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Abstract: Extracellular vesicles (EVs) as the new form of cellular communication have been demon-
strated their potential use for disease diagnosis, prognosis and treatment. EVs are vesicles with a
lipid bilayer and are present in various biofluids, such as blood, saliva and urine. Therefore, EVs
have emerged as one of the most appealing sources for the discovery of clinical biomarkers. However,
isolation of the target EVs from different biofluids is required for the use of EVs as diagnostic and
therapeutic entities in clinical settings. Owing to their unique properties and versatile functionalities,
nanomaterials have been widely investigated for EV isolation with the aim to provide rapid, simple,
and efficient EV enrichment. Herein, this review presents the progress of nanomaterial-based iso-
lations for EVs over the past five years (from 2017 to 2021) and discusses the use of nanomaterials
for EV isolations based on the underlying mechanism in order to offer insights into the design of
nanomaterials for EV isolations.
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1. Introduction

Enormous studies on extracellular vesicles (EVs) have advanced our knowledge of
cell communication by including EVs as the new form of signaling system [1]. EVs are
phospholipid bilayer-encapsulated particles that are secreted by almost all types of cells and
released into extracellular environments such as blood, saliva, urine and cerebrospinal flu-
ids. According to their biogenesis, EVs are given more specific names, including exosomes
which are released during fusion of multivesicular endosomes with plasma membranes
(a diameter of 30–100 nm) and microvesicles (MVs) which are directly budded from the
plasma membrane (a diameter of 100–1000 nm) [2,3]. However, it is usually difficult to
differentiate exosomes and MVs after their release. Therefore, “extracellular vesicle” which
is suggested by the International Society of Extracellular Vesicles (ISEV) is used here to
represent all the secreted vesicles [4]. As the important message carriers, EVs and their
cargo, such as proteins and microRNAs, have been proven to be closely related to the
pathogenesis of most types of cancer and, therefore, can serve as biomarkers for disease
diagnosis, prognosis and treatment [5,6]. However, biofluids usually contain mixtures
of EVs, lipoproteins and protein aggregates, among others. The exploitation of EVs as
potential diagnostic and therapeutic entities thus requires methodologies that can efficiently
isolate the target EVs from different biofluids.

Nanomaterials are materials with at least one dimension under 100 nm [7,8]. Because
of their small size, large surface area, variable structure, and versatile functionality, scien-
tists have applied nanomaterials to isolate EVs in the past decade in order to facilitate the
development of rapid, simple, and efficient EV isolation methods [8,9]. This review outlines
the advances made over the past five years (from 2017 to 2021) in nanomaterial-based
isolations for EVs. It is worth mentioning that the literature on detection, analysis, and
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quantification of EVs was also included, with emphasis on the strategies applied for enrich-
ing or capturing EVs before detection, analysis and quantification. Because the underlying
mechanism of enrichment for EVs in some of detection, analysis or quantification methods
could be used for EV isolation. Here, we select some representative publications to discuss,
rather than exhaustively listing all the related publications. The purpose of this review is to
bring the research topic to researchers and facilitate improving the design of nanomaterials
applied in EV isolations.

2. Conventional Isolation Approaches for Extracellular Vesicles

Although a variety of methods have emerged for EV isolation, four classes of isola-
tion strategies are most commonly used, including ultracentrifugation (UC), size-based
isolation (such as size exclusion chromatography and ultrafiltration), immunoaffinity and
precipitation [10]. These conventional isolation approaches are briefly discussed here since
many reviews have provided a comprehensive overview of these approaches [2,11]. Table 1
lists the advantages and disadvantages for each technique.

Table 1. Summary of the commonly used EV isolation methods.

Technique Principle Advantages Disadvantages

Ultracentrifugation
Particles with different sizes and

densities have different sedimentation
rates during ultracentrifugation

• Ease of use
• High purity
• Suitable for large vol-

ume preparation

• Extremely tedious
• Time-consuming
• Low recovery
• High equipment cost
• Possible structure damage

Size exclusion
chromatography

EVs pass through a porous stationary
phase in which small particles enter into

the pores resulting in the late elution

• Maintain the native
state of EVs

• High purity

• Results in large volume of
eluted samples

Ultrafiltration
EVs pass through a membrane with

defined pore size or molecular
weight cut-off

• Fast isolation process
• Low equipment cost

• Vesicle clogging and
trapping

Immunoaffinity
Based on specific binding between
surface marker proteins of EVs and

immobilized antibodies

• High purity
and selectivity

• High-cost antibodies
• Elution may damage native

EV structure

Precipitation
Polymers decrease the solubility of EVs

by creating the hydrophobic
micro-environment

• Ease of use
• High yield

• Low purity
• Polymers affect downstream

MS analysis

Up to now, the most commonly used protocol for separating EVs has involved a series
of UC steps. According to their sizes and densities, the apoptotic bodies/cell debris, the
MVs and exosomes are sedimented orderly with the successive increase of centrifugation
forces [2]. Among the currently used EV isolation approaches, UC has been considered the
“gold standard”. Due to its ease of use, UC has been widely employed in about 80% of the
currently reported EV studies [11–13]. However, the purity of EV samples prepared by UC
is often limited by the presence of co-sediment and high abundant components, such as
some of non-vesicles, including protein aggregates and lipoproteins [14], which potentially
compromises the subsequent EV function analysis [15]. As a result, density gradient (DG)
flotation, such as the sucrose gradient or OptiPrep velocity gradient (iodixanol gradient),
has been developed [16,17]. But UC-based isolations are usually extremely tedious, time-
consuming and require expensive equipment [11]. Furthermore, previous studies have
reported that prolonged periods of ultracentrifugation forces can detrimentally affect the
structure and biological function of the isolated EVs, which would affect the downstream
function studies of EVs [18].

Unlike UC, size-exclusion chromatography (SEC) as one of size-based isolations has
been introduced with the most appealing feature, that is to maintain the native state of the
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isolated EVs [19]. When a liquid sample passes through a stationary phase with porous
structures, molecules smaller than the pores of the stationary phase enter into the pores
resulting in a late elution, and vice versa. Based on this principle, SEC has been widely
applied to separate large molecules such as proteins and liposome particles [20,21]. Because
SEC is usually operated by passive gravity flow and could elute EVs by physiological
buffers, it has a minimal effect on the structure of EVs, as well as on biological function
of EVs [10,22]. Because of those features, SEC is also widely used for EV isolation and
several commercial SEC kits, such as qEV (IZON), are available for use. However, SEC
generally results in a large volume of samples after elution, which may require an extra
step to concentrate the samples. Ultrafiltration is another type of size-based isolation which
separates EVs by passing them through a membrane with defined pore size or molecular
weight cut-off via centrifugation or pressure. In comparison with UC, ultrafiltration is a fast
EV isolation process with low equipment cost, which holds potential for industrial-scale
EV preparation [2,11]. However, one of the most noticeable problems is that membranes
could easily get blocked because of vesicle clogging and trapping [11,23].

Theoretically, any proteins or membrane components expressed on the membrane
of EVs could be used to develop affinity-based EV isolations, such as immunoaffinity. In
past decades, various EV markers have been reported including transmembrane proteins,
heat shock proteins, fusion proteins (e.g., flotillins, annexins, and GTPases), lipid-related
proteins, and phospholipases [24–26]. Among them, transmembrane proteins such as
CD81, CD63, CD9, annexin, and Alix are the most widely selected marker proteins for EV
isolations [27,28]. For example, several commercial EV isolation kits, such as Exosome-
human CD63 isolation/detection (Invitrogen, Waltham, MA, USA) and Exosome Isolation
Kit CD81/CD63 (Miltenyi Biotec, Bergisch Gladbach, Germany), were generated. Ow-
ing to isolation via interaction with specific markers, immunoaffinity-based methods are
more appealing for purifying the defined subpopulations of EVs, but not for “universal”
EV isolations.

Polymer-based precipitation, which is another commonly used strategy for EV isola-
tion, decreases the solubility of EVs by creating the hydrophobic micro-environment via the
interaction between the highly hydrophilic polymers and the water molecules surrounding
the EVs [29]. Polyethylene glycol (PEG) is the commonly used polymer for this EV isola-
tion [30]. Several popular commercial EV isolation kits, such as Exo-Prep (HansaBioMed,
Tallinn, Estonia), Total Exosome Isolation Reagent (ThermoFisher, Waltham, MA, USA),
and ExoQuick (System Biosciences, Palo Alto, CA, USA) have been developed based on
PEG precipitation [11]. Generally, PEG with a molecular weight of 6000 to 20,000 Da is
employed for EV precipitation since low molecular weight PEG (<5000 Da) is often utilized
for the preferential hydration of proteins [30–33]. Although polymer precipitation-based
EV isolation generally yields more EV samples, the obtained EV samples are typically
characterized by low purity, because various water-soluble materials, including nucleic
acids, lipoproteins, proteins, and even viruses, can also be precipitated by water-excluding
polymers beside EVs [34,35].

As mentioned above, each isolation method has its unique advantages and disad-
vantages. Therefore, considerable efforts have been devoted to improving these isolation
methods and details can be found elsewhere [2,11,36]. For example, dithiothreitol (DTT) or
3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic (CHAPS) was added into
the crude exosome pellets yielded by UC. This can prevent uromodulin in urine by forming
a polymeric network to trap exosomes and, thus, increase the yield of exosomes [37,38]. A
simple filtration step is usually added before the UC steps in order to reduce the processing
duration by concentrating samples [39]. A multiple-cycle polymeric EV precipitation or
combined use with UC or SEC, was reported to improve the purity of the EV samples
obtained by precipitation [40–42]. Moreover, UC and filtration can be used as the final step
to concentrate the SEC eluent because SEC always generates a large volume of sample [43].
Despite those efforts, improvements on EV isolations are limited by either modifying
isolation procedures or combining the use of those existing methods. Isolation methods for
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EVs could be further improved by integration with advanced nanomaterials, which will be
discussed in detail in Section 3.

3. Nanomaterials Applied in the Isolation of Extracellular Vesicles

The membranes of EVs present fairly distinctive features either from biochemical
composition or biophysical/chemical properties. For example, the membranes of EVs
contain specific surface molecules, such as tetraspanins (e.g., CD9, CD63, CD81), proteins
related to transport and fusion (e.g., flotillin, caveolin-1), heat shock proteins (e.g., Hsp90),
lipid-related proteins, and phospholipids [24–26]. Further, the nonfunctionalized EVs have
been demonstrated to carry a net-negative surface charge due to the nature of EV surface
molecules, including glycans, phospho and sulpho groups [44,45]. Those specific features
provide the basis for separation of EVs from others. Therefore, we will discuss those
nanomaterial-based isolations according to their enriching mechanism as summarized in
Figure 1. Isolation methods according to the morphology of EVs are also covered here.
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Figure 1. Isolation based on the surface characteristics of EVs. The EVs can be isolated by various
affinity interactions including antibodies and aptamers for marker proteins, metal oxides for hy-
drophilic phosphate heads of phospholipids and lipid probes for lipids on the membrane of EVs.
Isolation also can be performed via the biophysical or chemical properties of EV membranes, such as
surface charge and hydrophilicity.

3.1. Isolation Based on the Interaction with the Surface Molecules of Extracellular Vesicles
3.1.1. Isolation Based on the Surface Proteins of Extracellular Vesicles

As mentioned above, the bilayers of EVs contain a large amount of proteins and
receptors. This feature provides an excellent opportunity to develop specially designed
nanomaterials for EV isolations via immune affinity interactions. Antibodies which target
the surface proteins of EVs are thus typically selected and fixed on different nanomaterials
for EV isolation [9,11]. Among those materials, the immunomagnetic bead is the most
representative one, as it can enrich and separate EVs by a simple external magnetic field [11].
To date, several commercial immunoaffinity magnetic beads, such as Exo-Flow™ Selective
Exosome Capture (System Biosciences), are available to isolate EVs with high specificity [46].
In addition to those commercial kits, many studies have also reported to modify magnetic
particles with antibodies to tetraspanins, such as CD9, CD63, and CD81 [11,47].

With the aim of enhancing the interaction with EV surface proteins, nanomaterials
with a high surface area have been designed and investigated over the past five years. In
addition to magnetic beads, magnetic nanowires have been demonstrated as a support for
immobilizing antibodies [48]. In comparison with nanoparticles, the elongated nanowire
can encapsulate large amounts of magnetic nanoparticles and provide a high surface area,
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which allows modifications with more EV-specific antibodies, thus improving the recovery
and purity of EV isolation. Based on those features, anti-CD9, anti-CD63, and anti-CD81
antibodies have been functionalized on the magnetic nanowires via streptavidin–biotin
interaction. The antibody cocktail-conjugated magnetic nanowires have effectively iso-
lated EVs from the plasma of breast and lung cancer patients [48]. Zeolitic Imidazolate
Framework-8 (ZIF-8), one of the metal organic frameworks (MOFs) which can be flexibly
functionalized and has tunable pore sizes, was also investigated. Owing to their distinct
structure, MOFs provide more surface area for immobilization of bio-macromolecules by
increasing the surface-to-volume ratio. Therefore, Zhand et al. coated the polystyrene
beads with ZIF-8 and then immobilized anti-CD81, anti-CD91, anti-EpCAM and anti-PD-L1
antibodies on the beads. These ZIF-8 coated polystyrene beads were able to detect as little as
50 EVs per 10 µm bead [49]. Further, a nanostructured graphene oxide (GO)/polydopamine
(PDA) film coating was applied to the surface of the channel and the Y-shaped microposts
of a microfluidic device in order to increase the surface area and, thus, antibody immo-
bilization density. Based on this nano-interface, the microfluidic device could efficiently
capture EVs and facilitate development of an ultrasensitive EV ELISA assay [50].

For one optimum isolation method, elution or recovery of EVs under mild condition
is as crucial as EV capture for their downstream function analysis. Although immuno-
magnetic bead-based approaches offer a sensitive and efficient isolation method, they
usually elute EVs by adding an acidic buffer or chaotropic agents. These might impair the
biological activity of the EVs and cause a misleading conclusion in the subsequent function
analysis [51]. To address this challenge, Cai et al. introduced host guest noncovalent
interactions as smart “cleavable bridges” for EV release (Figure 2). Anti-CD63 antibodies
were bound to superparamagnetic nanoparticles through host guest interactions between
β-cyclodextrin (β-CD) and 4-aminoazobenzene (AAB). By eluting with the biofriendly
α-CD, EVs could be released from superparamagnetic nanoparticles without impairing
the biologically active substances, such as proteins and RNA, on EVs [46]. In a similar
way, Kang et al. chose 3,3′-dithiobis(sulfosuccinimidylpropionate) (DTSSP) as the cleavable
agent to recover EVs after capture by the anti-CD63 antibodies, which were immobilized in
the inner surface of a microfluidic device. DTSSP contains a disulfide bond at the middle
of the identical arm of the amine-reactive N-hydroxysulfosuccinimide ester. It can be
reduced by a reducing agent, such as dithiothreitol (DTT). DTT is a water-soluble reducing
reagent and is commonly used in biochemical studies, which makes it suitable for elution
of EVs, because EVs are known to be more stable against changes in chemical or thermal
environments [52]. Recently, a core-shell nanofiber coated with gelatin was also fabricated.
Anti-CD63 antibodies were immobilized to gelatin. The elution of EVs can be achieved by
incubation in water at 37 ◦C since gelatin is able to dissolve in water [53].

In addition to the classic antigen antibody interaction, aptamers represent an alterna-
tive approach for antibodies due to their high binding affinity, low/no immunogenicity,
ease of synthesis and accessibility for different chemical modifications [8]. Aptamers, also
called chemical antibodies, are RNA or single-stranded DNA (ssDNA) molecules and
bind to their targets in a manner similar to antibodies. Until now, many studies have
conjugated aptamers to various nanomaterials for EV isolations (Figure 1) [8,11]. Yoshida
et al. coated peptide aptamers for EpCAM on the silica or polystyrene beads after being
functionalized with zwitterionic MPC (2-methacryloyloxyethyl phosphorylcholine) poly-
mers. Zwitterionic MPC polymers can reduce the non-specific binding of proteins onto a
material’s surface [54]. Additionally, aptamers specific to CD63 were also reported to be
absorbed onto the surface of single-walled carbon nanotubes in a microfluidic device for
EV isolation before the colorimetric detection [55]. Aptamers are known to specifically bind
to their targets by forming a tertiary structure which can be re-modulated by modifying
the buffer system and ions (e.g., Mg2+ and K2+) responsible for the tertiary structure. This
feature provides the possibility to elute EVs from aptamers under mild conditions, thereby
preserving the native state of EVs [11,56]. Song et al. immobilized two DNA aptamers with
high affinity and specific to CD63 proteins onto the magnetic beads. They found that CD63
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aptamers not only presented a comparable diagnostic efficacy for CD63-positive breast
cancer with commercial antibodies but also could release the captured EVs via a simple
0.5 M NaCl elution step [57].
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To satisfy enriching specific types of EVs, proteins on the surface of EVs, except
tetraspanins can be chosen as the alternative targets for EV isolation. Qi et al. chose trans-
ferrins as the capture agent for EVs due to their low immunogenicity and the abundance
of transferrin receptors expressed in blood EVs. Superparamagnetic nanoparticles were
labeled with transferrin and bound to the transferrin receptor on the blood EVs through
transferrin transferrin receptor interaction. Results have shown that these nanoparticles
have little influence on EVs and can be used in both in vitro and in vivo studies [58].
Further, the small molecule TG97, which recognizes prostate-specific membrane antigen
(PSMA), was also coated onto a silica nanostructure and used to isolate EVs with expression
of PSMA [59].

3.1.2. Isolation Based on the Surface Lipids of Extracellular Vesicles

Complementary to characteristic surface proteins, phospholipids which constitute
the foundation of EV membranes can be considered as the “universal” markers for EV
isolation. Therefore, targeting the surface phospholipids has emerged as an alternative
approach to isolate EVs from various biological samples [60–62]. For example, Tim4
proteins and annexin V, which specifically bind to the phosphatidylserine (PS) displayed on
the surface of EVs, were reported to be immobilized on magnetic beads or functionalized
on the surface of a microfluidic device for EV isolation [60,61]. Biotinylated annexin V and
cholera toxin B chain (CTB) were also investigated to facilitate binding between EVs and
streptavidin-coated magnetic nanoparticles via their affinity for phospholipids [62].

Instead of targeting one specific class of phospholipids, more efforts have emphasized
enriching EVs through interaction with the “universal” phospholipids on the surface of
EVs [63–67]. A significant feature of EVs is their uniquely curved lipid surface in the
extracellular space, since highly curved membranes are commonly found to organize and
compartmentalize organelles within cells, such as the Golgi [68]. By utilizing selective
binding for highly curved membranes, membrane-sensing proteins, such as bradykinin,
have become convenient, easy-to-synthesize novel molecular probes for targeting EVs.
Gori et al. synthesized a short amino acid sequence derived from bradykinin and immobi-
lized it on chips through chemoselective click-type reaction. It showed a higher binding
capacity for EVs than anti-tetraspanins antibodies and demonstrated a potential use for EV
isolations [64].
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It is well known that the phospholipids in the membranes of EVs are amphiphilic
with hydrophobic tails inside and hydrophilic phosphate heads outside the surface [68].
Due to this feature, metal oxides have become the method of choice for developing new
EV isolation materials since some metal oxides can reversibly bind with the phosphate
group and have been widely used for enrichment of phosphopeptides and water-soluble
organic phosphates, among others [63,69]. Recently, Gao et al. enriched EVs with TiO2
microspheres. The TiO2-based isolation can enrich serum EVs with an isolation efficiency
of 93.4% [63]. TiO2 microspheres have also been investigated to isolate urine EVs when
combined with ultrafiltration [65]. Further, magnetic materials coated with TiO2 allow
rapid and simple isolation with external magnetic fields. Pang et al. used Fe3O4@TiO2
nanoparticles to enrich and separate EVs from cell medium within 5 min and achieved a
capture efficiency of 96.5% [66]. In addition to TiO2, Geng et al. synthesized CaZrO3:Sm
nanosheets with a high specific surface area to bind to phosphate groups for EV isolation.
In comparison with commercial TiO2, CaZrO3:Sm yielded a higher enrichment efficiency
for CD63 and TSG101 proteins after analysis of the isolated EV samples [67]. Moreover, Jiao
et al. synthesized Ti4+-modified magnetic graphene-oxide composites (GFST) and achieved
tandem enrichment of EVs and EV phosphopeptides using one material. Metal or metal
oxide-based materials can bind to phosphate group either from the surface phospholipids
of EVs or the phosphoproteins inside EVs. Accordingly, EVs were firstly enriched by GFST
from human serum and directly lysed to release the EV phosphoproteins. After digestion,
GFST and the captured EV phosphopeptides were separated by a magnet. GFST performed
excellently in both EV isolation and phosphopeptide enrichment. An enrichment efficiency
of 83.1% was reached for EV isolation and 530 phosphoproteins were identified in serum
EVs [70].

Alternatively, DSPE (1,2-distearoyl-snglycero-3-phosphethanolamine), which bear two
hydrophobic fatty acid tails, has been utilized to synthesize a lipid nanoprobe for the rapid
isolation of EVs from cell-culture supernatant and plasma (Figure 3). DSPE can be inserted
into EV membranes via non-covalent interactions between the two hydrophobic fatty acid
tails of DSPE and the lipid membranes of EVs. After being labeled with the biotin tag-lipid
nanoprobes, EVs were captured by NeutrAvidin-coated magnetic particles for subsequent
extraction within 15 min [71]. Wan et al. further immobilized this novel lipid nanoprobe
on the nanostructure silica platform to perform EV isolation on a microfluidic device [72].
Further, the bifunctionalized magnetic beads immobilized both DSPE and Ti(IV) ions
were also designed to enhance enrichment efficiency. In this design, this bifunctionalized
materials can simultaneously be inserted into the EV membranes via DSPE and chelate to
the phosphate group via Ti(IV) ions. It can efficiently isolate urine EVs within 1 h, with
80% recovery [73]. Moreover, hydrophilic and aromatic lipophilic groups which have high
affinity toward lipid-coated EVs were utilized to isolate EVs by immobilizing them on
magnetic beads [74].

3.1.3. Isolation Based on the Charge and Hydrophilicity of Extracellular Vesicles

The analysis of zeta potential revealed that EVs carry a negative charge that allows
positively charged molecules to capture EVs via electrostatic interactions. Consequently,
anion-exchange chromatography, charge-based precipitation, and commercially available
cationic particles have been explored for the possible use in EV purification (Figure 1) [46,47].
Recently, a material, called ExoCAS-2, which contains polycationic polymer-functionalized
magnetic beads, was designed for EV isolations. By adjusting the salt concentration in
the buffer, ExoCAS-2 could achieve capture and release EVs within about 30 min [75]. A
microchip modified with chitosan was fabricated to isolate EVs as the surface charge of
chitosan can be switched by simply adjusting the pH of the surrounding environment; thus,
the capture and release of EVs can be achieved by using buffers with different pH. Using
this microchip, EVs can be extracted from trace samples (10 µL) with a relative purity of
over 90% and an 84% RNA recovery ratio within 15 min, which is impossible for traditional
UC-based methods [76].
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Additionally, high performance liquid chromatography (HPLC) columns integrated
with new nanomaterials also provide a new strategy to isolate EVs. It is worth noting that
EV samples could easily block most of the common LC columns since EVs are generally
larger than the pores of the stationary phases, such as porous silica beads. Poly(ethylene
terephthalate) (PET) capillary-channeled polymer (C-CP) fibers were thus introduced as
stationary phases in hydrophobic interaction chromatography (HIC) workflows for EV
isolation [77]. The C-CP fibers consist of an eight-legged periphery and thereby form 1 to
4 µm-wide channels, which are suitable for separating EVs. When operating in HIC mode,
C-CP fibers are able to elute EVs based on their hydrophobicity via an inverse salt gradient.
Compared to the organic solvents employed in the reverse phase, salt containing buffer is
much better for maintaining the biological activity of EVs. Taking advantage of this, C-CP
fibers have expanded their application in solid-phase extraction workflows, rather than
HPLC processing platforms, by being packed into a spin-down column or micropipette
tip [77–81].

Apart from isolation on the solid supports, an aqueous two-phase system (ATPS) was
recently adapted to isolate EVs from urine and plasma [82,83]. ATPSs have been used to
fractionate cells into subpopulations mainly according to their charge and hydrophobic
surface properties [84–86]. Generally, small molecules prefer to be distributed between the
phases while particles partition into one phase [86]. Among many hydrophilic polymers,
the PEG dextran (DEX) two-phase polymer system has shown its ability to isolate EVs. EVs
are usually quickly distributed into the DEX phase since the DEX phase is more hydrophilic
than the PEG phase (Figure 4). An optimized ATPS could recover ~100% of EVs from urine,
whereas UC only recovered 21% [82,83]. Benefiting from this simple process, Han et al.
applied the PEG/DEX ATPS in a microfluidic device. This device can facilitate continuous
EV isolation with 83.4% recovery efficiency without complex external equipment [87].
Seo et al. further improved ATPS by introducing an additional oil phase between the inner
ATPS droplets and achieved separation of EV particles in a single DEX-rich droplet [88].
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Figure 4. The workflow of an aqueous two-phase system (ATPS)-based EV isolation. Dextran (DEX)
and PEG were added into plasma. After mixing and centrifugation, two phases formed with the
upper phase (UP1) containing PEG and proteins. After removing UP1, a protein-depleting solution
(PDS) was left and then mixed with PEG/DEX again. The lower phase containing DEX and EVs
was collected after mixing, centrifugation and removing the PEG-rich phase again. This figure was
adopted from reference [82].

3.2. Separation Based on Precipitation and Size of Extracellular Vesicles

As mentioned in Section 2, PEG is widely employed to isolate EVs as the precipitating
reagent. The PEG-based isolation approach was recently further improved by a magnetic
bead-mediated selective adsorption strategy (called “MagExo”) [89]. Fang et al. found that
EVs could selectively precipitate on the surface of magnetic beads under a PEG concen-
tration of 1% to 5%, while most of the proteins remained in the supernatant. Therefore,
both PEG and the magnetic beads were added into the plasma or cell-culture medium
together. EVs were then absorbed onto the surface of magnetic beads and eluted by PBS.
One of possible explanation for this phenomenon is the strong hydrophilic effect of PEG.
Under the effect of PEG, a large number of water molecules in the solution are locked
up. Consequently, the dispersion stability of EVs in the solution is changed, and they
are forced to aggregate together in priority. Because magnetic beads have an abundant
surface area, unstable EVs tend to aggregate on the surface of magnetic beads; thus, EVs
could easily be isolated from biological fluids by a simple magnetic separation instead
of a low-speed centrifuge recovery [89]. Instead of adding magnetic particles into PEG
solutions, PEG-coated magnetic nanoparticles were also explored. The branched PEGs
were immobilized on magnetic nanoparticles and resulted in reticular structures as shown
in Figure 5. Moreover, magnetic nanoparticles are able to create a large number of holes via
the formation of their agglomerates. Further results revealed that the reticular structures of
PEG and the holes formed by agglomerates can trap proteins and tiny impurities. Therefore,
PEG-coated magnetic nanoparticles offer an alternative strategy to isolate EVs by removing
proteins and other impurities. This can reduce about 60% of proteins in fetal bovine serum
without damaging the EVs [90].

Based on the principle of size-exclusion, microfluidic devices incorporated with differ-
ent membranes were designed for EV isolations [11,91]. For example, two polycarbonate
membranes with pore sizes of 200 and 300 nm, respectively, were separately assembled
into different layers of a device. The integrated double-filtration microfluidic device can
successfully enrich EVs with a size range of 30–200 nm from urine and has been applied to
the study of bladder cancer [92]. Moreover, hydrogels, or forming a hydrogel-like structure,
can either exclude EVs or entrap EVs according to the size of their structure and, thereby,
achieve EV isolation [93,94]. For instance, super absorbent polymer (SAP) is one hydrogel
which has been used as an alternative to filtration for concentrating microorganisms [95].
Due to the huge size difference between the water channel of SAP beads and EVs, relatively
small molecules would be absorbed by SAP beads while EVs would be excluded and
thereby concentrated [93]. Unlike SAPs, mannuronate guluronate polymer (MGP) was
used to create a new EV extraction method by entrapping EVs. MGP is able to create a
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hydrogel structure by incorporating calcium ions. The MGP-based method can effectively
isolate EVs from extremely diluted samples and avoid co-precipitating plasma proteins [94].
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4. Conclusions

Applying nanomaterials to EV isolation methods can speed up the development of iso-
lation methods for EVs in a simple, rapid, efficient and inexpensive way as demonstrated in
this review. Powered by the advantages of nanomaterials, the application of nanomaterials
goes beyond the EV isolations [8,96]. For instance, nanomaterials have been reported to fa-
cilitate the isolation of EV cargo components [97–99]. Recently, magnetic beads coated with
complementary oligonucleotides were synthesized to enrich EV-associated microRNAs [97].
Magnetic hydrophilic materials have also demonstrated their enrichment capability for
EV glycoproteins [98]. Moreover, the thermosensitive soluble polymers have been de-
signed for the facile enrichment of EV N-glycoprotein in mild conditions [99]. Apart from
the enrichment of EV cargo components, nanomaterials have been widely investigated
for EV-based therapy [100]. For example, iron oxide-based nanoparticles have been em-
ployed for improving the production of EVs from stem cells in order to satisfy the needs of
therapy [101].

These applications have indicated the crucial role of nanomaterials for the charac-
terization and application of EVs, which is usually achieved by using an optimized EV
isolation as a basis. Owing to the development of nanomaterials, there has been a new
trend to integrate nanomaterials into conventional isolation approaches for EVs. Isolation
integrated with nanomaterials can further improve EV enrichment via providing a simple
isolation process, synthesizing functionalized supports/platforms, or developing a new
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capture agent. However, we would still like to stress that addressing the challenges faced
by conventional EV isolation methods, such as the purity of the isolated EV samples, also
urgently requires nanomaterial-based EV isolation [4]. It is believed that advances in
nanomaterial-based EV isolation would greatly promote understanding of EV biology and
facilitate translating the application of EVs in clinical settings.
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