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Abstract: In this study, high-performance indium–gallium–zinc oxide thin-film transistors (IGZO
TFTs) with a dual-gate (DG) structure were manufactured using plasma treatment and rapid ther-
mal annealing (RTA). Atomic force microscopy measurements showed that the surface roughness
decreased upon increasing the O2 ratio from 16% to 33% in the argon–oxygen plasma treatment
mixture. Hall measurement results showed that both the thin-film resistivity and carrier Hall mobility
of the Ar–O2 plasma–treated IGZO thin films increased with the reduction of the carrier concen-
tration caused by the decrease in the oxygen vacancy density; this was also verified using X-ray
photoelectron spectroscopy measurements. IGZO thin films treated with Ar–O2 plasma were used as
channel layers for fabricating DG TFT devices. These DG IGZO TFT devices were subjected to RTA at
100 ◦C–300 ◦C for improving the device characteristics; the field-effect mobility, subthreshold swing,
and ION/IOFF current ratio of the 33% O2 plasma–treated DG TFT devices improved to 58.8 cm2/V·s,
0.12 V/decade, and 5.46 × 108, respectively. Long-term device stability reliability tests of the DG
IGZO TFTs revealed that the threshold voltage was highly stable.

Keywords: indium–gallium–zinc oxide (IGZO); plasma treatment; dual-gate thin-film transistor (DG TFT)

1. Introduction

Owing to rapid developments in optoelectronic technology, the latest-generation
displays are tending toward having thinner, lighter, and larger screens. In this regard,
thin-film transistors (TFTs) with excellent device performance have received significant
attention [1–6]. Amorphous indium–gallium–zinc oxide (a-IGZO) thin films have been
employed as the channel layer in the fabrication of IGZO TFT devices, and they are expected
to be applied in next-generation flat panel displays (such as 8K televisions with high frame
rate, large outdoor display panels, and mobile devices with flexible display panels) because
of their excellent electrical characteristics such as high optical transparency, high field-effect
carrier mobility, low manufacturing cost, and possibility of being manufactured at low
temperature with the characteristic uniformity of large-area displays [7]. COMPARED
to the typically used amorphous silicon TFTs, a-IGZO TFTs have considerably higher
field-effect carrier mobility and device operational stability and can be fabricated at lower
processing temperatures [8–13].

In the fabrication of IGZO TFTs, glass substrates are generally used, adopted with
a sputter deposited IGZO thin film as the channel layer. However, in the continuous
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fabrication of IGZO TFTs, glass substrates are disadvantageous because they are fragile.
Although thin-glass substrates have elasticity at thicknesses of less than 200 µm, achieving
a roll-to-roll process is difficult, and the substrates crack easily during the manufacturing
process. Therefore, researchers are still attempting to incorporate IGZO TFTs into flexible
substrates for subsequent application in wearable devices [14–23].

The development of IGZO TFTs on plastic substrates such as polyimide, polyethylene
terephthalate, and polyethylene naphthalene has progressed rapidly to the point at which
flexible display panels have been recently manufactured for use in wearable devices [24].
Compared with glass substrates, plastic substrates have high transparency and favorable
surface flatness; moreover, they have stable chemical properties. Plastic substrates are also
easily bent, making them suitable for the manufacturing of flexible devices in a roll-to-
roll process. These excellent characteristics of plastic substrates make them an attractive
substitute for glass substrates [25–28].

As mentioned, plastic substrates are suitable for the manufacture of flexible IGZO
TFT devices. However, a high-temperature thermal annealing process (>400 ◦C) is usually
required to ensure that the electrical properties of TFTs are favorable. Unfortunately, the
thermal expansion coefficient of plastic substrates (50 ppm/◦C) is much higher than that of
glass substrates (0.55 ppm/◦C). Therefore, the manufacture of IGZO TFTs on plastic sub-
strates by using high-temperature processing could lead to softening, deformation, melting,
or decomposition of the plastic substrate, resulting in degraded electrical characteristics of
the resulting TFT device or process failure. Therefore, reducing the process temperature
during the manufacture of devices containing plastic substrates while maintaining or even
enhancing the performance of TFT devices is essential.

One study performed oxygen plasma treatment of IGZO thin films to reduce the films’
density of oxygen vacancies at low process temperatures and thereby improve the quality
of the thin-film materials and the performance of IGZO TFT devices [29]. According to
the results from recent plasma treatment studies, hydrogen plasma can passivate interface
trap density and oxygen vacancy defects of the IGZO channel, as well as increase carrier
mobility. Additionally, since the ionic radius of the nitrogen atom is close to that of the
O atom, the N atom can act as a defect binder and effectively reduce the oxygen vacancy
density in the oxide film. An appropriate composition of N/H plasma treatment was also
studied for effectively reducing the density of traps at the SiO2/α-IGZO interface and
passivating the oxygen vacancy-related defects of α-IGZO TFTs. Nevertheless, excessive
N/H plasma treatment may lead to interstitial defects at the SiO2/α-IGZO interface and
degrade the IGZO: N/H TFT devices' electrical characteristics [30,31].

By treating the surface of IGZO TFTs with oxygen plasma, the density of oxygen
vacancies can be reduced, improving the field-effect carrier mobility and current switching
ratio of the TFT device. However, as the plasma treatment time increases, O2+ will aggregate
at the surface of IGZO serving as the trapping centers and preventing subsequent atomic
oxygen from filling the oxygen vacancies and degrading device characteristics. Therefore,
argon gas is added to the oxygen plasma as the Ar/O2 mixture for removing the O2+ that
is covered on the IGZO channel layer for further reducing the oxygen vacancy [32]. In our
previous study, the IGZO thin films with amorphous structure were subjected to the Ar/O2
plasma mixture treatment with varied ratios of oxygen composition and demonstrating the
improved IGZO bottom-gate TFT device operation characteristics [33].

Nevertheless, the IGZO thin-film surface was severely damaged; in particular, ion
bombardment during the plasma treatment increased the surface roughness. This could
result in degraded electric characteristics of TFTs, reduced field-effect mobility, and more
leakage current paths and carrier trapping centers because of increased surface scattering
effects in the plasma-treated IGZO TFTs. Therefore, modulation of the position of the carrier
transportation path in the IGZO channel layer to prevent the transporting carriers in the
IGZO channel layer from being affected by the scattering effect of the damaged thin-film
surface is necessary and important.
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Single-gate (SG) IGZO TFT is widely used for high-definition active-matrix liquid
crystal displays (AMLCD) and active-matrix light emitting diodes (AMOLED) because of
its high field-effect mobility (>10 cm2/V·s), low off-state current and low subthreshold
swing. However, there are still issues related to the consistency of various properties like
bias, temperature, and the performance of the device. To improve the device operation
characteristics and reliability of IGZO TFT, a dual-gate (DG) design for the TFT with
enhanced threshold voltage control capability as a DG TFT was fabricated and employed
for further investigation [34]. Recently, DG IGZO TFTs have attracted great attention owing
to their remarkable advantages, such as excellent control of low turn-on voltage (VON)
and enhancement of turn-on current (ION; i.e., gm value), owing to the formation of the
two channels formed by the simultaneously applied voltages on the upper and lower gate
electrodes. Therefore, increasing the flexibility of the electrical circuit is possible, as is
modulating the channel layer position by simultaneously applying the respective voltages
to the upper and lower gate electrodes. This results in significant improvement of the drain
current owing to the formation of parallel channel layers compared with the single-channel
layers in SG IGZO TFT devices. Moreover, the influence of the interfacial carrier capture
centers and the carrier surface scattering effect at the insulator–channel layer interface
could be dramatically mitigated in DG TFTs by modulating the channel layer position as
well as the carrier transportation path, thereby contributing to the enhancement of carrier
mobility and reduction of the subthreshold swing (S.S.) of the TFT device [35].

In this study, a DG structure was used to modulate the position of the channel layer
in an IGZO TFT to reduce the surface scattering resulting from damage to the IGZO thin-
film surface caused by argon–oxygen (Ar–O2) mixed plasma treatment. Additionally,
low-temperature rapid thermal annealing (RTA) was employed to improve further the
performance characteristics of the plasma-treated DG IGZO TFT; the resultant field-effect
carrier mobility was 58.8 cm2/V·s, S.S. was 0.12 V/decade, and ION/IOFF current ratio
was 5.46 × 108.

2. Materials and Methods

The IGZO TFTs investigated in this study were fabricated to have an SG or DG
structure, and the devices’ characteristics were compared in terms of the field-effect carrier
mobility, S.S., and ION/IOFF current ratio. The SG IGZO TFT was fabricated as follows.
First, a 50 nm-thick aluminum gate, to act as the bottom gate electrode, was deposited
using an E-gun system onto a 500 nm-thick Si wafer. Then, plasma-enhanced chemical
vapor deposition (PECVD) was used to deposit a 250 nm-thick SiO2 layer on the bottom
gate. Subsequently, 50 nm-thick IGZO channel layers were deposited using radio frequency
magnetron sputtering with an In2Ga2ZnO7 (In2O3:Ga2O3:ZnO = 1:1:1 mol%) target at a
sputtering power of 50 W for 1500 s, and the thin-film deposition working pressure was
kept at 5 × 10−3 Torr with Ar/O2 (32/1 sccm) plasma. Next, the sputter-deposited IGZO
thin films were subjected to Ar–O2 mixed plasma treatment with an O2 gas flow ratio of
16%, 20%, or 33% (respectively denoted as samples A, B, and C) in a high-density plasma
(HDP) system with HDP set at 100 W for 20 s at the working pressure of 5 × 10−3 Torr; the
IGZO thin film without plasma treatment was denoted the pristine sample. The surface
morphology of the IGZO thin films was studied using atomic force microscopy (AFM).
Next, 300 nm-thick aluminum was deposited as the source and drain electrodes on the
IGZO channel layer by using the E-gun system, completing the fabrication of the SG
IGZO TFT. The channel length (L) and width (W) of the IGZO TFTs were 50 and 500 µm,
respectively. The DG IGZO TFT structure was fabricated in the same manner as the SG TFTs
but with a 250 nm-thick Si3N4 layer deposited using PECVD and acting as the passivation
layer (top-gate insulator). Finally, a 50 nm-thick aluminum layer was deposited as the top
gate electrode. Figure 1 illustrates the structure of a DG IGZO TFT.
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Figure 1. Schematic of an IGZO TFT with DG design.

After manufacturing the TFT devices, a post thermal annealing process was performed
on both the SG and DG IGZO TFT devices with annealing temperatures of 100–300 ◦C for
2 h under ambient nitrogen. The heating rate and cooling rate during the thermal annealing
process were 15 ◦C/min and 10 ◦C/min, respectively. The chemical composition of the
IGZO thin films were analyzed using X-ray photoemission spectroscopy (XPS), respectively.
The B1500A semiconductor parameter analysis instrument was employed to thoroughly
evaluate and compare the performance of the TFT devices.

3. Results and Discussion
3.1. XPS

XPS was employed to investigate the chemical characteristics of plasma treated IGZO
thin films obtained using various oxygen flow ratios. The relationship between the oxygen
flow ratio and oxygen deficiency during the plasma treatment was investigated comprehen-
sively by comparing the high-resolution scans of the O 1s XPS line in Figure 2. Figure 2a
shows the XPS spectrum of the O 1s peak of the pristine sample. The XPS O 1s peak of
samples A, B, and C is shown in Figure 2b–d, respectively.

The O 1s core levels of the IGZO thin films exhibited asymmetrical high binding energy
and consisted of two mixed Gaussian–Lorentzian functions, corresponding to OI and OII,
with their centers at 530.3 and 531.3 eV, respectively [36]. The OI peak represents the
covalent bond of oxygen ions with Zn, Ga, and In cations, whereas the OII XPS signal peak
represents oxygen deficiencies. Therefore, the integrated peak ratio of the OII/(OI + OII)
intensity ratio of the O 1s core levels of the IGZO thin films was used to evaluate thin-film
quality and the number of oxygen deficiencies in the plasma-treated IGZO thin films. The
calculated XPS OII/(OI + OII) intensity ratio of the pristine sample was 0.40, whereas the
intensity ratio was lower at 0.38, 0.34, and 0.28 for the plasma-treated IGZO thin films with
increased oxygen flow ratios in samples A, B, and C, respectively.

The low OII/(OI + OII) XPS intensity ratios revealed markedly fewer oxygen defi-
ciencies and higher quality of the IGZO thin films when oxygen plasma treatment was
applied at a higher oxygen flow ratio. Because oxygen vacancies play the critical role of
donating electrons in a-IGZO thin films, the lower OII peak intensity observed in the XPS
measurements agreed well with the lower carrier concentration and higher carrier mobility
for sample C in the Hall measurement. Therefore, as the oxygen content in the plasma
treatment increases, the reduced carrier concentration in the IGZO film could result in the
increased threshold voltage (VTH) of the IGZO TFT device [33,37].
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The chemical stoichiometry and oxygen content should be suitable when preparing
a-IGZO thin films for the fabrication of TFT devices because oxygen deficiencies are closely
related to the formation of donor states and deep-level electronic traps, which strongly
affect the device characteristics of IGZO TFTs [38]. Unfavorable oxygen deficiencies in
IGZO thin films reduce the device stability and electrical performance of IGZO TFT devices.

Thus, the plasma-treated a-IGZO thin film obtained using an oxygen flow ratio of
33% (sample C), with a low OII/(OI + OII) XPS intensity ratio of 0.28 was employed as the
channel layer for the fabrication of the SG and DG IGZO TFT devices in this study. The use
of low-temperature thermal annealing to ensure high performance of IGZO TFT devices is
essential for preserving the amorphous structure of the a-IGZO channel layer and reduced
donor states as well as the off-current of a-IGZO TFT devices [33,39–41].

3.2. Hall-Effect Measurements

To investigate the electrical properties of IGZO thin films treated with Ar–O2 mixed
plasma, Hall measurement was employed to determine the carrier mobility and carrier
concentration of the pristine sample and samples A, B, and C. Figure 3 shows the thin-film
resistivity (ρ), carrier Hall mobility (µ), and carrier concentration (n) of the pristine sample
(without any O2 process flow) and samples A, B, and C. This figure shows that the pristine
sample had low resistivity (0.13 Ω·cm) and a high carrier concentration of 6 × 1019/cm3.
However, upon increasing the O2 gas flow ratio to 33% in the plasma treatment process,
the electron concentration of the IGZO thin film decreased markedly from 6 × 1019/cm3 to
3.8 × 1018/cm3, and the resistivity increased from 0.13 Ω·cm (pristine sample) to 29.5 Ω·cm
(sample C).

Because the electrons in the conduction band of oxide-based semiconductors originate
in the interstice of metal ions and oxygen vacancies, both can act as donors to provide the
extra electrons in the oxide semiconductor [42]. Therefore, the increased thin-film resistivity
was caused by the reduction of the carrier concentration due to fewer oxygen vacancies
in the IGZO thin film upon increasing the oxygen gas flow ratio in the plasma treatment.
Additionally, the carrier mobility increased significantly from 1.6 cm2/V·s for the pristine
sample to 9.1, 12.3, and 15.0 cm2/V·s for samples A, B, and C, respectively. The increase
in carrier mobility corresponded to an improvement of the thin-film quality caused by
the reduction of oxygen vacancies and surface roughness [42–45], as verified in the AFM
investigation discussed shown below.
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Figure 3. Hall measurement results of the pristine sample and samples A, B, and C.

3.3. AFM

To study the surface roughness of the IGZO thin films after plasma treatment with
different O2 ratios, AFM was employed for surface morphology measurements for pristine
sample and samples A, B, C and D, as shown in Figure 4a–d, respectively. The surface root
mean square (RMS) results of the AFM measurements in Figure 4e show that the surface
roughness was 0.28 nm for the pristine sample. However, the surface roughness of the
IGZO thin films was higher when Ar–O2 mixed plasma treatment was applied owing to
the physical damage caused by ion bombardment. The increased surface roughness led to
higher interfacial trap density and an unexpected leakage current path as well as a poorer
S.S. and higher IOFF of the IGZO TFT device [46]. However, the thin-film surface roughness
was found to decrease from 0.62 to 0.54 and 0.40 nm when the O2 gas flow ratio was
increased from 16% to 20% and 33% during the Ar–O2 gas plasma treatment for samples
A, B, and C, respectively. Reducing the thin-film surface roughness was considered to
contribute to the improvement in carrier mobility because of a weakened surface scattering
effect. Moreover, the low surface roughness in sample C could be useful in reducing the
contact resistance between the source and drain electrodes and the IGZO channel layer in
the IGZO TFT device.
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3.4. Device Characteristics

To improve the characteristics of TFT devices, the oxygen-plasma-treated IGZO chan-
nel layers were subjected to thermal annealing at annealing temperatures ranging from
room temperature (RT) to 300 ◦C. The IDS–VGS transfer characteristics of the SG and DG
IGZO devices annealed at various temperatures were n-type transistor characteristics, as
shown in Figures 5a and 6a, while the corresponding illustrations of energy band dia-
grams for the SG and DG TFTs before and after thermal annealing process were shown in
Figures 5b and 6b, respectively. VDS was controlled to 10 V as VGS was increased from −10
to 20 V.
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Figure 5a shows that the device characteristics of the SG IGZO TFT device improved
upon increasing the annealing temperature from RT to 300 ◦C; Table 1 summarizes the rele-
vant device performance. The ION/IOFF current switching ratio increased from 7.55 × 105

to 9.93 × 106, and the VTH, which was extracted from the linear extrapolation of the square
root of IDS versus VGS, decreased from 2.2 to 1.1 V upon increasing the annealing tempera-
ture from RT to 300 ◦C. The field-effect mobility µ of the IGZO TFT device was obtained
from the drain current in the linear region by using the following equation [38,47]:

µ =
L

CoxWVDS
× gm (1)

where µ is the field-effect mobility; gm is defined as (∂IDS)/(∂VGS); Cox values are the unit
capacitances of the gate dielectric as 1.38 × 10−4 and 2.65 × 10−4 F/m2 for 250 nm-thick
SiO2 and Si3N4 layers (which the dielectric constants are 3.9 and 7.5), respectively. For the
DG TFT, the Cox-dual is the combination of Cox-top and Cox-bottom. W is the channel width,
and L is the channel length. The calculation shows that the field-effect carrier mobility
increased from 18.0 to 38.8 cm2/V·s. The S.S. and total trap density (Nt) were calculated
using Equations (2) and (3), respectively [48]:

S.S. =
dVGS

d log IDS
(2)

Nt =

[
S.S. log(e)

kT/q
− 1

]
Cox

q
(3)

where q is the electron charge; T is the absolute temperature, and k is the Boltzmann constant.
The S.S. decreased from 1.25 to 0.7 V/decade with a decrease in Nt from 1.72 × 1012 to
9.27 × 1011 cm−2·eV−1 as the annealing temperature was increased from RT to 300 ◦C,
indicating an effective reduction of the number of interfacial trapping centers by conducting
thermal annealing.

Table 1. Electrical characteristics of SG TFTs with a 33% O2 plasma–treated IGZO channel layer and
annealed at temperatures from RT to 300 ◦C.

SG TFT
(◦C)

VTH
(V)

Off
Current (A) ION/IOFF

µ
(cm2/V·s)

S.S.
(V/Decade)

Nt
(cm−2·eV−1)

RT 2.2 4.58 × 10−11 7.55 × 105 18.0 1.25 1.72 × 1012

100 2 2.56 × 10−11 8.74 × 106 36.9 1.09 1.49 × 1012

200 1.2 1.65 × 10−11 3.14 × 106 37.0 0.74 9.85 × 1011

300 1.1 1.04 × 10−11 9.93 × 106 38.8 0.7 9.27 × 1011

Because an excess of oxygen atoms was provided by the oxygen plasma treatment, lead-
ing to material damages by Ar–O2 plasma bombardment, reduction of the oxygen-related
defects and interfacial carrier trapping centers by using the thermal annealing process was
essential, as schematically shown as the energy band diagrams in Figures 5b and 6b [33].
Additionally, residual stress was released through the annealing process, resulting in a
dense IGZO thin film with lower oxygen vacancy density and enhanced device characteris-
tics for the IGZO TFT [49–54]. To further improve the characteristics of the IGZO TFT, the
DG structure was used to modulate the channel position to prevent the surface scattering
effect of the transport carriers. Figure 6a shows the IDS–VGS transfer characteristics of
the DG TFTs obtained using annealing temperatures of 100–300 ◦C. Furthermore, Table 2
summarizes the related device characteristics.
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Table 2. Electrical characteristics of a DG TFT with a 33% O2 plasma–treated IGZO channel layer and
annealed at temperatures 100, 200, and 300 ◦C.

DG TFT
(◦C)

VTH
(V)

Off
Current (A) ION/IOFF

µ
(cm2/V·s)

S.S.
(V/Decade)

Nt
(cm−2·eV−1)

100 0.8 2.17 × 10−11 3.64 × 106 39.7 0.27 3.05 × 1011

200 0.8 1.45 × 10−11 2.73 × 107 42.6 0.20 2.03 × 1011

300 0.8 7.23 × 10−12 5.46 × 108 58.8 0.12 8.75 × 1010

The plasma-treated DG IGZO TFT that was thermally annealed at 100 ◦C exhibited
high field-effect carrier mobility of 39.7 cm2/V·s with a threshold voltage (VTH) of 0.8 V
and ION/IOFF current switching ratio of 3.64 × 106. When the annealing temperature
was increased to 200 ◦C and 300 ◦C, the plasma-treated DG IGZO TFT showed consider-
ably improved field-effect carrier mobility of 42.6 and 58.8 cm2/V·s along with increased
ION/IOFF current switching ratio of 2.73 × 107 and 5.46 × 108, respectively. Addition-
ally, the S.S. decreased from 0.27 to 0.12 V/decade, and Nt decreased from 3.05 × 1011 to
8.75 × 1010 cm−2·eV−1. These measurement results show that the annealing process im-
proved the device characteristics of the plasma-treated DG IGZO TFTs, which could have
been caused not only because of the reduction in the number of oxygen vacancies but also
by hydrogen atom diffusion into the IGZO channel layer. Following the PECVD growth of
the thin-film Si3N4 passivation layer for the fabrication of the DG TFTs, hydrogen atom
diffusion was investigated, which contributed to the enhancement of thin-film conductivity
and stability by the formation of a stable structure through the annealing process [55].

Figure 7a–c shows the output characteristics (IDS–VDS) of DG TFTs annealed at 100,
200, and 300 ◦C, respectively. VDS was set with a sweep range of 0–17 V with corresponding
VGS of 2,4, 6, 8, and 10 V. All TFT devices exhibited clear current saturation characteristics
with a steep current increase in the low VDS range and favorable ohmic characteristics
between the channel layer and the source and drain electrodes. Additionally, the saturation
drain current IDS of the plasma-treated DG TFTs increased considerably from 7.28 × 10−5 A
to 9.32 × 10−3 A at the bias condition of VGS = 10 V and VDS = 17 V upon increasing the an-
nealing temperature from 100 ◦C to 300 ◦C, indicating that the thermal annealing eliminated
interfacial carrier trapping centers caused by the Ar–O2 plasma ion bombardment of the
DG TFTs. Additionally, the DG TFTs subjected to thermal annealing showed considerably
improved drain current driving capability and substantially higher saturation drain current
compared with those of the SG TFT. When operating the DG TFT device, a positive bias
was applied to the top and bottom gate electrodes, causing the accumulation of conduction
electrons at the interface at both sides of the IGZO channel layer, which were modulated by
the upper and lower gates, respectively. Therefore, the formation of the two components of
the accumulated conduction electrons led to an increase in the conductivity of the IGZO
channel layer. Consequently, the IDS drain current of the DG TFT devices was much higher
than that of the SG TFT device. Furthermore, the S.S. of the DG TFT was improved because
of the reduced interfacial surface states and the enhanced current drivability resulting
from the bulk accumulation as well as a rapid filling of the surface states in a DG design.
This design effectively lifted the Fermi level toward the conduction band in a bent energy
band alignment at both interfaces of the IGZO layer because both gates were positively
biased [35]. Additionally, improved field-effect carrier mobility was observed compared
with that of the SG TFT owing to the weaker vertical electrical field between the two
positively biased DG electrodes [34]. Therefore, the position of the conductive transporting
carrier path was modulated to protect the transporting carriers from the influence of the
interfacial carrier scattering effect resulting from the Ar–O2 plasma treatment process. This
led to improved field-effect carrier mobility in the plasma-treated DG IGZO TFT subjected
to thermal annealing.
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Because of the absorption of moisture and oxygen from the atmosphere by the IGZO
back-channel layer, an increase in the leakage current of the device with the shift in VTH was
observed in the IGZO TFT devices. To study the reliability of the operating characteristics of
the device, negative gate-bias stress (NBS) and positive gate-bias stress (PBS) measurements
were performed on the DG IGZO TFT devices annealed at 100–300 ◦C in this study.

The transfer curves obtained from NBS and PBS measurements for DG IGZO TFTs
annealed at 100, 200, and 300 ◦C are shown in Figure 8a,b, Figure 8c,d, and Figure 8e,f,
respectively, for a fixed VGS bias of ±10 V and varied bias durations of 0, 300, 600, 900, 1200,
and 1800 s. The corresponding VTH values for the transfer curves in Figure 8 were extracted
and summarized in Figure 9a for clear comparison. The transfer curves were obtained by
sweeping VGS from −10 to 20 V while the source electrode was grounded, and the drain
voltage was 10 V. The NBS reliability test results for DG IGZO TFTs annealed at 100, 200,
and 300 ◦C are shown in Figure 8a,c,e, respectively. The measurement results indicated
that the threshold voltage was shifted in the negative direction with the VTH shift level
(∆VTH) by −1.6 V for the TFT device annealed at 100 ◦C with a stress duration of 0–1800 s.
As the annealing temperature was increased to 200 ◦C and 300 ◦C, ∆VTH decreased to −1.4
and −1.0 V, respectively; this indicated a reduction of the number of interfacial trapping
centers and improvement of the device operation stability with an increase in the annealing
temperature. The negative VTH threshold voltage shift of the TFT devices that was observed
with increasing stress duration was caused by the trapping centers absorbing moisture,
as indicated by the comparison of the energy band diagrams for the unstressed and NBS-
tested TFTs in Figure 9b,c; this led to the release of electrons, resulting in more electrons in
the IGZO channel layer. Additionally, the ionization of the oxygen vacancies to form Vo2+

led to increased electron concentration. Therefore, a negative VTH shift was seen in IGZO
TFT devices in NBS reliability measurements [39].

The PBS reliability test results for DG IGZO TFTs annealed at 100, 200, and 300 ◦C are
shown in Figure 8b,d,f, respectively. A positive threshold voltage shift ∆VTH of 0.8 V was
discovered for the TFT device annealed at 100 ◦C for a stress duration of 0–1800 s. When
the annealing temperature was increased to 200 ◦C and 300 ◦C, ∆VTH decreased to 0.7 and
0.6 V, respectively. The positive VTH shift in the PBS measurement can be explained by the
absorption of oxygen molecules by the IGZO back-channel layer, as indicated by the energy
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band diagram in Figure 9d; this resulted in the formation of oxygen ions with trapped
electrons located in the IGZO channel layer. In addition, electrons were trapped by the
channel/insulating interfacial electron trapping centers, leading to an increase in VTH [56].

The lower surface roughness and fewer oxygen deficiencies of the plasma-treated
IGZO thin film obtained using an oxygen flow ratio of 33% (sample C) caused a reduction
in moisture absorption and the number of electron trapping centers at the IGZO back
channel layer. This result indicated that Ar–O2 plasma–treated IGZO thin films annealed at
high temperature contributed not only to the improvement of the electrical characteristics
of the device—such as the field-effect carrier mobility, ION/IOFF current ratio, and S.S.—but
also reduced the Nt defect density and improved the device bias stress stability given the
reduction in ∆VTH in the PBS and NBS reliability tests [57–59].
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4. Conclusions

In this study, IGZO channel layers were plasma-treated using an HDP Ar–O2 plasma
mixture at an oxygen flow ratio of 16–33%. Upon increasing the oxygen flow ratio in
the plasma to 33% (sample C), AFM measurements revealed that the surface roughness
decreased by 0.40 nm, and XPS revealed a decrease in the oxygen vacancy density in
the IGZO thin film. Additionally, the carrier concentration decreased to 3.8 × 1018/cm3

whereas the carrier Hall mobility increased to 15 cm2/V·s.
The SG and DG IGZO TFT devices treated with 33% O2 plasma and annealed at 100,

200, and 300 ◦C exhibited n-type transistor characteristics. For the SG IGZO TFT device,
the ION/IOFF current switching ratio, S.S., and field-effect carrier mobility were found to
be 9.93 × 106, 0.7 V/decade, and 38.8 cm2/V·s, respectively, when performing thermal
annealing at 300 ◦C. Nevertheless, the plasma-treated DG IGZO TFT device processed at
300 ◦C performed more highly, with an improved ION/IOFF current switching ratio, S.S.,
and field-effect carrier mobility of 5.46 × 108, 0.12 V/decade, and 58.8 cm2/V·s, respectively.
This was caused by the weakened surface scattering effect resulting from damage to the
surface during plasma treatment and the greater accumulation of conduction electrons
caused by modulation of the carrier transportation path in the DG structure. This, in turn,
considerably improved the field-effect carrier mobility. The reliability of DG IGZO TFTs
annealed at various temperatures was determined using NBS and PBS measurements. NBS
and PBS reliability tests revealed improved device operating stability with a reduction in
∆VTH to −1.0 and 0.6 V, respectively, for the TFT annealed at 300 ◦C. The results of this
study showed that the plasma-treated DG IGZO TFT devices annealed at 300 ◦C exhibited
excellent device performance and operational stability, making them highly promising for
applications in next-generation displays.
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