic frequencies
of the zeros and poles of orders 1/2 and 1 were derived. The characteristic geometric frequencies, those
associated with the interfacial charge transfer and the diffusive transport processes, as well as those
associated with the transitions between processes, were identified by means of analytical expressions.
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1. Introduction

Studies on electrochemical properties of ion-exchange membrane systems are currently
receiving considerable attention due to the potential environmental applications of such
systems in various fields of science and technology, such as electrodialysis for brackish
water or seawater desalination [1] and renewable energy harvesting, such as pressure-
retarded osmosis or reverse electrodialysis [2]. In addition, such membranes are often used
as separators in electrochemical energy storage devices, such as rechargeable lithium-ion
batteries [3], redox flux batteries [4] and fuel cells [5], or as elements joined to the porous
electrodes in systems for capacitive deionization desalination [6] or blue energy production
from salinity differences [7].

Electrochemical impedance spectroscopy is a powerful method for characterizing
many of the electrical properties of a wide variety of electrochemical systems, including
membrane systems [8]. Since the work of Sistat et al. [9], a number of papers dealing with
the electrochemical impedance of systems constituted by an ion-exchange membrane and
two diffusion boundary layers (DBLs) adjacent to the membrane have appeared in the
literature [10–17]. These works include the identification of specific topics in the field of ion
exchange, such as diffusion coefficients dependent on ionic concentrations [10], the inhomo-
geneity of the membrane fixed charge [11], asymmetry of the bathing concentrations [12],
geometry of the fluidic channels [13], competitive transport of counter ions [14], water
splitting [15], interfacial resistances [16] and fouling [17]. Impedance functions can also be
applied in the small-signal dynamic modelling of electrochemical power sources, such as
Li-ion batteries and fuel cells, including ion-exchange membranes, which are of particular
importance due to the increasing incorporation of such devices into sophisticated electric
and electronic systems [18,19]. Multiple studies on the dynamic response of ion-exchange
membrane systems have been published in fields related to proton-exchange membrane
fuel cells [20–23].

Impedance experimental data are usually interpreted on the basis of the Randles
equivalent electric circuit; the relationship between the circuit elements and the physical
and chemical parameters of the system are determined by the Nernst–Planck–Donnan
equations under electroneutrality on the basis of the Teorell–Mayer–Sievers model. The
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differential capacitances of the electric double layers (EDLs) at the membrane–solution
interfaces as given by the Gouy–Chapman theory are also included [24]. Although the
properties of the Randles circuit model of the electrochemical interface are well-known [25],
the characteristic frequencies of the impedance basic function of ion-exchange membrane
systems, particularly in the absence of interfacial resistances, have not been investigated
in detail.

The main purpose of this paper is to contribute to this area by conducting a novel
theoretical study on the identification of the characteristic frequencies of the electrochemical
impedance of ion-exchange membrane systems constituted by the membrane and two DBLs
adjacent to the membrane on the basis of the zero-pole representation of the approximations
of the impedance in multiple frequency ranges. The characteristic frequencies of the zeros
and poles of orders 1/2 and 1 in the impedance of the Randles equivalent electric circuit
were derived in this study. The characteristic geometric frequencies, those associated with
the interfacial charge transfer and the diffusional transport processes and those associated
with the transitions between processes were theoretically identified by means of analytical
expressions. The values of these frequencies enabled evaluation of the role played by the
capacitances of the EDLs in the impedance model and by the characteristic frequencies
within the usual range of experimentation in the characterization of electrical properties of
membrane systems.

2. Theoretical Basis

In this study, we considered a membrane with a thickness of d and two identical DBLs
adjacent to the membrane, each with a thickness of δ, as shown in the sketch in Figure 1. The
ionic transport is one-dimensional and perpendicular to the membrane–solution interface.
The membrane is bathed by two bulk solutions of a 1:1 symmetric binary electrolyte; c0 is
the salt concentration in the solutions, and a cation-exchange membrane with a negative
fixed charge of concentration X is assumed. The membrane is assumed to be ideal and
fully impermeable to co-ions and without interfacial resistance; counter-ion transport is
described by means of resistance and geometric capacitance. The diffusion coefficients
of the cation and anion in the solution phase are denoted by D1 and D2, respectively,
and DS = 2D1D2/(D1 + D2) is the salt diffusion coefficient. The electric permittivity of the
solution phase is denoted by ε.
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According to the Randles model and previous studies by Nikonenko and Kozmai [24],
the impedance of the ion-exchange membrane system, Z, can be written as:

Z = Zg +
1

s CDL + 1
ZdL

+
1

s CDR + 1
ZdR

(1)

where Zg is the geometric impedance given by:

Zg =
RacL

1 + s RacL CgL
+

RM
1 + s RM CgM

+
RacR

1 + s RacR CgR
(2)

Here, s (s = jω) is the Laplace variable; j is the imaginary unit; and ω is the angular
frequency, which is 2π times the conventional frequency, f (ω = 2πf ). RM and CgM are the
resistance and geometric capacitance of the membrane, respectively. CgL and CgR are the
geometric capacitances of the DBLs, expressed as:

CgL = CgR =
ε

δ
(3)

The ohmic resistances of the left and right DBLs, respectively, are:

RacL = − R T
F2

δ

(D1 + D2) c0

ln (1 − βL)

βL
(4)

RacR =
R T
F2

δ

(D1 + D2) c0

ln (1 + βL)

βL
(5)

In these expressions, the constants F, R and T represent Faraday constant, ideal gas
constant and absolute temperature, respectively. The dimensionless parameter βL is:

βL =
IDC
IL

(6)

i.e., it is the quotient between the dc component of the electric current, IDC, and the limiting
electric current density through the system, IL, which is obtained when the concentration
gradient reaches its maximum value in a DBL or on one of the surfaces of the membrane,
expressed as:

IL =
2 F D1 c0

δ
(7)

The capacitances of the EDLs at the interfaces are:

CDL =
ε

LD
cosh

(
F φdL

DC
2 R T

)
(8)

CDR =
ε

LD
cosh

(
F φdR

DC
2 R T

)
(9)

where LD is the Debye length in the solution phases and is expressed as:

LD =

√
ε R T

2 F2 c0
(10)

The Donnan electric potential differences at the solution/membrane interfaces are:

φdL
DC =

R T
F

ln
[

X
c0 (1 − βL)

]
(11)
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φdR
DC =

R T
F

ln
[

c0 (1 + βL)

X

]
(12)

The Warburg diffusion impedances are expressed as:

ZdL
RdL

=
ZdR
RdR

=
tanh

√
s τ√

s τ
(13)

where:

RdL =
2 R T
F IL

(
1

1 − βL

)
− RacL (14)

RdR =
2 R T
F IL

(
1

1 + βL

)
− RacR (15)

and

τ =
δ2

DS
(16)

At the highest frequencies, the limit of the impedance function (Z) is zero. At interme-
diate frequencies, the geometric, ohmic or ac resistance of the system (Rac) is the limit of the
impedance at the highest frequencies:

Rac = RacL + RM + RacR (17)

The DC resistance of the system (RDC) is the limit of the impedance at the low-
est frequencies:

RDC = RM +
2 R T
F IL

(
1

1 + βL
+

1
1 − βL

)
(18)

The total diffusion resistance is:

Rd = RdL + RdR = RDC − Rac (19)

The electrochemical impedance of an ion-exchange membrane system is represented
by the electric circuit shown in Figure 2. In the high-frequency range, the impedance
is governed by the geometric terms. In the low-frequency range, the Randles circuit at
each interface is constituted by the parallel combination of the EDL capacitance and the
finite-length Warburg diffusion impedance. The conductive term of the impedance for
the non-zero dc component of the electric current, which was originally described by
Sistat et al. [9] and included in the model by Nikonenko and Kozmai [24], is ignored.
This term appears for dc current values close to the limiting current and does not admit
analytical expression, so it is not used to derive the characteristic frequencies. Also, unlike
this model [24], the capacitances of the EDLs include the dependence with the Donnan
electric potentials.
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3. Results and Discussion
3.1. Impedance Plots

In this study, the electrochemical impedance of an ion-exchange membrane system
was numerically obtained from the electric circuit shown in Figure 2 using the electric
circuit simulation program PSpice 9.1 (Cadence Design Systems, San Jose, CA, USA) [26].
Simulations were performed for systems with ε = 708 pF/m, δ = 250 µm, c0 = 50 mM,
D1 = 1.32·10−9 m2/s and D2 = 1.96·10−9 m2/s. Then, the salt diffusion coefficient is
DS = 1.578·10−9 m2/s, the Debye length in the solution is LD = 1.373 nm at T = 298 K
and the limiting current density is 50.88 A/m2. For the membrane, the fixed-charge concen-
tration is X = 0.5 M = 100c0, the resistance is RM = 0.2 mΩ·m2 and the geometric capacitance
is CgM = 2.5 µF/m2. The chosen values for the parameters could correspond to typical
membranes used in electrodialysis when they are immersed in NaCl-diluted solutions.

Figure 3 shows the complex-plane impedance plots in a system for IDC = 0, 0.25IL
and 0.5IL. The values of the electric parameters corresponding to the circuit shown in
Figure 2 are shown in Table 1. In Figure 3, −Zi(ω) is plotted against Zr(ω) with the angular
frequency (ω) as a parameter increasing from the right to the left of the plot (Nyquist-type
plot). This figure shows two regions: a geometric arc at high frequencies in the left of the
plot and a diffusion arc at low frequencies in the right of the plot, which is a Warburg-type
impedance, as it presents a −45◦ slope straight line at high frequencies and a semicircle at
low frequencies. The geometric arc resembles a distorted semicircle and arises from the
superposition of the three semicircles corresponding to the geometric impedances of the
membrane and of the two DBLs. The usual experimental Nyquist plots of the impedance
of ion-exchange membranes show one arc, in addition to the uncompensated resistance
of the system [27], because the geometric arc is only experimentally observed when the
measurement instruments operate in the range of very high frequency with values outside
the usual range of experimentation from 1 mHz to 1 MHz. Then, the electrical conductivity
of ion-exchange membranes system is experimentally determined according to the real
part of the impedance at the highest frequencies [28,29].
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Table 1. Parameters of the electric circuit shown in Figure 2.

IDC = 0 IDC = 0.25 IL IDC = 0.5 IL

RacL (mΩ·m2) 0.4067 0.4603 0.5638
RacR (mΩ·m2) 0.4067 0.3570 0.3298
RM (mΩ·m2) 0.2
CgL (µF/m2) 2.832
CgR (µF/m2) 2.832
CgM (µF/m2) 2.5
RdL (mΩ·m2) 0.61 0.9407 1.4573
RdR (mΩ·m2) 0.61 0.4017 0.3439
CDL (µF/m2) 2.602 2.997 3.6618
CDR (µF/m2) 2.602 2.333 2.1352

τ (s) 39.617

Figure 4 shows the imaginary part with a minus sign of the impedance (−Zi) as
a function of frequency (f ) in logarithm scale (Bode-type plot). Two peaks are clearly
observed in this figure: a geometric peak at high frequencies and a diffusional peak at low
frequencies. Furthermore, the frequency at which the diffusional peak is reached is not a
function of the dc component of the electric current as expected [30].
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3.2. High-Frequency Geometric Impedance

At the highest frequencies, the Warburg diffusion impedance can be approximated by
that in semi-infinite space:

ZdL
RdL

=
ZdR
RdR

=
tanh

√
s τ√

s τ
≈ 1√

s τ
(20)

Then, the impedance of the ion-exchange membrane system at the highest frequen-
cies is:

ZH = Zg +
RdL

s RdL CDL +
√

s τ
+

RdR

s RdR CDR +
√

s τ
(21)
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The geometric impedance function (Zg) is a distribution function with three relaxation
times. ZH presents three poles of order 1 at the characteristic frequencies:

ωgL = 2 π fgL =
1

RacL CgL
(22)

ωgR = 2 π fgR =
1

RacR CgR
(23)

ωgM = 2 π fgM =
1

RM CgM
(24)

Moreover, ZH presents a pole of order 1/2 at s = 0 and two other poles of order 1/2 with
the characteristic frequencies:

ωH1 = 2 π fH1 =
1

τH1
=

τ

R2
dL C2

DL
(25)

ωHR = 2 π fHR =
1

τHR
=

τ

R2
dR C2

DR
(26)

Therefore, the impedance at the highest frequencies present five characteristic fre-
quencies corresponding to the membrane, the left and right solutions and the left and
right interfaces according to the Teorell–Meyer–Sievers model [31]. Equations (25) and (26)
could be considered as the interfacial characteristic frequencies in the absence of interfacial
charge transfer resistances [32]. However, the usual values for the EDL capacitances are
very small, and the two interfacial frequencies take an extremely high value (of the order
of 1018 Hz), and they cannot be identified in the impedance plots. By neglecting the EDL
capacitances, the impedance of an ion-exchange membrane system at high frequencies is
more appropriately expressed as:

ZH = Zg +
Rd√
s τ

(27)

The three geometric frequencies cannot be individually identified. The frequency at
which the imaginary part with minus sign of the impedance reaches a maximum in the
high-frequency region of the Nyquist (Figure 3) and Bode-type (Figure 4) plots must be
numerically obtained based on the expression of Zg.

On the other hand, the characteristic frequency (fC) at the intersection point between
the geometric and the diffusion arcs in the Nyquist plot or the point at which the imaginary
part of the impedance with minus sign reaches a minimum in the overlapped regions of
the Nyquist and Bode-type plots can be approximately obtained as follows [33]. Based on a
Taylor series at the lowest frequencies for the geometric term and the highest frequencies
for the diffusional term, the imaginary part of ZH in Equation (27) can be expressed as:

− ZHi =
Rd√
2 ω τ

+
(

R2
acL CgL + R2

M CgM + R2
acR CgR

)
ω (28)

Deriving this function with respect to ω and equaling zero, this function reaches a
minimum at the frequency (fC) expressed by the following relation:

ωC = 2 π fC =

(
Rd

2
(

R2
acL CgL + R2

M CgM + R2
acR CgR

) √
2 τ

) 2/3

(29)
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3.3. Low Frequency Diffusion Impedance

For intermediate frequencies, the impedance corresponding to the Cottrell behavior,
which is that obeying a diffusion transport in semi-infinite space, is expressed as:

ZI = Rac +
Rd√
s τ

(30)

This impedance function presents a pole of order 1/2 at zero frequency. It also presents
a zero of order 1/2 with the following characteristic frequency:

ωZ = 2 π fZ =
Rd

Rac
√

τ
(31)

Table 2 shows the numerical values of the main identified characteristic frequencies.
The characteristic frequency above zero is significant in plots related to admittance, i.e., the
inverse function of the impedance, but it can be considered the characteristic frequency of
the Cottrell behavior in the impedance.

Table 2. Numerical values of the main characteristic frequencies in an ion-exchange membrane system.

IDC = 0 IDC = 0.25 IL IDC = 0.5 IL

fgL (Hz) 140.5 × 106 122.1 × 106 99.68 × 106

fgR (Hz) 140.5 × 106 157.4 × 106 170.4 × 106

fgM (Hz) 318.3 × 106

fHL (Hz) 2.51 × 1018 0.793 × 1018 0.221 × 1018

fHR (Hz) 2.51 × 1018 7.18 × 1018 11.69 × 1018

fC (Hz) 25.9 × 103 27.3 × 103 28.9 × 103

fZ (Hz) 0.03044 0.03337 0.04165
fd (Hz) 0.01021

For low frequencies, by ignoring the capacitances of the EDLs, the impedance can be
written as:

ZL = Rac + Rd
tanh

√
s τ√

s τ
(32)

According to numerical calculation, the imaginary part with minus sign of ZL reaches
a maximum of value 0.417227Rd at the following frequency:

ωd = 2 π fd = 2.54065
1
τ

, (33)

which implies the real part, i.e., 0.581634Rd. This frequency is that at which the imaginary
part with minus sign of the impedance reaches a maximum in the low-frequency region of
the Nyquist (Figure 3) and Bode-type (Figure 4) plots, and it is considered the characteristic
frequency of the diffusive transport process in the DBLs. It is also the frequency used
to characterize, from an experimental viewpoint, the diffusional behavior in different
ion-exchange membrane systems [34].

On the other hand, the frequencies corresponding to the impedance values where
the real part, by subtracting Rac, is equal to minus the imaginary part, i.e., values of the
Warburg impedance with a phase of −45◦, are expressed as:

ωdn = 2π fdn =
n2 π2

2 τ
, n = 1, 2, 3, .. (34)
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The transmissive Warburg impedance is constituted by an infinite set of poles cor-
responding to the Laplace variable values zeroing the denominator. The characteristic
frequencies of these poles are expressed as [35]:

ωPn = 2 π fPn =

[
π (2 n − 1)

2

]2 1
τ

, n = 1, 2, 3, .. (35)

Then, ZL can be developed into partial fractions by means of Foster series as [35]:

ZL = Rac +
2 Rd

τ

∞

∑
n = 1

τPn
1 + s τPn

(36)

The Taylor series around s = 0 of the transmissive Warburg impedance is:

ZL = RDC −
Rd
3

s τ +
2 Rd
15

(s τ)2 − 17 Rd
315

(s τ)3 + O (s4) (37)

Operating with the inverse function of the admittance with successive continued
fractions yields [35]:

ZL = Rac +
1

1
Rd

+ 1
3 Rd
s τ + 1

5
Rd

+ ...

(38)

At very low frequencies, by considering only the first pole of the transmissive Warburg
impedance, the impedance can be expressed as:

ZF1 = Rac +
Rd

1 + s 4 τ
π2

, (39)

which presents the characteristic frequency corresponding to the first pole of the War-
burg impedance:

ωP1 = 2 π fP1 =
π2

4 τ
(40)

Moreover, at the lowest frequencies, the Taylor series with two terms yields:

ZT1 = Rac +
Rd

1 + s τ
3

, (41)

which yields the characteristic frequency:

ωT1 = 2 π fT1 = 3
1
τ

(42)

At very low frequencies, the Foster series of the impedance can be expressed as:

ZF = Rac +

(
1 − 8

π2

)
Rd +

8
π2 Rd

1 + s 4 τ
π2

, (43)

which presents the frequency of the first pole of the Warburg impedance given by Equation (40)
as the characteristic frequency. Finally, at the lowest frequencies, the Taylor series with
three elements [36] is expressed as:

ZT = Rac +
Rd
6

+
5
6

Rd

1 + s 2 τ
5

(44)
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which yields the characteristic frequency:

ωT = 2 π fT = 2.5
1
τ

(45)

The Nyquist plot of the low-frequency impedance of ion-exchange membrane systems
(ZL) and those of the different approximations corresponding to the lowest frequencies
(ZF1, ZT1, ZF and ZT) are shown in Figure 5 for IDC = 0. The approximation obtained
using continued fractions with three terms from the Taylor series around zero frequency of
the Warburg impedance appropriately models the impedance of ion-exchange membrane
systems at low frequencies [36]. The corresponding characteristic frequency expressed by
Equation (45) is very close to the characteristic frequency of the diffusive transport process
expressed by Equation (33).
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4. Conclusions

A set of characteristic frequencies of the electrochemical impedance of ion-exchange
membrane systems were identified from the zero-pole representation of the approximations
of high and low frequencies. This approach allows us to use the values of these frequencies
within the range of experimentation for the characterization of electrical properties of
ion-exchange membrane systems. In addition to the characteristic geometric frequencies
in the membrane and the two DBLs adjacent to the membrane, we identified two new
characteristic interfacial frequencies. These frequencies correspond to poles of order 1/2 of
the impedance associated with the contributions of the EDLs, and their numerical values
allow us to evaluate the role played by the capacitances of the EDLs in the impedance of ion-
exchange membrane systems without interfacial resistances. In the intermediate frequency
range, a new characteristic frequency associated with the Cottrell behavior of the system
obeying a diffusion transport in semi-infinite space was identified, which would be relevant
in studies associated to admittance. In the low frequency range, multiple frequencies were
identified, in addition to the characteristic diffusional frequency, i.e., that corresponding
to the maximum of the imaginary part with minus sign of the impedance. These are the
characteristic frequencies of the infinite poles of the hyperbolic tangent function and those
at which the phase of this function is −45◦. At very low frequencies, the impedance can be
modelled by a function with a single frequency. The expansion into partial fractions of the
Warburg impedance exhibits the frequency of the first pole as the characteristic frequency,
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whereas two additional expressions for the characteristic frequency associated with the
expansions in Taylor series can also be identified.
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