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Abstract: The preparation, characterization and gas separation properties of mixed matrix membranes
(MMMs) were obtained from polyimide capped with ionic liquid and blended with metal-organic
frameworks (MOFs). The synthesized MOF was amine functionalized to produce UiO-66-NH2, and
its amino group has a higher affinity for CO2. Mixed matrix membranes exhibited good membrane
forming ability, heat resistance and mechanical properties. The polyimide membrane exclusively
capped by ionic liquid exhibited good permselectivity of 74.1 for CO2/CH4, which was 6.2 times
that of the pure polyimide membrane. It is worth noting that MMM blended with UiO-66-NH2

demonstrated the highest ideal selectivity for CO2/CH4 (95.1) with a CO2 permeability of 7.61 Barrer,
which is close to the 2008 Robeson upper bound. The addition of UiO-66-NH2 and ionic liquid
enhanced the permselectivity of MMMs, which may be one of the promising technologies for high
performance CO2/CH4 gas separation.

Keywords: mixed matrix membrane; metal-organic frameworks; polyimide; gas separation

1. Introduction

Concerns about global warming have brought unprecedented public attention on the
issue of carbon emissions [1–4]. As a result, an effective technique for separating the carbon
dioxide from a mixture is required. Gas separation membrane technology is an effective
method. The objective that researchers have been trying to achieve is a membrane mate-
rial with high permeability and high selectivity. While gas separation membranes have
advanced significantly, numerous gas separation membranes with excellent characteris-
tics have emerged, such as polymer membranes [5]; metal-organic framework membrane
(MOF) [6–8]; carbon membranes and zeolite membranes [9,10]; and various mixed matrix
membranes (MMM) [11–13]. Polymer membranes are the most important commercial
membranes for gas separation due to their advantages, which include the ease of mem-
brane formation and low cost. However, polymer membranes are usually limited in their
equilibrium relationship between selectivity and permeability, which makes it difficult
to achieve both simultaneously [14,15]. Robeson applied extensive experimental data to
demonstrate the inverse relationship between selectivity and permeability of polymer mem-
branes and defined the Robeson upper bound [16,17]. For the past two decades, the focus of
separation membrane research has been on how to exceed the upper bound. Common mem-
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brane modification methods include thermal rearrangement modification [18,19]; grafting
modification [20]; and mixed matrix membranes, etc.

Metal organic framework materials (MOFs) are a new type of crystalline porous mate-
rials with tunable structure and function, which are formed by coordinated self-assembly
of metal clusters/ions and ligands [21–23]. Metal-organic skeleton materials are widely
used in various industries, including as catalysts; liquid phase separation; and hydrogen
storage and gas separation due to their high porosity and good chemical stability. However,
with industrially produced tunable separation membranes with excellent properties of
metal-organic skeletal materials, it is necessary to focus on how to simultaneously produce
separation membranes with high selectivity; high permeability; high mechanical strength;
and stability. Bernabe et al. [24,25] presented a modified polyimide membrane using mi-
croporous aluminum fumarate (A520) as the filler to improve permselectivity for CO2/N2
and O2/N2. When compared to the pure PI membrane, these membranes have improved
CO2 permeability of 38.5% and O2 permeability of 357.8%. ZIF-302 (zeolitic imidazolate
framework) particles were added into a polyimide matrix to form self-consistent MMMs [12].
MMMs exhibited a 6.05-fold increase in CO2 permeance compared with pure dense MMM.
Liu et al. [26] described a branched polyethyleneimine (PEI) functionalized UiO-66 as the
filler in a 6FDA-ODA polyimide mixed matrix membrane. The MMM with 15 wt% loading
content has CO2/CH4 selectivity of 56.49.

However, when the metal-organic framework is blended with the polymer matrix, their
inadequate compatibility often results in inhomogeneous dispersion [27]. Ionic liquids (ILs)
are characterized by high compatibility and good thermal stability [28]. As green solvents,
ionic liquids have been considered as a promising substance for CO2 separation. Zhang
et al. [29] described a supported ionic liquid membrane (SILM) that achieved high CO2
permeability and selectivity for CO2/N2 (2540 Barrers and 127, respectively). A new class
of CA (cellulose acetate)-derived poly(ionic liquid) as a thin film composite membrane for
CO2 separation was reported by Nikolaeva et al. [30]. Incorporation of ionic moiety into
the polymer structure resulted in a considerable threefold increase in CO2 permeability
compared to pure CA, with only a slight decrease in selectivity.

In the present article, we first report on a simple method for preparing a series of
membranes in which polyimide is capped with ionic liquid, and blended with UiO-66-NH2.
UiO-66-NH2 is a metal-organic framework material composed of metal zirconium ions
and 2-aminoterephthalic acid as ligands connected by metal bonds, which is often used
as a filler to enhance the physicochemical properties of polymers. The amine group on
UiO-66-NH2 particles can strengthen the affinity for CO2 and, hence, increase permeability.
The introduction of ionic liquids helps to improve interfacial compatibility between the
substrate and the MOF. Moreover, the study found that the polyimide capped by ionic liquid
improved gas separation performance for the CO2/CH4 gas pair. When the ionic liquid
capped polyimide was blended with MOF, permeability and separation of membranes were
both enhanced. This provides a facile solution to overcome the limitation of the “trade-off.”

2. Materials and Methods
2.1. Materials

ZrCl4 (99%); 2-aminoterephthalic acid (NH2-BDC) (98%); 3,3′,4,4′-Benzophenonetetracarboxylic
dianhydride (BTDA) (98%); and 4,4′-Diaminodiphenyl ether (ODA) (98%) were pur-
chased from Aladdin (Shanghai, China). 1-carboxyethyl-3-methylimidazolium chlorine
(99%) was purchased from Lanzhou Institute of Chemical Physics (Lanzhou, China). N,N-
dimethylformamide (DMF) and methanol were purchased from Tianjin Kemiou Chemical
Reagent Co., Ltd. (Tianjin, China).

2.2. Preparation of UiO-66-NH2

UiO-66-NH2 was synthesized according to a published procedure [31], with some
improvements. Briefly, ZrCl4 (0.87 mol, 2.01 g) and 2-aminoterephthalic acid (0.87 mol, 1.56 g)
were mixed with 90 mL DMF in a 250 mL flask. The mixture was heated by Microwave
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chemical reactor with 800 W for 30 min. The solution was centrifuged and washed with
DMF and methanol to exchange solvents. The obtained solids were evaporated in a vacuum
oven at 110 ◦C overnight [32].

2.3. Synthesis of PI-IL/UiO-66-NH2 Membranes

As shown in Scheme 1, PI-IL membranes were synthesized by polycondensation
reaction. BTDA (1.1 mol, 1.4 g) and ODAs (1.0 mol, 0.60 g) were dissolved in DMF (3 mL)
to form a polyamic acid (PAA) solution for 4 h at 20 ◦C. Ionic liquid 1-carboxyethyl-3-
methylimidazolium hexafluorophosphate (0.10 mmol, 0.020 g) was dissolved in DMF
solution, then the solution was added into polyamic acid solution. The solution was stirred
for 6 h to react sufficiently. After that, UiO-66-NH2 (1 wt%, 2 wt%, 3 wt%, 4 wt% and
5 wt%) was dispersed in DMF and sonicated for 15 min, then the dissolved UiO-66-NH2
solution was mixed with the PI-IL solution and stirred for 24 h. After standing for 2 h to
remove bubbles (no sedimentation of MOF due to the uniform dispersion in the casting
solution [33]), the mixed solution was casted in a clean glass dish and dried at 80–280 ◦C for
10 h in order to obtain the mixed matrix membrane. The compositions of the synthesized
membranes are listed in Table 1.
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Scheme 1. Structure of UiO-66-NH2 and PI-IL.

Table 1. Compositions of synthesized membrane.

Membrane Composition

Pure PI BTDA + ODA
PI-IL BTDA + ODA + IL

PI-IL/1% MOF 1% UiO-66-NH2 + 99% PI-IL
PI-IL/2% MOF 2% UiO-66-NH2 + 98% PI-IL
PI-IL/3% MOF 3% UiO-66-NH2 + 97% PI-IL
PI-IL/4% MOF 4% UiO-66-NH2 + 96% PI-IL
PI-IL/5% MOF 5% UiO-66-NH2 + 95% PI-IL

2.4. Characterization of the Materials

The crystal structure of the sample was determined by using X-ray diffraction (XRD)
(D8 advanced diffractometer, Bruker AXS, Karlsruhe, Germany). The morphology of the
MOF and cross sections of the membranes were observed by scanning electron microscope
(SEM) (S-3400, Hitachi, Tokyo, Japan). Fourier Transform Infrared Spectroscopy (FT-IR)
(Spectrum Two, PE company, Los Angeles, CA, USA) was used to determine the chemical
structure of the samples. The nitrogen adsorption–desorption isotherm of the sample was
measured with an adsorption instrument (ASAP 2020 Plus HD88, Micromeritics, Norcross,
GA, USA), and the test was carried out after degassing at 120 ◦C for 12 h (80 mg of the
sample). The particles were analyzed according to their specific surface area and pore size
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distribution at 77 K. A thermogravimetry analyzer (TGA 8000, Perkin Elmer, Waltham,
MA, USA) was used for a thermal performance test, the flow rate of N2 was 40 mL/min
and the heating rate was 5 ◦C/min.

2.5. Gas Permeation Measurements of Membranes

The mixed gas permeability and selectivity of the membranes were measured at 34 ◦C
using a GTR-11MH gas permeability analyzer (GTR Tec Corporation, Uji, Kyoto). The test
area was 0.785 cm2, the test pressure is maintained at 49 KPa, the test gas is a 1:1 mixture
of CO2 and CH4, the carrier gas is H2 and the pressure is 0.1 MPa for testing. The gas
permeability coefficient was calculated using Formula (1).

The diffusion coefficients (D) and the solubility coefficients (S) were calculated by
using Equations (2) and (3) [34]:

P =
q× K× L
a× p× t

(
mL · cm · cm−2 · s−1 · cmHg−1

)
(1)

D =
L2

6T
(2)

S =
P
D

(3)

where q is the gas permeation measured by the instrument, mL; K is the auxiliary positive
coefficient of the instrument, with a fixed value of 1.25; L (cm) is the thickness of the gas
separation membrane; a is the permeation area in the instrument (set at 0.785 cm2); p (cmHg)
is the pressure while the instrument is testing; and t (s) is the time it takes for the instrument
to measure the gas separation membrane, which was determined by the specific operation
of the operator.

3. Results
3.1. Fabrication and Characterization of UiO-66-NH2

Microwave heating is an effective tool in organic chemistry synthesis, but it has also re-
cently been used in the synthesis of inorganic and inorganic/organic materials. In addition,
the conversion of microwave radiation to heat is often efficient and homogeneous through-
out the sample, which reduces energy consumption and the necessity for heat transfer in
the mixture [35]. For the reasons stated above, we employed microsynthesis technology
to prepare UiO-66-NH2, and the reaction time decreased to 30 min, which presented a
47-fold reduction in reaction time compared to the conventional method. The yield of MOF
using microwave synthesis was 50%, while the yield of MOF using traditional solvother-
mal process was 35%. The crystal structure of UiO-66-NH2 was characterized by XRD. In
Figure 1a, the powder X-ray diffraction pattern of the synthesized UiO-66-NH2 shows
excellent agreement with the simulated diffraction pattern. All of the diffraction peaks of
the micro-assisted synthesized MOFs correlate well with the simulated spectrum [31,36].
Figure 1b depicts the morphology of UiO-66-NH2, which has a particle size of 100–200 nm
and an ortho-octahedral structure, and exhibited good crystal shape regularity, particle size
uniformity and crystal perfection. The nitrogen adsorption–desorption isotherm and pore
size distribution curve of UiO-66-NH2 are presented in Figure 1c. UiO-66-NH2 follows
Type 1 isotherm, which is indicative of microporosity. The surface area of the Brunauer–
Emmett–Teller (BET) surface area was 813.25 m2/g, and the pore volume was 0.44 cm3/g,
which can contribute to gas permeability. The BET area of micro-synthesized MOF is lower
than that of conventional solvothermal process, while the pore is bigger. This phenomenon
may be due to fewer defects; thus, the specific surface area is smaller [35]. The results of
XRD, SEM and N2 adsorption–desorption isotherm confirmed the successful preparation
of UiO-66-NH2 nanoparticles using microwave-assisted synthesis.
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3.2. Characterization of MMMs

In order to verify whether PI is fully imidized, the FT-IR spectra of PAA and PI are
shown in Figure 2. The peak at 1665 cm−1 is the absorption vibration peak of –NH on the
polyimide amide group, which indicated the formation of PAA. For the PI spectrum, this
peak becomes weaker, indicating that PAA has been completely imidized to form PI. After
imidization, the stretching vibration peak of C–N in polyimide is at 1238 cm−1, and the
absorption peak of C=O in 1729 cm−1 was weakened, which proves that polyimide was
formed [37]. Before SEM characterization, the membrane samples were brittled with liquid
nitrogen, and the broken side was marked. As shown in Figure 3, the aggregation phase of
IL is not visible in cross-section electron microscopy, which proves that the ionic liquids are
not comingled in the matrix membrane but capped into polyimide. The bulky parts are the
polyimide-ionic liquid matrices. The SEM images of the PI-IL/3% MOF membrane revealed
that UiO-66-NH2 particles are well dispersed in the matrix and there is no significant
agglomeration of the filler. It can be observed from Figure 3 that the number of UiO-66-NH2
particles in the electron micrographs increases as loading content increases. The size of the
nanoparticles in the membranes is 200–300 nm, which is comparable to and slightly larger
than the size of pure UiO-66-NH2. The particles are wrapped in a PI matrix, and the interface
is blurred, demonstrating that membrane compatibility has improved. This is in accordance
with the experimental theory, as the viscosity of the polyimide casting solution is very high,
and the MOF particles added to it are enveloped by the casting solution. Consequently, the
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particle pattern in the cross-sectional electron micrographs of the film is inclined to be round,
which proves that the MOF is successfully mixed into the matrix membrane. As shown in
Figure S2 (in Supplementary Materials), by applying surface scanning electron microscope
in mixed matrix membranes, all membranes are basically uniformly dispersed, and there
was only a very small amount of agglomeration of MOF.
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membranes (c–g).

3.3. Mechanical Properties of Membranes

As shown in Table 2, the yield strength (σs); elongation at break (εb); tensile strength
(TS); and modulus of elasticity (E) of the ionic liquid-terminated polyimide membranes
were measured from the tensile strength test. Figure 4 is a visualization of the trends in the
mechanical properties and corresponds to the folded line point diagram of tensile strength
and elongation at the break of the membranes.
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Table 2. Mechanical properties of PI-IL/x%MOF membranes a.

Sample Yield Strength (MPa) Elongation at Break (%) Tensile Strength (MPa) Modulus of Elasticity (MPa)

PI 0.61 ± 0.03 8.96 ± 0.09 53.6 ± 0.25 59.2 ± 0.21
PI-IL 54.4 ± 0.23 37.3 ± 0.16 6203 ± 2.13 177 ± 0.67

PI-IL-1% MOF 55.6 ± 0.27 37.4 ± 0.21 6434 ± 2.34 183 ± 0.78
PI-IL-2% MOF 52.4 ± 0.56 33.7 ± 0.12 6031 ± 2.54 174 ± 0.63
PI-IL-3% MOF 49.4 ± 0.41 29.4 ± 0.14 5724 ± 2.16 143 ± 0.58
PI-IL-4% MOF 46.5 ± 0.45 18.7 ± 0.15 5352 ± 2.11 105 ± 0.46
PI-IL-5% MOF 34.5 ± 0.48 9.04 ± 0.08 3042 ± 1.51 98.4 ± 0.33

Note: a Tested at 5.00 mm/min speed. The standard spline had a length of 40 mm and a width of 10 mm.

The ionic liquid-capped polyimide membrane has better mechanical properties than
a pure polyimide membrane, with the elongation of the break increasing from 8.96% to
37.3% and tensile strength increasing from 53.6 MPa to 6203 MPa. When IL was added
to cover the end groups of the polyimide matrix, the unique electronic structure of the
ionic liquid influenced the orientation of the molecular chains and increased the orientation.
Simultaneously, it restricted the mobility of polyimide chain segments, increasing the degree
of build up and enhancing intermolecular interactions, which resulted in its increased
mechanical strength.

The tensile strength and elongation at the break of PI-IL/1% MOF reached a maximum
of 37.4% and 6434 MPa, respectively. It may be due to the large interfacial interaction
between the doped UiO-66-NH2 and the substrate polyimide. With the increase in MOF
content, the tensile strength and elongation at the break of the membranes tended to decrease;
this tendency may be due to the rigid structure of MOF, which makes the original excellent
mechanical properties slightly inferior but still maintains good mechanical properties. This
shows that all the produced mixed matrix membranes have good mechanical properties
and completely fulfill the requirements under which the membranes may be used.

3.4. Thermal Properties of the Membranes

A TGA measurement in a N2 atmosphere was used to determine the thermal stability
of PI, PI-IL and PI-IL/x% MOF membranes. The TGA curve of MOF can be divided into
three stages (Figure 5). As temperature figure homogeneous co-blending. The thermal
decomposition mass of MOF uniformly distributed in the matrix is represented by the
5–10% mass difference. All prepared membranes can be used in normal environments and
can withstand a temperature range of 0–480 ◦C.
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3.5. Gas Permeation Performance of the MMMs

The prepared PI-IL/x%MOF membranes were tested for the separation performance
of CO2 and CH4 mixed gas at a 1:1 ratio. Table 3 shows the gas separation performance
of membranes. When PI was capped with IL, the membrane’s permeability increased to
5.19 Barrer and 74.15, which was 4.36 and 6.21-times that of pure PI membranes, respectively.
The addition of ionic liquid increased CO2 permeability and CO2/CH4 selectivity of the
PI membrane. This phenomenon was most likely due to the affinity of ionic liquid for
CO2. The ionic liquid’s imidazole groups can interact with CO2 to enhance CO2 adsorption;
consequently, the PI-IL membrane achieved higher CO2 permeability. It is also hypothesized
that the effect of ionic liquid on gas permeability is partly due to the plasticizing effect of
ionic liquids on polymers. The addition of ionic liquids to polymer membranes reduces glass
transition temperature, while increasing chain mobility resulted in higher permeability [38].
Meanwhile, inorganic anions (BF4, NO3 and Cl) had a distinctive effect on its CO2 sorption
properties. Overall, it was concluded that increasing the basicity of anions is known to
enhance CO2 sorption [39]. The effect of IL in membranes is to increase their CO2 solubility
while decreasing CH4 solubility [40]. As shown in Table 4, the solubility coefficient of the
membrane increased after adding ionic liquid and MOF. In summary, the addition of IL
increases the separation effect of CO2/CH4.

Table 3. CO2 and CH4 of permeability and selectivity of membranes measured at 34 ◦C.

No. Sample PCO2/Bar a PCH4/Bar a PCO2/PCH4

1 PI 1.19 0.10 11.93
2 PI-IL 5.19 0.07 74.15
3 PI-IL/1% MOF 5.57 0.07 79.53
4 PI-IL/2% MOF 6.21 0.07 88.74
5 PI-IL/3% MOF 7.61 0.08 95.10
6 PI-IL/4% MOF 6.49 0.09 72.13
7 PI-IL/5% MOF 4.01 0.08 50.08

Note: a 1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1.

Table 4. CO2 and CH4 solubility and diffusivity coefficients of membranes measured at 34 ◦C.

No. Sample DCO2 (cm2 s−1) SCO2 (cm3 (STP) cm2·cmHg) DCH4 (cm2 s−1) SCH4 (cm3 (STP) cm2·cmHg)

1 PI 2.33 × 10−6 0.51 × 10−4 2.78 × 10−5 3.6 × 10−7

2 PI-IL 3.02 × 10−6 1.72 × 10−4 3.62 × 10−5 1.93 × 10−7

3 PI-IL/1% MOF 2.72 × 10−6 2.05 × 10−4 3.79 × 10−5 1.85 × 10−7

4 PI-IL/2% MOF 2.74 × 10−6 2.27 × 10−4 3.90 × 10−5 1.79 × 10−7

5 PI-IL/3% MOF 3.02 × 10−6 2.52 × 10−4 4.09 × 10−5 1.96 × 10−7

6 PI-IL/4% MOF 2.82 × 10−6 2.30 × 10−4 3.95 × 10−5 2.28 × 10−7

7 PI-IL/5% MOF 2.24 × 10−6 1.79 × 10−4 3.52 × 10−5 2.27 × 10−7

As shown in Table 3, introducing UiO-66-NH2 particles to PI-IL/x% MOF mixed
matrix membranes clearly enhanced their gas permeability properties. The permeability
of PI-IL/3% MOF was the highest with a value 7.61 Barrer. This behavior may be due to
the addition of porous UiO-66-NH2 particles, which improves the transport passage of gas
through the membrane and provides a higher affinity of UiO-66-NH2 for CO2 than CH4.
The selectivity of CO2/CH4 increased to 95.10 when UiO-66-NH2 loading content was 3%;
this could be ascribed to the molecular sieving effect of UiO-66-NH2 nanoparticles [41].
As the loading content increased to 4% and 5%, the selectivities dropped compared to the
PI-IL/3% MOF membrane but remained higher than the pure PI membrane. These values
might be attributed to a smaller degree of agglomeration of MOF particles in the matrix,
blocking a small part of gas transfer. Meanwhile, the presence of MOF seems to rigidify
polymeric chains; therefore, the rigidified polymeric chains around the MOF and polyimide
surfaces may be one of the causes for permeability reduction. Other possibilities for the
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decline in selectivities include partial pore blockage of MOF by polymer chains [42]. In
the case of PI-IL/1–3% MOF MMMs, the results show that the presence of IL increases the
adhesion of UiO-66-NH2 in MMMs, since IL can also act as a wetting agent for UiO-66-
NH2 [43]. On the other hand, IL may enhance interfacial interaction via plasticization; the
presence of IL in PI-IL/1–3% MMMs improves gas separation performance.

The Robeson upper bound of PI, PI-IL and PI-IL/x% MOF membranes for the gas pair
of CO2/CH4 is plotted in Figure 6. The PI-IL membrane exhibits higher CO2 permeability
and permselectivity compared to pure PI membrane, for which its plot moves up on
Robeson’s 1991 upper bound. CO2 and CH4 permselectivities of PI-IL/x% MOF mixed
matrix membrane were higher than those of the PI-IL membrane, and gas separation data
approaches Robeson’s 2008 upper bound when UiO-66-NH2 filler loading content reaches
1–2%. PI-IL filled with UiO-66-NH2 at 4 and 5% exhibit lower permselectivities than the
PI-IL membrane, but it is still higher than the 1991 upper bound. In summary, this increase
in permselectivity confirmed that the introduction of IL and UiO-66-NH2 can enhance gas
separation performance of the fabricated membranes.
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4. Conclusions

In conclusion, UiO-66-NH2 particles were used to improve CO2 gas permselectivity in
an ionic liquid capped polyimide matrix. IL was selected to enhance the permeability of a
polyimide. All the obtained mixed matrix membranes exhibited excellent mechanical and
thermal properties, allowing them to meet conventional conditions of membranes. More
importantly, CO2 permeability and selectivity of MMM exhibited an obvious improvement
over PI-IL. The mixed matrix membranes capped by IL and blended with UiO-66-NH2
provide an efficient method to improve CO2 selectivity while retaining gas permeability.

Supplementary Materials: The following supporting information can be downloaded at: https:
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