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Abstract: Diffusion dialysis (DD) is an anion exchange membrane-based functional separation
process used for acid recovery. TMA (trimethylamine) and BPPO (brominated poly(2,6-dimethyl-1,4-
phenylene oxide) were utilized in this manuscript to formulate AEMs (anion exchange membranes)
for DD (diffusion dialysis) using the phase-inversion technique. FTIR (Fourier transfer infrared)
analysis, proton NMR spectroscopy, morphology, IEC (ion exchange capacity), LER (linear expansion
ratio), CR (fixed group concentration), WR (water uptake/adsorption), water contact angle, chemical,
and thermal stability, were all used to evaluate the prepared membranes. The effect of TMA content
within the membrane matrix on acid recovery was also briefly discussed. It was reported that
porous AEMs have a WR of 149.6% to 233.8%, IEC (ion exchange capacity) of 0.71 to 1.43 mmol/g,
CR (fixed group concentration) that ranged from 0.0046 mol/L to 0.0056 mol/L, LER of 3.88% to
9.23%, and a water contact angle of 33.10◦ to 78.58◦. The UH (acid dialysis coefficients) for designed
porous membranes were found to be 0.0043 to 0.012 m/h, with separation factors (S) ranging from
13.14 to 32.87 at the temperature of 25 ◦C. These observations are comparable to those found in the
DF-120B commercial membrane with UH of 0.004 m/h and S of 24.3 m/h at the same temperature
(25 ◦C). This porous membranes proposed in this paper are excellent choices for acid recovery through
the diffusion dialysis process.

Keywords: BPPO; diffusion dialysis; trimethylamine; acid recovery; porous anion exchange membrane
(AEM)

1. Introduction

Metal etching, pickling, and stripling processes generate a lot of waste solutions
containing inorganic acids [1–5], whereas organic acid-containing waste solutions are cre-
ated by fermentation, food, leather, and pharmaceutical corporations [1,2,6–8]. Different
processes, such as neutralization [9–11], coagulation and flocculation [12], extraction [13],
and the ion exchange process [14–19], can be used to recover the acids. In the chemical
and biochemical sectors, ion exchange membranes (IEMs) play an integral role [20]. Ion
exchange membranes (IEMs) that are delicate films (usually very thin) composed of im-
mobile positively or negatively charged functional groups and counter ions are gaining
popularity since they make separation processes simpler, more productive, and less expen-
sive. AEMs (anion exchange membranes) and CEMs (cation exchange membranes) are
two major categories of IEMs. AEMs have lately attracted considerable attention because
they can effectively retrieve acid wastes from various industries such as mining, metal
manufacturing, painting, and agriculture [21–24].

The DD (diffusion dialysis) process is a versatile strategy that utilizes (AEMs) anion
exchange membranes for the extraction and recovery of acids [25–31]. To be more specific,
the diffusion dialysis process depends on a concentration gradient for removing and
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purifying the acid or alkali waste solutions using the ion-exchange membrane separation
method [8,23]. High energy savings [32,33], environmental safety [17], and continuous
operation [34] are all advantages of the DD process. When producing chemicals, the acids
can be recycled and reused, whereas the waste solution’s residual products, such as metal
ions, can be eliminated immediately [8]. The diffusion dialysis mechanism is shown in
Figure 1 by the separation of HCl from its inlet solution.
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Figure 1. Graphical representation of the diffusion dialysis process through the anion exchange
membrane separation process of HCl from its inlet feed solution.

A concentration gradient exists between the feed and outlet sides, as seen in Figure 1.
As a result, both the hydrogen ions (cations) and the chloride ions (anions) diffuse across
the anion exchange membrane. Although being positively charged, hydrogen ions are
capable of passing across the AEM due to their compact size, high mobility, and lower
valence state. Metals in the feed solution do not pass through the AEM, so they are rejected.
From the outlet side, the HCl is extracted. As a result, the acid is successfully extracted
from the inlet solution. The use of AEM to recover acid through diffusion dialysis has been
extensively proposed and applied around the world. The number of publications per year
in this area are shown below in Figure 2.

There is a general upward trend in the number of publications each year, as seen in
Figure 2. This demonstrates that acid recovery through the diffusion dialysis process using
an AEM has received a lot of attention in the last decade.

Because of their prominence in DD, anion exchange membranes have received con-
siderable attraction [23,26–28,31,35]. Polymers such as PS (Polystyrene), PSf (Polysulfone),
and BPPO (brominated poly(2,6-dimethyl 1,4-phenylene oxide)) make up the bulk of
homogenous acid recovery AEMs [8]. Presently, the dense membranes make up the plu-
rality of AEMs used in acid recovery via diffusion dialysis [36]. Direct evaporation is
used to typically manufacture the polymers’ solution (homogeneous membrane) such as
poly(p-phenylene oxide), polystyrene, and polysulfone [8], or the copolymerization of
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monomer units within the pores of a porous membrane surface that has already been
formed (heterogeneous membrane) [37–40]. They are, however, often thick and compact
(several tens or hundreds of micrometers), which can obstruct the transportation of ions
into the membrane [8]. The acid dialysis coefficient (UH) of the BPPO-based commercial
membrane DF-120B, for instance, is indeed just 0.004 m/h at 25 ◦C [41]. Due to poor per-
meation concerns, this study centered on incorporating a new feature into the membrane
matrix. The starting material was chosen to be polymers that are hydrophilic in nature, typ-
ically polyvinyl alcohol (PVA), and the assistant functional groups of –Si–OH and –C–OH
were integrated onto it [42,43]. At 20 ◦C, the membranes enhanced their UH values from
0.007 m/h to 0.015 m/h. [43]; however, the key disadvantage of the membranes based on
PVA was that they swelled a lot in the water, making their long-term stability a concern.
To address these difficulties, tiny alkoxy silanes such as tetraethoxysilane (TEOS) or multi
silicon copolymer forming groups were used to functionalize and cross link the PVA main
chains [43,44]. When we switched from dense membrane to porous membrane processing,
we had to change our strategy to solve these issues.
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Figure 2. A brief post-2010 timeline depicting the number of associated academic publications for the
acid retrieved through diffusion dialysis process with anion exchange membranes (Available online:
Google Scholar (12 December 2021).

BPPO was chosen as the polymer matrix since the feasibility of making a porous
membrane out of a hydrophobic polymer could be established. Figure 3 below depict the
three-dimensional structure of the BPPO:

We recognize that the porous structure lowers ion transport resistance, whereas the
polymer increases membrane durability. Apart from DD, porous membranes are frequently
used in several different methods. These membranes, for example, are typically used
in membrane processes that depend on pressure gradients such as ultrafiltration and
nanofiltration. Moreover, for desalination purposes, to fabricate porous composite ion-
exchange membranes, other research teams employed a two-step approach of phase-
inversion [45,46]. Despite the fact that these micropores do not penetrate through the entire
membrane, they can help HCl diffusion greatly [47].

This paper describes the phase-inversion process used to formulate and characterize
BPPO-based porous anion exchange membranes in ethanol medium using the reaction of
BPPO and TMA. By varying the concentration for TMA (Figure 4) into the membrane matrix,
the porous AEMs have been developed with different physicochemical characterizations. In
batch mode, they were compared to the commercial DF-120B membrane for acid recovery
through the DD process.
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Figure 4. Three dimensional (3D) structure of Trimethylamine (TMA).

2. Experimental
2.1. Materials

Tianwei Membrane Co. Ltd., Shandong, China, provided brominated poly(2,6-dimethyl-
1,4-phenylene oxide) (BPPO) and an anion exchange membrane that is commercially avail-
able; DF-120B (part of the DF-120 series). DF-120B is composed primarily of quaternized
poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO) and polyester as a substrate. Typical char-
acteristics of this membrane include water uptake of 74.2% with IEC of 0.83 mmol/g.
Trimethylamine (TMA), ethanol, hydrochloric acid (HCl), ferrous chloride (FeCl2·4H2O),
sodium chloride, potassium permanganate (KMnO4), and sodium carbonate (Na2CO3)
were obtained from Sinopharm Chemical Reagent Co. Ltd., China. The rest of the reagents
used in the experiments were of analytical grade and commercially available from domestic
chemical reagent manufacturers. These reagents were used without further purification. In
addition, throughout the experiment, deionized water (DI water) was used.

2.2. Preparation of Porous Membranes Based on BPPO

The procedure of phase-inversion was used for the fabrication of the porous AEMs,
as mentioned previously in our studies [41,48]. Firstly, 3 g of BPPO (brominated poly(2,6-
dimethyl-1,4-phenylene oxide)) was dissolved into NMP (N-Methyl-2-pyrrolidone) solvent
at ambient temperature in a typical procedure. To obtain porous AEMs with different
physicochemical properties, different amounts of trimethylamine (TMA) varying from
0.15 to 0.30 g were applied to the casting solution according to Table 1. The reaction mixture
was stirred overnight at 40 ◦C to accelerate the reaction between BPPO and trimethylamine.
The solution was subsequently poured onto a glass plate and immediately immersed in an
ethanol medium (Figure 5). The membranes were cleaned by infusing them in water for
two days straight, consecutively. The membranes were given the labels M1, M2, M3, and
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M4 according to the quantity of amine utilized. The formulated BPPO-based membrane’s
chemical composition is also shown in Figure 6.

Table 1. Composition, ion exchange capacity, fixed group concentration, water uptake, and mem-
branes swelling of membranes M1 to M4.

Sr. No BPPO (g) TMA (g) IEC (mmol/g) WR (%) LER (%) C × 10−3 (mol/L)

M1 3 0.15 0.71 149.60 3.88 4.74
M2 3 0.20 0.98 170.45 5.0 5.75
M3 3 0.25 1.20 196.42 5.98 6.10
M4 3 0.30 1.43 233.80 9.23 6.12
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2.3. Characterizations
2.3.1. Instrumentations

Using an FTIR spectrometer (Vector 22, Bruker, Billerica, MA, USA) with a resolution
of 2 cm−1 and a total spectral range of 4000–400 cm−1, the attenuated total reflectance
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(ATR) technique was used to record the FTIR spectra for the dry membranes. The chemical
structures of the BPPO and prepared membranes were also identified using a proton NMR
(DMX 300 NMR spectrometer operating at 300 MHZ). With a Shimadzu TGA-50H analyzer,
TGA was conducted on the developed membranes in the range of temperatures from 25 ◦C
to 700 ◦C under nitrogen flow and a heating rate of 10 ◦C/min. The structure or morphology
of the membrane was examined using a field emission scanning electron microscope
(FE-SEM, Sirion200, FEI Company, Hillsboro, OR, USA). Dry membranes were analyzed
with their surface and cross-sectional views. As representative cases, SEM illustrations
of various porous BPPO-based membranes were displayed. For ease of handling, the
formed membranes’ water contact angle was calculated at room temperature. A sessile
drop method was used to obtain contact angle values from a one-contact-angle goniometer
(SL200B, Shanghai, China) configured with video capture. In total, 40 µL of water was
sprayed onto a membrane that was dried using a micro-syringe in a concentrated water
vapor environment.

2.3.2. Ion Exchange Capacity

The ion exchange capacity (IEC) of AEMs is indeed a significant parameter that deter-
mines how well they function in diffusion dialysis. In reality, AEM should prioritize high
ion exchange capacity to improve ion transport sites [23]. IEC is a membrane permeability
parameter that is dependent on the functional groups in the membrane matrix [49,50]. It is
the amount of exchangeable ionic groups (equivalents) available per dry membrane weight.
The traditional Mohr approach was used to measure it [12,51]. To ensure that all charge
sites were transitioned to the Cl− form, the samples of the membrane were stabilized in
1.0 (M) NaCl solution for 2 days. To remove any remaining NaCl, the membranes were
then cleaned thoroughly with deionized water. After that, the membranes were stabilized
for two days with Na2SO4 solution with a concentration of 0.5 (M). Titration was carried
out with a concentration of 0.05 (M) AgNO3 and K2CrO4 as an indicator which was used
to predict the quantity of Cl− ions that were released. Furthermore, the membrane’s IEC
(ion-exchange capacity; mmol/g) was determined using the formula, IEC = VC/m, where
m, V, and C signify the membrane’s dry weight, titre volume during titration, and AgNO3
solution concentration, respectively.

2.3.3. Water Uptake, Linear Expansion Ratio, and Fixed Group Concentration

WR (Water uptake) measurements were utilized to explore the membrane’s hydrophilic
nature. To validate the dry weight for the samples of the membrane, they were heated and
dried in an oven and weighed precisely. After that, for 72 h, these membranes were sub-
merged in water at a temperature of 25 ◦C, and their wet weight was recorded accordingly
after the water from the surface of these membranes was removed using tissue paper. The
WR values were then determined using the mass difference before and after the membranes
were entirely dried [41,52] using the following Equation (1) below; as the relative weight
gained per gram for the dried sample:

WR =
WWET −WDRY

WDRY
× 100% (1)

where WDRY and WWET denote the weights of dry and wet membranes, respectively.
The dry and wet length data of membranes at room temperature were used to calculate

the linear expansion ratio (LER). The following equation was used to determine the LER of
prepared AEMs [53,54].

LER =
Lw − Ld

Ld
× 100% (2)

where the dry and wet membrane lengths, accordingly, are denoted by Ld and Lw.
According to our prior studies, the fixed group concentration in the membrane was

determined using (WR) water uptake and (IEC) ion exchange capacity [41,48].
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2.3.4. Diffusion Dialysis for the Mixture of HCl/FeCl2
Diffusion dialysis was performed by utilizing the framework discussed in our prior

research studies [53,55–58]. The following is a representation of the typical experimental
setup. The tests for the DD were conducted in a two-compartment cell that was segregated
via a membrane that had an effective area of about 5.7 cm2. All membranes were cautiously
stabilized in the feed solution (1 M HCl + 0.25 M FeCl2) for two hours prior to the test,
which stimulated the waste acid solution generated in industrial processes, for example,
metallurgical processes or related products. During the analysis, one compartment of
the cell was loaded with 100 mL feed solution and another one with 100 mL distilled
water. In an effort to minimize the concentration polarization, both sides were intensely
agitated. One hour of diffusion was permitted. Following that, all the solutions, feed,
and permeate were extracted from their respective compartments. Titration carried out
using Na2CO3 aqueous solution with a concentration of 0.05 mol/L determined the HCl
concentrations on both sides, while titration was performed with KMnO4 aqueous solution
with a concentration of 0.002 mol/L determined the FeCl2 concentration. All of the tests
were carried out at a temperature of 25 ◦C. Using the formula below, the dialysis coefficients
(U) can be determined [41,48,57]:

U =
M

At∆C
(3)

where M refers to the quantity of the component transferred in (mol) whereas A specifies
the effective area of the membrane in (m2), t refers to the time (h), and ∆C defines the
logarithm mean concentration in between the two chambers in (mol/m3). ∆C is calculated
as below [41,48,57]:

∆C =
C0

f − (Ct
f − Ct

d)

ln[C0
f /(Ct

f − Ct
d)]

(4)

where C0
f and Ct

f indicate the feed concentrations at time 0 and t, respectively, and Ct
d is the

dialysate concentration at time t.
The dialysis coefficients UH and UFe can be evaluated using Equations (3) and (4).

The separation factor (S) is calculated as the ratio of the dialysis coefficients (U) of the two
species present in the solution represented in Equation (5) below [41,48,57]:

S =
UH
UFe

(5)

3. Results and Discussion
3.1. FTIR and Proton NMR Tests

The successful formation for TMA functionalized BPPO-based porous membranes
is validated through FTIR spectrum analysis. Figure 7 illustrates the FTIR spectra for
pristine BPPO as well as the prepared anion exchange membrane. The stretching vibration
of –CH groups (V and δ) existing inside the pristine BPPO and also the prepared anion
exchange membrane generated the reference band in the range of 1446 cm−1 [41,43,52,57].
The symmetrical and asymmetrical stretching vibrations of C-O have adsorption peaks of
1200 cm−1 and 1306 cm−1, respectively, whilst phenyl groups have peaks of 1470 cm−1 and
1600 cm−1. The sharp peak observed in the prepared AEM at 1260 cm−1 reflects the C-N
stretching vibrations, which are missing in the membrane of pristine BPPO. The vibration
for C=C stretching present in the phenyl groups is responsible for the band at 1608 cm−1,
while C-O-C stretching is responsible for the peak at 1190 cm−1. [59]. The bands occurring
at 1446 cm−1 are generated by stretching of –CH groups (V and δ) [43]. The stretching of
C-Br in the BPPO membrane caused the band to appear at 750 cm−1 [54,60]. This band
did not show up in the ATR-FTIR spectra of prepared AEMs after the reaction with TMA.
These findings strongly indicate that the prepared AEMs were successfully synthesized.
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Moreover, proton NMR spectroscopy was also used to confirm the successful fab-
rication of anion exchange membranes. Figure 8 depict the proton NMR spectrums of
the pure BPPO and fabricated anion exchange membrane M4. After the reaction with
trimethylamine, a new peak was observed at 4.5 ppm, which was absent in the proton
NMR spectrum of the pure BPPO. This peak is associated with the -CH2-N bond into
the prepared anion exchange membrane M4, which shows the successful quaternization
reaction between BPPO and trimethylamine.
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3.2. Morphology

The morphology of the designed membranes was evaluated using scanning electron
microscopy (SEM). Figure 9 present the SEM micrograph of the designed membranes’
surface layers and cross-sections. All of the membranes examined were reported to possess
a porous morphology. Membrane morphology was determined by the concentration of
TMA found in the polymer matrix. The pore size of membranes M1 to M4 increases from
16 µm to 44 µm as the ion exchange group concentration in the polymer matrix increases.
Figure 9 show the changes in morphologies of the prepared membranes as the amount of
TMA in the membrane matrix was enhanced. In the cross-sectional micrographs of the
membranes, pores that have finger-like morphology can be observed. Moreover, Figure 9
clearly show that the presence of finger-like structures in membranes M1 to M4 were
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increased with the content of amine, which is consistent with our previous findings [41,61].
This can lower the resistance of ions as they pass within the membranes, making it useful
for the separation of mixtures. As a result, these porous morphologies may be ideal for
acid recovery using the DD process.
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3.3. Thermal Decomposition and Chemical Stability of the Prepared Membranes

The thermal decomposition behavior for the formulated membranes M1 to M4 is
evaluated by TGA, as seen in Figure 10. At medium temperatures, the designed AEMs
demonstrate good thermal stability and can withstand temperatures of up to 200 ◦C. The
thermal desorption of water, thermal deamination, and thermal oxidation of the membrane
polymer were the three key stages in the weight loss property of the membranes. The
vaporization of water from the polymer matrix caused all of the membranes to lose weight
between 90–140 ◦C during the first step. At 250 ◦C, the quaternary ammonium group
deteriorated, culminating in the second weight loss stage [54]. The cleavage of the main
polymer matrix is responsible for the final stage of weight loss, which occurred at 420 ◦C.
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Figure 11 demonstrate the chemical stability of the designed AEMs after two weeks
at ambient temperature immersion in 2 M concentration of HCl. Here, the weight loss of
the membrane after immersion in a 2 M HCl solution at room temperature is referred to
as chemical stability. After two weeks of immersion in the 2 M HCl solution, all of the
prepared membranes demonstrated good chemical stability, while their color remained
unchanged. The weight loss (%) of the prepared membranes ranged from 11.90% to
15.38%, with membranes comprising the most TMA indicated the maximum weight loss.
Furthermore, by increasing the amount of TMA in the polymer matrix, weight loss was
increased substantially from M1 to M4. Thus, with a two-week immersion, the maximum
weight loss was just around 15.38%. This indicated that the AEMs that have been prepared
are incredibly effective in terms of DD application for acid recovery.
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3.4. Ion Exchange Capacity (IEC) and Fixed Group Concentration (CR)

A critical variable of AEMs used for the DD process is the ion exchange capacity they
have. Hence, this variable was measured by the classical Mohr’s method and depicted
in Table 1. The value of IEC was reported in the range of 0.71 mmol/g to 1.43 mmol/g.
In other words, it was observed that as the concentration of TMA in the polymer matrix
increased, the IEC also enhanced from 0.71 mmol/g to 1.43 mmol/g.

Fixed group concentration (CR) was typically determined by dividing the IEC (ion
exchange capacity) with the WR (water uptake). According to previous researchers, it is an
essential parameter of AEMs, and variations in CR values can have a significant impact on
the DD performance of the membrane [41,48]. At ambient temperature, the CR (fixed group
concentration) of the formulated membranes was evaluated, and the results obtained are
presented in Table 1. It was discovered that as the concentration of TMA in the polymer
matrix increased, the fixed group concentration (CR) also surged from 0.0047 mol/L to
0.0056 mol/L.

3.5. Water Uptake and Linear Expansion Ratio

IEM’s water uptake (WR) is a useful tool that has a measurable impact on the phenom-
ena of separation, as well as the dimensional and mechanical characteristics [41,52,62–64].
Water molecules existing in the membrane matrix will facilitate the separation of charged
functional groups, which is essential for ion transport [52,64]. As presented in Table 1, the
WR (water uptake) of the prepared membranes enhanced from 149.60% to 233.80% as the
concentration of TMA in the membrane matrix increased. Capillary tension is primarily
responsible for its association with the porous structure. From this perspective, the porous
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AEMs should possess marginally greater water uptake than dense AEMs whenever the ion
exchange capacities are equivalent [41].

IEMs have a significant factor called the linear expansion ratio (LER). Membranes with
a high LER exhibited poor durability and mechanical stability, thereby reducing membrane
performance. Table 1 show the findings of the investigation performed at room temperature.
It was discovered that increasing the concentration of TMA in the polymer matrix increased
the (LER) ratio from 3.88% to 9.23%. Furthermore, both water uptake and swelling behavior
were influenced by the hydrophilic nature of the membrane matrix as well as the degree of
plasticization [65]. The durability of the polymeric matrix ensures an increase in swelling
ratio as well as the water uptake at a lower degree of plasticization (i.e., the inclusion of
high hydrophilic sites), which is aimed at improving the acid recovery performance [66,67].

3.6. Water Contact Angle

One of the essential features of ion-exchange membranes is the water contact angle
which is used to determine their hydrophilicity. At ambient temperature, the water contact
angle of prepared membranes M1 to M4 was determined, and the results are shown in
Figure 12a,b. The water contact angle for the formulated membranes was observed to
be lowered from membranes M1 to M4 as the concentration of TMA in the membrane
matrix increases, as per these figures. This is related to the enhancement in the hydrophilic
nature of membranes as the ion exchange contents in the polymer matrix increased. For
DD applications, the increased hydrophilicity of prepared membranes is favorable.
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3.7. DD for HCl/FeCl2 Solution

The acid dialysis coefficient (UH) and acid/salt separation factor (S) of AEMs are
employed to directly assess the ability of recovery and purity for the acid that is recovered;
these are the essential factors to evaluate DD efficiency. Nevertheless, certain commercial
AEMs have low acid recovery ability during the DD process, which restricts their use in
acid recovery applications. Due to the extreme practical implementation of AEMs in DD,
the developed AEMs with better acid dialysis coefficients must be designed based on the
structure–performance relationship of membrane materials [23].

After the in-depth analysis and comprehensive characterizations of the prepared
porous membranes, an experiment was conducted in this study using an HCl + FeCl2
mixture with concentrations of 0.1 M HCl and 0.25 M FeCl2 for exploring possible applica-
tions for the membrane applications in acid recovery through diffusion dialysis process.
According to the obtained DD results, it was found that the dialysis coefficient of HCl (UH)
for the prepared membranes ranges from 0.0043 m/h to 0.012 m/h at room temperature,
as presented in Figure 13. It was also discovered that as the concentration of TMA in the
polymer matrix increased, the values of UH gradually increased from membranes M1 to M4.
As a result, based on the aforementioned findings, two separate references may be obtained.
Primarily, the recorded UH values are relatively larger than those of commercial DF-120B
membrane with UH value of 0.004 m/h. Secondly, these values are nearly identical to our
formerly published membranes with UH around 0.010 m/h at a temperature of 25 ◦C [41].
The porous structure and growth in the ion-exchange group inside the membrane matrix
may indeed be primarily responsible for the steady increase in UH values. The active zone,
also known as the ion-exchange party, is present in all the prepared porous membranes
and is responsible for ion transfer across the membrane. As the amount of TMA in the
polymer matrix was gradually increased from membrane M1 to M4, the IEC and WR of the
membranes also increased, resulting in enhanced hydrophilicity of membranes and higher
UH values of the prepared membranes. The presence of the –N+(CH3)3Br− group in the
membranes significantly enabled Cl− ions to move through them. H+ ions can also pass
across the membranes with Cl− to achieve electrical neutrality [68]. Fe-related components
such as Fe2+ and FeCl+, on the other hand, are less likely to move through the membrane
due to their greater size and reduced mobility [67,68].
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membranes.

Figure 14 depict the values of separation factor (S) as a ratio of UH to UFe. The S
values acquired for the prepared membrane M1 to M4 range from 13.14 to 32.87, implying
that the S value for the prepared membrane M4 is almost identical to that of PVA-based
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hybrid membranes (22–39) at 25 ◦C [63], (12.1–35.7) at 25 ◦C [43], and (18.5–21) at 25 ◦C [69].
Previous studies have indicated that the separation factor is influenced by the structure of
the membrane and its functional groups. This study indicated that as the amount of TMA
in the prepared membranes M1 to M4 increases, the IEC values gradually increase and that
this increased IEC is effective in finding a high S value. Furthermore, as shown by the SEM
micrographs in Figure 9, the prepared membranes M1 to M4 contain porous morphologies.
During the ion transport process, the resistance was reduced by the porous morphology.
Because the membrane structure is porous, H+ ions can transfer easily, increasing the UH
value; however, smaller pore sizes can greatly impede the transport of FeCl2, increasing
the S values. Hence, from the prepared membranes M1 to M4, we see a rising trend in S
values. The prepared porous membranes M1 to M4 can be effectively used for acid recovery
through diffusion dialysis process from the perspective of acid dialysis coefficient and
separation factor.
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4. Conclusions

Porous BPPO-based AEMs were developed using a phase-inversion technique in
ethanol medium in this manuscript. The trimethylammonium group in the prepared AEMs
was responsible for Cl− transfer within the polymer matrix. FTIR and proton NMR tests
verified the reaction between BPPO and TMA. The thermal and acid stability of the prepared
membranes were exceptional. Additionally, the prepared membranes were proven to have a
higher WR (water uptake), IEC (ion exchange capacity), and CR (fixed group concentration).
The increased hydrophilicity of the developed membranes was demonstrated by the water
contact angle. The DD process for the recovery of acid was used to investigate the separation
efficiency of the prepared membranes at ambient temperature. The observations led to a
higher dialysis coefficient of acid (HCl) (0.0034–0.012 m/h) and a higher separation factor
(S) (13.14–32.87). Therefore, diffusion dialysis can be potentially applied to recover acid
using these formulated porous BPPO-based anion exchange membranes.
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Abbreviations

AEM Anion exchange membrane
BPPO Brominated poly(2,6-dimethyl-1,4-phenylene oxide)
CR Fixed group concentration
DD Diffusion dialysis
IEC Ion exchange capacity
IEM Ion exchange membrane
NMP N-Methyl-2-pyrrolidone
SEM Scanning electron microscopy
S Separation factor
TGA Thermogravimetric analysis
TMA Trimethylamine
UH Diffusion dialysis coefficient of HCl
UFe Diffusion dialysis coefficient of FeCl2
WR Water uptake
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