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Abstract: Textile industry effluent contains a high amount of toxic colorants. These dyes are carcino-
genic and threats to the environment and living beings. In this study, poly(vinylidene fluoride-co-
hexafluoropropylene) (PVDF-co-HFP) was used as the based polymer for PIMs with bis-(2-ethylhexyl)
phosphate (B2EHP) and dioctyl phthalate (DOP) as the carrier and plasticizer. The fabricated PIMs
were employed to extract the cation dye (Malachite Green; MG) from the feeding phase. PIMs
were also characterized by scanning electron microscopy (SEM), atomic force microscope (AFM),
contact angle, water uptake, Fourier-transform infrared spectroscopy (FTIR) and ions exchange
capacity. The performance of the PIMs was investigated under various conditions such as percentage
of carrier and initial dye concentration. With permeability and flux values of 0.1188 cm/min and
1.1913 mg cm/min, PIM produced with 18% w/w PVDF-co-HFP, 21% w/w B2EHP, 1% w/w DOP and
40% w/w THF and was able to achieve more than 97% of MG extraction. The experimental data were
then fitted with a pseudo-second-order (PSO) model, and the calculated R2 value was ~0.99. This
shows that the data has a good fit with the PSO model. PIM is a potential alternative technology in
textile industry effluent treatment; however, the right formulation is crucial for developing a highly
efficient membrane.

Keywords: polymer inclusion membrane; extraction; malachite green; poly(vinylidene fluoride-co-
hexafluoropropylene); bis-(2-ethylhexyl) phosphate; kinetic study

1. Introduction

Textile effluents contain vat dyes, nitrates, acetic acid, soaps, chromium compounds
and heavy metals such as arsenic, lead, copper, cadmium, mercury, nickel and cobalt
which render the effluent highly toxic and carcinogenic to living things [1]. Exposure to
these textile effluents could result in the dysfunction of organs, specifically the kidney,
reproductive system, liver, brain and central nervous system [2,3]. For instance, malachite
green (MG) is extensively used in the textile industry [4,5]. The discharge of MG effluent
gives undesirable color to the effluent, and it reduces the penetration of sunlight into the
river or lake which threatens the life of the aquatic ecosystem with hypoxiation. Likewise,
the nitrogen compound in MG is carcinogenic, genotoxic, mutagenic and teratogenic
to living organisms [6]. The conventional treatments such as adsorption, ion exchange,
aerobic and anaerobic, oxidation, coagulation and flocculation are ineffective to treat
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textile wastewater. This is due to the chemical and physical properties of the dye where
the presence of several benzene rings has high resistance towards microbial attachment,
fixation and fastness (stability in light and washing) [7]. Therefore, researchers are keen for
an alternative treatment and this led to the introduction of the polymer inclusion membrane
(PIM). PIM is a flat sheet liquid membrane (LM) that is fabricated from a mixture of the base
polymer, extractant/carrier, plasticizer and solvent solutions. PIM separates two different
fluid phases (feeding and receiving) and at the same time links the two fluid phases for
selective permeation [8]. PIM is an energy-saving technology with low operating costs and
a simple operation mode [9], top up with a higher diffusion coefficient and selectivity and
flexibility properties. In addition, compared to other LM, PIM has better stability and a
longer lifetime [10]. PIM has proven to be effective (with more than 90% of removal) in
the extraction of a wide range of components such as metals (e.g., chromium, zinc, copper,
silver, nickel, cobalt, mercury, gold), dyes (e.g., malachite green, methylene blue, reactive
orange 16) and other charged ions (e.g., phenol, picloram).

Foremost, the formulation of the membrane is the key component to fabricate the
membrane with high performance and mechanical strength. Extensive research had been
studied on the formulation of PIM with base polymer, cellulose triacetate (CTA) and
poly(vinyl chloride) (PVC) (Table 1). However, studies showed that CTA- and PVC-
based PIMs have low performance in long extraction periods [11,12]. Thus, researchers
have been looking into an alternative base polymer such as poly(vinylidene fluoride-co-
hexafluoropropylene) (PVDF-co-HFP). This is because PVDF-co-HFP has higher stability
than other base polymers. Furthermore, it has better extraction and transport efficiency
compared to CTA and PVC [11]. PVDF-co-HFP is commonly used in lithium batteries
and fuel cells due to high ionic conduction and mechanical support [13]. This shows that
PVDF-co-HFP is a potential base polymer for PIM technology.

To our best knowledge, the study of PVDF-co-HFP in PIM is limited to metal ex-
traction. So far, there has been no study on dye removal using PVDF-co-HFP. Therefore,
this research aims to study the formulation of PVDF-co-HFP-based PIM with a B2EHP
carrier, DOP plasticizer and THF solvent. Moreover, the performance of the PIM will be
determined with MG extraction under various conditions such as different percentages of
the carrier and initial dye concentration followed by characterization studies using Fourier
transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force
microscopy (AFM), contact angle, water uptake and ionic exchange capacity (IEC). The
kinetic parameters of the MG extraction were also evaluated in this research for an in-depth
understanding of the mechanism of the MG extraction.

Table 1. Examples of PIMs with different formulations and their applications.

Polymer Inclusion Membrane (PIM) Extraction/
Removal/
Recovery

Extraction/
Recovery/
Efficiency

ReferenceBase
Polymer Plasticizer Solvent Carrier/

Extractant

CTA 2-NPOE DCM Ester
derivative of calix[4]arene (EDC) MB >90% [14]

CTA 2-NPOE DCM Calixresorcin[4]arene derivative Cr(IV) 98.4% [15]

CTA o-NPPE DCM
Ethylenodiamino-bis-

acetylacetone
(EDAB-acac)

Zn(II) 90–98% [16]

CTA o-NPPE DCM Calix[4]pyrrole KP Ag(I) >92% [17]

CTA o-NPPE DCM
Ethylenodiamino-bis-

acetylacetone

Zn(II) 90%
[18]Cr(III) 65%

Ni(II) 6%
CTA NPOE DCM Aliquat 336 Picloram 97% [19]

CTA DOA DCM Dinonylnaphthalene sulfonic acid
(DNNSA) Co(II) 73.99% [20]

CTA - CHCl3
Di-(2-hethylhexyl) phosphoric

acid (D2EHPA) Cu(II) 74% [21]
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Table 1. Cont.

Polymer Inclusion Membrane (PIM) Extraction/
Removal/
Recovery

Extraction/
Recovery/
Efficiency

ReferenceBase
Polymer Plasticizer Solvent Carrier/

Extractant

CTA o-NPPE DCM 1-octyl-2,4-dimethylimidazole Zn(II) 95.5% [22]

CTA NPOE CHCl3
Trioctylmethylammonium
Thiosalicylate (TOMATS) Hg 84 ± 7% [23]

CTA +
PMMA
PVC +

PMMA

NPOE CHCl3 - Pb(II) 12.15%
25.31% [24]

CTA/PBAT - CHCl3 Aliquat 336 Cr(VI) >99% [25]

PVC B2EHP THF 2,6-Diaminopyridine Cu(II) 72.81%
[26]Zn(II) 93.65%

PVC DOP THF B2EHP MG
MB 97% [27]

PVC NPOE THF 2-hydroxy-5-
nonyl-benzaldoxime (M5640) Cu(II) 100% [28]

PVC - THF 1-octanol (OCT) Phenol 82.8 wt% [29]
PVDF 2-NPOE DMF Aliquat 336 Cr(IV) 96.9% [30]
PVDF NPOE DMA Aliquat 366 Au(I) 96.4% [31]

PVDF-co-
HFP - THF Aliquat 336 Reactive

Orange 16 99.62% [32]

PVDF-co-
HFP 2-NPOE THF Cyphos IL101 Cr(IV) 95.9% [33]

PVDF-co-
HFP - THF Trihexyltetradecylphosphonium

chloride, Cyphos® IL 101 Cr(IV) ~95% [34]

Abbreviations: 2-nitrophenyl n-octyl ether (2-NPOE); 2-nitrophenyl octyle-ether (NPOE); Bis-(2-ethylhexyl) phosphate (B2EHP); Cellulose
triacetate (CTA); Chloroform (CHCl3); Chromium (Cr); Cobalt (Co); Copper (Cu); Dichloromethane (DCM); Dimethylformamide (DMA);
Dioctyl adipate (DOA); Gold (Au); Lead (Pb); Malachite green (MG); Mercury (Hg); Methylene Blue (MB); N,N-dimethylformamide
(DMF); o-nitrophenyl pentyl ether (o-NPPE); Poli ε-caprolactone (PCL); Poly(butylene adipate-co-terephthalate (PBAT); Poly(vinylidene
fluoride-co-hexafluoropropylene) (PVDF-co-HFP); Polymethyl methacrylate (PMMA); Polyvinyl chloride (PVC); Polyvinylidene fluoride
(PVDF); Silver (Ag); Tetrahydrofuran (THF); Thermoplastic polymers polyurethane (TPU); Thiocyanate (SCN-); Zinc (Zn).

2. Materials and Methods
2.1. Materials

Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) (C5H2F8), bis-(2-
ethylhexyl) phosphate (B2EHP) (C16H35O4P) (Figure 1), dioctyl phthalate (DOP) (C24H38O4),
tetrahydrofuran (THF) (C4H8O), 65% nitric acid and malachite green (MG) (C23H25CIN2)
(Figure 2) were supplied by Sigma-Aldrich (St Louis, MO, USA). A total of 38% hydrochloric
acid, phenolphthalein were supplied by HmbG Chemicals (Hamburg, Germany). Sodium
hydroxide was supplied by R&M Chemicals (London, UK) and deionized water.
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Figure 2. Chemical structure of malachite green (MG).

2.2. Fabrication of PIMs

A predetermined amount of PVDF-co-HFP powder was dissolved in THF, followed
by the addition of solutions containing B2EHP and DOP. The solution was stirred for 4 h
at 400 rpm using a stirring hotplate at room temperature until a clear and homogenous
solution was obtained. The membrane was cast with a membrane casting machine (thick-
ness of 0.15 mm) and left to dry overnight in a fume hood at room temperature. The
dried membrane was then peeled off and cut into a desired circular shape (~3.0 cm in
diameter). The membrane was rinsed several times with distilled water to remove the
excess solvent before further analysis was conducted. The procedure was repeated with
different formulations of PIMs (Table 2). M1 acts as the control as it does not contain the
carrier whereas M2, M3, M4, M5 and M6 signify PIMs with varying percentages of the
carrier.

Table 2. Formulation of PIMs in this study.

Membrane PVDF-co-HFP
(wt%)

B2EHP
(wt%)

DOP
(wt%)

THF
(wt%)

M1 18 0 0 82
M2 18 6 1 75
M3 18 9 1 72
M4 18 15 1 66
M5 18 18 1 63
M6 18 21 1 60

2.3. H-Cell Device Set Up

MG extraction was performed using an H-cell device (Figure 3). In brief, the MG
ions were extracted from the feeding phase into the receiving phase passing through the
membrane. During the extraction process, continuous agitation was provided to ensure
both solutions were in homogenous conditions. The diameter and distance of the linkage
hollow tube are ~3.0 cm and ~8.0 cm, respectively. The device was separated into two
compartments (feeding and receiving phase). The MG solution was filled in the feeding
phase, and 1M of 67% nitric acid was filled in the receiving phase.
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2.4. Performance Studies for the MG Extraction

The feeding phase was filled with 120 mL of 10 mg/L MG solution. During the MG
extraction process, both the feeding and receiving solutions were continuously stirred
at 350 rpm using a magnetic stirrer for 4 h. The experiment was conducted at room
temperature at 1 atm. A total of 1 mL of the sample was collected from the feeding phase
using a micropipette after every 30 min. Then, the absorbance of MG was determined by
the UV-Vis spectrophotometer at 617 nm wavelength, and the concentration of MG was
calculated based on the calibration curve (Figure 4) [35]. This experiment was repeated by
varying the PIM compositions. Based on the results obtained, the membrane with the best
performance was further tested with different initial concentrations of MG solutions (2, 4,
6, 8, 10 and 12 mg/L). The percentage of extraction efficiency (E%) was calculated using
Equation (1):

E% =
(dye)i − (dye) f

(dye)i
× 100% (1)

where (dye)i is the initial dye concentration in the aqueous phase (mg/L); (dye) f is the
final dye concentration after the extraction in the aqueous phase (mg/L).

2.5. Transport Kinetics

The permeability and flux were calculated from the rate constant value from Section 2.7.
The permeability coefficient (P) can be calculated from Equation (2):

P =
V
A

k (2)

where V was the volume of feeding solution (cm3); A was the effective area of PIM (cm2).
Initial flux (J) can be computed by the Equation (3):

J = P× C0 (3)

where C0 is the initial concentration of MG in the feeding solution (mg/L).
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Figure 4. MG calibration curve.

2.6. Characterization of PIMs
2.6.1. Scanning Electron Microscopy (SEM)

The surface morphology of the membranes was observed by scanning electron mi-
croscopy (SEM) using the HITACHI Tabletop Microscope instrument (TM-3000-Japan)
by HITACHI (Tokyo, Japan). The membrane was cut into 5 mm × 5 mm in size and
coated with gold. The surface morphology of the membranes was then analyzed under
1000×magnification with 10 kV acceleration voltage [36].

2.6.2. Atomic Force Microscopy (AFM)

Membrane uniformity and roughness of the fabricated PIMs surface were determined
using AFM (Model XE-100) by Park Scientific Instrument (Suwon, Korea) [37]. The mem-
brane was visualized in two-dimensional and three-dimensional form with three sizes
(1.0 × 1.0 µm, 5.0 × 5.0 µm and 10.0 × 10.0 µm) [38].

2.6.3. Contact Angle (CA)

The hydrophobicity of the membrane was determined using a contact angle goniome-
ter (Model: OCA15plus) by DataPhysics Instruments GmbH (Filderstadt, Germany). The
contact angle was measured by dropping 1 µL of distilled water on the surface of the mem-
brane through a needle tip attached to the goniometer. The magnified image of the water
droplet was then observed using a digital camera, and the CA readings were obtained at
10 s after the deposition of the water droplet on the surface of the dried membrane. The
contact angles of each membrane at 5 different spots were recorded, and their mean values
were calculated [39].

2.6.4. Water Uptake

Water uptake was performed to determine the wettability of the membranes. The
membrane was cut into 2 cm × 2 cm in size. Then, the weight of each membrane was
determined using an electronic balance (ME204E) by Mettler Toledo (Greifensee, Switzer-
land) and the membrane was immersed in distilled water for 30 min. Subsequently, the
membrane was removed from the distilled water, and the excess liquid on the membrane
was gently dapped by a tissue towel. The membrane was then weighed for the second time
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to determine the weight change after the absorption of distilled water. The water uptake of
the membrane was calculated using Equation (4) [40].

Water uptake =
Wwet −Wdry

Wdry
(4)

where Wwet is the weight of the wet membrane after the absorption of distilled water, and
Wdry is the weight of the dry membrane before immersion in distilled water.

2.6.5. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR was used to determine the functional groups of the fabricated samples and PIMs
by comparing the analyzed results and the existing functional groups standard such as
alkane (-CH and -CH2 bonds), alky halide (-C-F, -CF2 and -CF3 bonds), aromatic group,
ester, alcohol (-P-OH bond), carbonyl group (C=O bond), hydroxyl group (O-H bond)
and carbon-carbon bond (C-C and C-C-C bond) [41–43]. FTIR was performed using the
iZ10 FTIR Spectrometer by Thermo Fisher Scientific (Massachusetts, United States). The
spectrum recorded was between 400–4000 cm−1 wavenumber using 16 scans at a resolution
of 4 cm−1. The samples were tested by transmission method, and the spectra were analyzed
using the OMNIC software [44].

2.6.6. Ion Exchange Capacity (IEC)

The IEC of the membranes was measured using the titration method. The membrane
was cut into 2 cm × 2 cm and soaked in 1 mol/dm3 HCl for 24 h. Then, the membrane was
removed and rinsed with distilled water to remove the excess HCl on the surface of the
membrane. The membrane was subsequently immersed in the 1.0 mol/dm3 NaCl solution
for another 24 h. After 24 h, the membrane was removed, and the remaining solution
was titrated with 0.01 mol/dm3 NaOH solution with few drops of phenolphthalein as an
indicator [45]. The IEC of the membrane was calculated by using Equation (5):

IEC =
ab

Wdry
(5)

where a is the concentration of titrated NaOH solution (mol/dm3); b is the volume of
NaOH solution (dm3) and Wdry is the dry weight of the membrane (g).

2.7. Kinetic Studies

The process of MG extraction is simple, but it involves a complex mechanism. To
describe the nature and mechanism applied in this technology, a kinetic modeling study
was necessitated. Kinetic models can describe the interaction between the absorbate
and the absorbent such as chemisorption or physisorption. The results obtained from
the different initial MG concentrations were fitted using nonlinear pseudo-first-order
(in Equation (6)) and pseudo-second-order (in Equation (7)) [46]. The parameter estima-
tion of the kinetic model was obtained from nonlinear least-squares regression using the
Levenberg–Marquardt method Polymath R Version 6.2 by CACHE Corporation (Austin,
TX, USA) software. The software estimated the value of parameters within the non-linear
equations from the experimental results by minimizing the sum of square error [47]. The
validation of the model was analyzed using variance as shown in Equation (8).

C = Ce − exp(−k1t)(Ce − C0) (6)

C = Ce +
1

k2t− 1
(Ce−C0)

(7)

σ2 =
∑(x− x)2

n− 1
(8)
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where Ce, C0, k, ∑, x, x and n refer to the concentration at equilibrium, initial concentration,
rate constant (mg/g), summation of data, experimental data, mean of the experimental
data and sample size, respectively. The coefficient of determination “R2” value was used
to determine the best-fitted model for the extraction process where the maximum value
of “R2” is considered more favorable [48]. The aim is to validate and compare the results
obtained from this experiment to the result calculated using the kinetics models.

3. Results and Discussion
3.1. Parameters of the Extraction of MG
3.1.1. Effect of Carrier Percentage

The effect of carrier composition (B2EHP) was studied by altering the composition
of the B2EHP (6, 9, 15, 18 and 21% w/w) for the extraction of 10 mg/L of MG as shown in
Figure 3. B2EHP is an acidic extractant that is highly efficient in transporting cations across
the hydrophobic membrane [36]. B2EHP is also widely known as di-2-ethylhexyl hydrogen
phosphate (D2EHP) or di-2-ethylhexyl hydrogen phosphate acid (D2EHPA). B2EHP was
chosen due to its low solubility in aqueous solutions and chemical stability. The extraction
chemistry was described using Equation (9). Several components were involved in the
reaction such as MG, B2EHP and neutral ion-pair complexes.

MG+
(aq) + [RH2](org) → [MG(RHR)](org) + H+

(aq) (9)

where RH2 is the carrier (B2EHP); MG+ is the MG ion and [MG(RHR)] is the neutral
ion-pair complex.

As observed in Figure 5, M1 shows significantly low extraction of MG as compared to
other membranes (with carrier). A similar result was also reported by Pérez-Silva et al. [49]
who studied the removal of phenol with PIM. They confirmed that a membrane without
a carrier will only be able to transport a low percentage of phenol. On the contrary, the
performance of the membrane surged up to 86.68% of MG extraction with M2 and was
followed by a steady increment as the amount of carrier increased. The best performance
was achieved with M6 with 97.97% of MG extraction compared to M3 (91.71%), M4 (94.09%)
and M5 (96.00%). The extraction efficiency also reflects on the permeability, P, and flux,
J of the membrane. Table 3 shows the effect of the percentage of the carrier against the
permeability and flux for the membranes. Comparable trends are observed for the P and
J values and the performance of MG extraction. M1 presents a low P and J values of
0.0068 cm/min and 0.0643 mg cm/min, respectively. Likewise, a gradual increment of both
values is noticed for M2 to M6 (0.0255 cm/min to 0.1188 cm/min; 0.2540 mg cm/min to
1.1913 mg cm/min). This signifies that the carrier plays a significant role in facilitating the
transportation of ions across the membrane [36]. When more carriers are incorporated into
the membrane, there is formation of more capacity for the MG2+ -B2EHP complex; thus,
the rate of MG extraction was enhanced. This result is in agreement with other researchers
on the PIM extraction/removal of methylene blue, indium (In(III)), chromium (Cr(III)) and
copper (Cu(II)) with the D2EHPA carrier [8,50–52]. Hence, M6 with 21% B2EHP content
was selected as the PIM with the best performance for further studies.

Table 3. Influence of the percentage of the carrier on permeability (P) and flux (J) of the membrane.

Membrane
P

(cm/min)
J

(mg cm/min)

M1 0.0068 0.0643
M2 0.0255 0.2540
M3 0.0306 0.3046
M4 0.0407 0.4082
M5 0.0492 0.4936
M6 0.1188 1.1913
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Figure 5. Percentage of extraction of M1, M2, M3, M4, M5 and M6.

3.1.2. Effect of Initial Dye Concentration

The effect of initial dye concentration varied (2 mg/L to 12 mg/L), while other vari-
ables were maintained constant. Figure 6 presents the influence of the initial concentration
on dye extraction. Observably, increasing the dye concentration from 2 mg/L to 12 mg/L
decreases the rate of removal. As observed, the best dye extraction (>99.99%) was achieved
using 2 mg/L and 4 mg/L of dye concentration. Meanwhile, 99.80%, 99.54%, 98.95% and
97.45% were achieved using 6 mg/L, 8 mg/L, 10 mg/L and 12 mg/L, respectively. Table 4
also shows the influence of the initial concentration on permeability and flux. As observed,
there was a slight decrease in permeability with the increment in dye concentration. The
reduction in the extraction efficiency can be related to the saturation of the carrier on the
surface of the membrane which resulted in a reduction in the diffusion boundary layer and
hence slower transport kinetics [53]. This finding is consistent with the outcome of other
research [36,51,54,55].

Membranes 2021, 11, 676 10 of 24 
 

 

also shows the influence of the initial concentration on permeability and flux. As ob-

served, there was a slight decrease in permeability with the increment in dye concentra-

tion. The reduction in the extraction efficiency can be related to the saturation of the carrier 

on the surface of the membrane which resulted in a reduction in the diffusion boundary 

layer and hence slower transport kinetics [53]. This finding is consistent with the outcome 

of other research [36,51,54,55]. 

 

Figure 6. Dye extraction of M6 membrane at different dye concentrations. 

Table 4. Influence of the initial dye concentration on permeability (P) and flux (J) of the mem-

brane. 

Initial Dye Concentration 

(mg/L) 

P 

(cm/min) 

J 

(mg cm/min) 

2 0.5772 1.2283 

4 0.3157 1.0929 

6 0.2139 1.2721 

8 0.1715 1.3741 

10 0.1358 1.3615 

12 0.0951 1.0791 

3.2. FTIR Analysis 

FTIR was employed to determine the functional groups of the blank membrane and 

PIMs. The FTIR spectra are shown in Figure 7 which gives the comparison of B2EHP, DOP, 

M1 and M6. B2EHP shows a characteristic intense peak at 1019.71 cm−1 which was contrib-

uted by the P-O-C bond. The peaks at 1424.20–1382.67 cm−1 and 727.45 cm−1 correspond to 

sp3 C-H bending and C-H2 rocking, respectively. Weak peaks obtained at 2958.92–2860.40 

cm−1 correspond to the sp3 C-H bond and were found in both B2EHP and DOP. DOP also 

gave rise to weak and sharp peaks at 1728.32 cm−1 and 1462.78 cm−1 that relate to the pres-

ence of the C=O bond and C=C stretching in the ring. Characteristic peaks exhibited by 

the blank PVDF-co-HFP membrane (M1) are at 1208.87–1149.83 cm−1, 795.59 cm−1 and 612.8 

cm−1 which correspond to C-F stretching, C-F3 stretching vibration and C-F2 bending, 

whereas peaks at 872.58 cm−1 and 761.71 cm−1 are related to the C-C stretching and C-H2 

rocking vibration. As in Figure 7, it can be observed that the characteristic of bands of 

90

92

94

96

98

100

2 4 6 8 10 12

P
er

ce
n

ta
g

e 
o

f 
E

x
tr

ac
ti

o
n

 (
%

)

Dye concentration (mg/L)

Figure 6. Dye extraction of M6 membrane at different dye concentrations.



Membranes 2021, 11, 676 10 of 23

Table 4. Influence of the initial dye concentration on permeability (P) and flux (J) of the membrane.

Initial Dye Concentration
(mg/L)

P
(cm/min)

J
(mg cm/min)

2 0.5772 1.2283
4 0.3157 1.0929
6 0.2139 1.2721
8 0.1715 1.3741
10 0.1358 1.3615
12 0.0951 1.0791

3.2. FTIR Analysis

FTIR was employed to determine the functional groups of the blank membrane and
PIMs. The FTIR spectra are shown in Figure 7 which gives the comparison of B2EHP,
DOP, M1 and M6. B2EHP shows a characteristic intense peak at 1019.71 cm−1 which
was contributed by the P-O-C bond. The peaks at 1424.20–1382.67 cm−1 and 727.45 cm−1

correspond to sp3 C-H bending and C-H2 rocking, respectively. Weak peaks obtained at
2958.92–2860.40 cm−1 correspond to the sp3 C-H bond and were found in both B2EHP
and DOP. DOP also gave rise to weak and sharp peaks at 1728.32 cm−1 and 1462.78 cm−1

that relate to the presence of the C=O bond and C=C stretching in the ring. Characteristic
peaks exhibited by the blank PVDF-co-HFP membrane (M1) are at 1208.87–1149.83 cm−1,
795.59 cm−1 and 612.8 cm−1 which correspond to C-F stretching, C-F3 stretching vibration
and C-F2 bending, whereas peaks at 872.58 cm−1 and 761.71 cm−1 are related to the
C-C stretching and C-H2 rocking vibration. As in Figure 7, it can be observed that the
characteristic of bands of B2EHP, DOP and PVDF-co-HFP exist in PIMs (M2-M6) with no
displacement. The spectra of PIMs suggested that carriers and plasticizers were entangled
in the polymeric matrix without any chemical changes; hence, the carrier is free to interact
with the ions in the solution [56]. Likewise, a broad peak at 1684.05 cm−1 that arises from
O-H stretching in B2EHP disappeared in PIM. This gives the idea that the O-H group was
involved in the formation of the membrane via the Van der Waals force of attraction or
hydrogen bond [27]. The analyzed peaks and functional groups are detailed out in Table 5,
and FTIR spectra for M1, M2, M3, M4, M5 and M6 are displayed in Figure 8.

The FTIR spectra for M6 before and after the MG extraction were compared as
shown in Figure 9. There is a significant reduction in the intensity of the peaks at
2958.92–2860.40 cm−1 (sp3 C-H bond) and 1019.71 cm−1 (P-O-C bond) after the extrac-
tion. This proposes that these peaks are related to the active sites of the carriers which are
responsible for the extraction of MG ions. The reduction in the intensity of the peaks can
be explained by the decrease in the amount of vacant active sites of the carrier after the
extraction process of the weak peaks which are detected after extraction membrane. On
the contrary, there is also an increment in the intensity of spectra at 1208.87–1149.38 cm−1,
872.58 cm−1 and 795.59–612.8 cm−1 which originated from the presence of the C-N stretch-
ing aromatic amine, C-N stretching amine and para disubstituted and monosubstituted
benzene ring. The increment of the C-N bonds proved that MG ions adhered on the
surface of the membrane during the extraction process, and it is found that O-H bonds
were formed between the carrier and MG ion which led to the formation of the peak at
1424.20–1382.67 cm−1.
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Table 5. The values of the wavenumbers (cm−1) and some significant peaks in the FTIR spectra of the pure B2EHP, pure
DOP and membranes (M1 and M6).

Materials Wavenumbers (cm−1) Type of Molecular Vibrations

B2EHP 2958.08–2860.00 sp3 C- H
1684.05 O-H stretching
1380.10 sp3 C-H bending
1008.08 P-O-C
727.52 C-H2 rocking

DOP

2957.76–2859.54 sp3 C-H stretching
1723.52 C=O

1599.91–1460.44 C-C stretch in ring
1266.60 C-O stretching
1119.17 C-O stretching

770.34–740.95 sp2 C-H bend in aromatic

M1
(18 wt% PVDF-co-HFP, 72 wt% THF)

3025.80–2923.07 C-H2 symmetric and anti-symmetric stretching vibration
1454.88–1064.79 C-F stretching

974.67 C-F stretching
871.09 C-C stretching
795.70 C-F3 stretching vibration
760.85 C-H2 rocking vibration
612.49 C-F2 bending and C-C-C vibration

M6
(PVDF-co-HFP 18 wt%: B2EHP 21

wt%:DOP 1 wt%:THF 60 wt%)

2958.92–2860.40 sp3 C-H
1728.32 C=O
1462.78 C-C stretching in ring

1424.20–1382.67 sp3 C-H bending
1208.87–1149.83 C-F stretching

1019.71 P-O-C
872.58 C-C stretching
795.59 C-F3 stretching vibration
761.71 C-H2 rocking vibration
727.45 C-H2 rocking
612.8 C-F2 bending and C-C-C vibration
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3.3. Surface Morphology of PIMs (SEM Analysis)

To examine the influence of the carrier percentage in PIMs, SEM was applied to
determine the surface morphology of the membranes. Figure 10 shows different surface
morphologies of M1, M2, M3, M4, M5 and M6. It can be observed that uneven dark
spots were homogeneously distributed on the surface of all the membranes. From Figure
10a, tiny dark spots were observed on the smooth surface of the blank PVDF-co-HFP
membrane (M1) which is due to the formation of pores after the evaporation of the solvent.
Mahendrakar and Anna [57] reported similar phenomena which were attributed to the
semi-crystalline nature of the membrane. However, as the percentage of carriers increases,
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the dark spots become distinct and visible. This is due to the inclusion of the carrier
which increased the porosity of the membrane as well as the number of pores found
on the surface of the membrane. These carrier molecules are useful in facilitating the
transportation of the cations by forming continuous liquid domains across the PIM [58].
According to Gherasim et al. [58], these liquid domains can also be the “liquid pores” that
enhance the transportation process. In fact, with the addition of a plasticizer, the ionic
conductivity of the membrane was further improved with the formation of interconnecting
linkages between the liquid pores [59]. This enables the efficient transport of ions across
the membranes. Likewise, the ionic conductivity was also improved by reducing the
crystallinity of the membranes and increasing the amorphous nature of the membrane.
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3.4. AFM Analysis

AFM was applied to characterize the surface morphology of the membrane by de-
termining the surface roughness of the membrane which is crucial for understanding the
transportation of ions across the polymeric membrane. The 3D AFM images in Figure 11
indicate the surface of the M1, M2, M3, M4, M5 and M6. From Figure 11, it can be observed
that the surface roughness (Ra) of M1 to M6 increases gradually from 19.20 nm to 63.64 nm.
Compared with other membranes, M1 has the smoothest surface with the lowest surface
roughness. Homogenous distributions of dark regions were found on the surface of the
blank membrane due to the formation of pores which is a result of solvent evaporation.
These pores act as the vessels for the encasement of carriers and plasticizers. Increasing
roughness was noticed for M2, M3, M4, M5 and M6 with the roughness values of 38.42 nm,
43.76 nm, 54.50 nm, 58.72 nm and 63.64 nm, respectively. This signifies that the carrier and
plasticizer have a close relationship with the improvement of surface roughness. As more
carriers are added to prepare the membrane, the surface becomes rougher. The embedded
carriers are known as liquid drops (carrier) which penetrate the membrane surface and
are thus responsible for the cation sorption in PIMs [60]. These carriers crystallized at
the surface of the membrane, forming pores and thus forming a rough surface [61]. In
addition, rougher surfaces also provide a larger total surface area for the extraction to take
place. Therefore, the transport of ions across the membrane and extraction efficiency were
enhanced as the percentage of the carrier increased.

3.5. Contact Angle, Thickness and Water Uptake

The surface properties of PIMs can greatly affect the permeability and flux of the
membranes. Contact angle, thickness and water uptake were employed in these studies.
The membrane with a higher contact angle (>90◦) is determined as hydrophobic, whereas
the membrane with a lower contact angle (<90◦) is hydrophilic [62,63]. The measured
values of contact angle, water uptake and thickness for the membranes were tabulated in
Table 6. From Table 6, M1 is the most hydrophobic membrane among others with the contact
angle of 153.48◦, whereas M6 is the least hydrophobic membrane with a contact angle of
95.54◦. A declining trend was observed for the membranes as the percentage of carriers
increased. As observed, the M1 membrane exhibited the highest contact angle. This can be
explained by the introduction of the HFP functional group which enhances the fluorine
content in the base polymer and subsequently increases the hydrophobic properties of the
PVDF-co-HFP [64,65]. However, when the hydrophilic carriers were filled into the pores
of the hydrophobic PVDF-co-HFP polymer, it neutralized the hydrophobic nature of the
membrane and increased the hydrophilicity of the membrane. This shows that the carrier
improved the membrane by reducing the hydrophobicity properties. Correspondingly,
less hydrophobic properties of the membrane can facilitate the transfer of the MG cations
across the membrane and in the meantime prevents the diffusion of aqueous solution
into the receiving phase. The increment of the carrier in the membrane allows the surface
of the membrane to have more interaction with the aqueous solution, thus increasing
the transfer rate of the cations. The results are supported by the contradictory trend of
water uptake of the membrane. M1 has the lowest water uptake of 2.02% followed by
a gradual increment for M2 (13.43%), M3 (18.43%), M4 (20.99%), M5 (40.80%) and M6
(58.02%). The membrane with a higher hydrophobic surface will have lower wettability
and lower tendencies to absorb water [66]. Likewise, the water uptake of the PIMs can also
be related to the vehicular and Grotthuss mechanism [67]. During water absorption, the
water molecules in the distilled water form hydrogen bonds with the active sites of the
carriers, and hence, the higher composition of the carrier would provide more active sites
for more water molecules retaining in the membrane. Moreover, immersing the membrane
in water would increase the porosity of the membrane [68,69], and enhance the mobility of
ions as well as the efficiency of the transportation of cations across the membrane [70]. In
addition, from the SEM and AFM image, it can be observed that the carrier was embedded
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at the surface of the membrane which potentially reduces the interface energy [71]. Hence,
the contact angle gradually reduced and increased the water uptake of the membrane.
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Table 6. Contact angle, thickness and water uptake of PIMs.

Membrane Contact Angle (◦) Water Uptake (%)

M1 153.48 ± 2.56 2.02 ± 0.2
M2 124.94 ± 1.57 13.43 ± 0.2
M3 110.18 ± 0.07 18.43 ± 0.4
M4 99.40 ± 2.23 20.99 ± 0.4
M5 95.86 ± 1.11 40.80 ± 0.3
M6 95.54 ± 3.03 58.02 ± 0.4
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3.6. Ion Exchange Capacity (IEC)

Figure 12 shows the results of the IEC of M1, M2, M3, M4, M5 and M6. Based on
Figure 12, it can be observed that M1 has the lowest IEC value of 0.291 meq/g; then the
value surged to 0.635 meq/g for M2 and was followed by a steady increment in the IEC
for the following membranes M3 (0.671 meq/g), M4 (0.709 meq/g), M5 (0.757 meq/g)
and M6 (0.780 meq/g). The trend shows the relationship between the carrier content and
IEC of the membrane, where the IEC increases in alliance with the carrier content of the
membrane [72]. This is because the PIM with a higher percentage of carriers has more
vacant ion-exchange sites available for the formation of carrier complexes between the
carriers B2EHP and MG ions (Equation (9)). Thus, more MG ions can be extracted across the
membrane into the receiving phase, and as a result, the IEC of the membrane was enhanced.
However, the absence of carrier content significantly reduced the ion conductivity of the
membrane. As proven by M1, the IEC value of M1 was the least among the membranes.
Even though M1 does not contain any carrier, the membrane still tends to extract a small
amount of MG. This is due to the presence of the –HFP amorphous phase of the semi-
crystalline PVDF-co-HFP polymer which contributes a high dielectric constant (E= 8.4) to
the conductivity of the membrane [13,73]. Similar findings were also reported by other
researchers on the enhancement of the ionic conductivity of the PVDF-co-HFP polymer
with the presence of the –HFP group [74–76].
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Figure 12. Ion exchange capacity (IEC) of M1, M2, M3, M4, M5 and M6.

4. Kinetics Studies
4.1. Percentage of Carrier

Experimental data from the performance studies were simulated with pseudo-first-
order (PFO) (Equation (6)) and pseudo-second-order (PSO) (Equation (7)). The results
are presented in Tables 7 and 8. The tables show the estimated parameter values of the
PFO and PSO models for theoretical equilibrium concentration (Ce), rate constant (k2),
theoretical initial concentration (C0), correlation coefficient (R2) and variance obtained
from the experimental data for each percentage of the carrier. Observably, the R2 value
generated from the PFO is within the range of 0.9220 to 0.9365, whereas the range value
for PSO is within the range of 0.9713 and 0.9997. By comparing both R2 values, it can be
deduced that the experimental data have a better fit towards PSO in comparison with the
PFO model. Therefore, the PFO model was used for subsequent discussion.
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Table 7. Estimated parameter values of the PFO models by the numerical calculations for the
extraction process with different percentages of the carrier (B2EHP).

Membrane Ce k 1 C0 R2 Variance

M1 9.0060 0.0092 9.4468 0.9220 0.0009
M2 1.3056 0.0212 9.8472 0.9249 0.0556
M3 1.2576 0.0219 9.9393 0.9296 0.0045
M4 0.5984 0.0222 9.9793 0.9328 0.0952
M5 0.5081 0.0256 10.0391 0.9287 0.0182
M6 0.4125 0.0419 9.9916 0.9365 0.0463

Table 8. Estimated parameter values of the PSO models by the numerical calculations for the
extraction process with different percentages of the carrier (B2EHP).

Membrane Ce k2 C0 R2 Variance

M1 8.8711 0.0004 9.4595 0.9713 0.0007
M2 1.3216 0.0015 9.9722 0.9996 0.0039
M3 1.2082 0.0018 10.0220 0.9997 0.0157
M4 1.1316 0.0024 10.0601 0.9987 0.1481
M5 1.0430 0.0029 10.0843 0.9997 0.0854
M6 0.4235 0.0070 10.0289 0.9996 0.0053

Based on Table 8, it can be deduced that the rate of the extraction (k2) increases and
the theoretical equilibrium concentration (Ce) decreases as the percentages of the carrier
increase. This can be supported by the results obtained for the ion-exchange capacity in
Figure 12. The membrane with a higher percentage of carrier has higher ion capacity for
the MG extraction; thus, more cation can be extracted before reaching the equilibrium
state. The R2 value is one of the most significant determinants and represents the good fit
of experimental data and the model [77]. As evaluated, the R2 values for the PSO model
are relatively high which fall within the range of 0.9713 to 0.9997. This shows that the
experimental data for different percentages of the carrier are well fitted with the PSO
model. This also indicates that the extraction mechanism of PIMs undergoes chemisorption
mechanisms which involve oxidation and reduction processes [51,77–79]. As observed,
M6 has the highest mass transfer coefficient, k2, and the lowest theoretical equilibrium
constant, Ce, of 0.0070 and 0.4235 mg/L, respectively. Hence, this proves that M6 is the
most efficient membrane for the extraction of MG dye. In order to ease the analysis of the
data, the experimental and theoretical data are presented in Figure 13.
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4.2. Initial Dye Concentration

Experimental data from the performance studies were simulated with pseudo-first-
order (PFO) (Equation (6)) and pseudo-second-order (PSO) (Equation (7)). The results
are presented in Tables 9 and 10. The tables show the estimated parameter values of the
PFO and PSO models for theoretical equilibrium concentration (Ce), rate constant (k2),
theoretical initial concentration (C0), correlation coefficient (R2) and variance obtained from
the experimental data at different dye concentrations. Observably, the R2 value generated
from the PFO is within the range of 0.9213 and 0.9354, whereas the range value for PSO is
within the range of 0.9985 and 0.9999. By comparing both R2 values, it can be deduced that
the experimental data have a better fit towards PSO in comparison with the PFO model.
Therefore, the PFO model was used for subsequent discussion.

Table 9. Estimated parameter values of the PFO models by the numerical calculations for the
extraction process at different dye concentrations.

Concentration Ce k 1 C0 R2 Variance

2 0.0465 0.0439 2.1177 0.9327 0.0046
4 0.0727 0.0433 3.4432 0.9245 0.0092
6 0.1797 0.0419 5.9157 0.9313 0.0418
8 0.2475 0.0404 7.9416 0.9213 0.0756

10 0.4125 0.0344 9.9916 0.9265 0.0463
12 0.5468 0.0331 11.3278 0.9354 0.0784

Table 10. Estimated parameter values of the PSO models by the numerical calculations for the
extraction process at different dye concentrations.

Concentration Ce k2 C0 R2 Variance

2 0.1293 0.0340 2.1276 0.9995 0.0003
4 0.2375 0.0186 3.4612 0.9998 0.0003
6 0.2972 0.0126 5.9448 0.9989 0.0051
8 0.3093 0.0101 8.0106 0.9985 0.0133

10 0.4235 0.0080 10.0289 0.9996 0.0053
12 0.5361 0.0056 11.3504 0.9999 0.0006

In Table 10, the k2 value decreases from 0.0340 to 0.0056 and the Ce value increases
from 0.1293 to 0.5361 with increasing initial dye concentration. This indicates that the
increment in initial dye concentration affects the ability of the membrane to extract the
MG ions across the membrane. At a higher concentration of initial dye concentration,
the amount of active sites on the surface of the membrane limits the amount of MG ions
extracted across the membrane. Eventually, the extraction process will reach a state where
saturation occurs on the surface of the membrane and only a small amount of MG ion is
extracted from the feeding phase. Hence, the k2 value drops as the initial dye concentration
inclines. Good fitting of the experimental data with the PSO model was determined with a
relatively high R2 value and low variance. The R2 values deduced from the PSO model
were 0.9995, 0.9998, 0.9989, 0.9985, 0.9996 and 0.9999 for the MG initial dye concentrations
of 2 mg/L, 4 mg/L, 6 mg/L, 8 mg/L, 10 mg/L and 12 mg/L, respectively. Better fitting of
the experimental data with the PSO kinetic model indicates that the rate-determining step
in the MG extraction involves chemisorption, where the occurrence of the valence forces
between the carrier and cation is possible.

Based on Motsoane [80], the mechanisms of the MG extraction involve three subse-
quent steps. First, the carriers undergo proton ionization, and protons are released into the
feeding phase. Negatively charged compounds are formed. Then, the MG2+ ion is attracted
to the carrier, forming a weak Van der Waals force of attraction and hydrogen bonds with
the C-H and P-O-C groups found at the carrier. As a result, an ion-carrier complex is
formed. Then, the MG2+ ion is transported across the membrane interface towards the
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receiving solution, and finally, the ion-carrier complex dissociated and released the MG2+

ion into the receiving solution. In exchange, the MG2+ ion is replaced by a proton (H+

ion) from the receiving solution, and the carrier is returned to the feeding solution where
the extraction process is repeated. A high concentration of proton in the receiving phase
tends to diffuse to the feeding phase with low proton concentration, down the concen-
tration gradient. Therefore, this creates the driving force for the continuous extraction
process, regardless of the concentration of the MG dye in the feeding phase. A similar
occurrence was reported by Gherasim et al. [81] who deduced that the sorption mechanism
of Pb(II) metal with PIMs containing the B2EHP carrier was based on the PSO kinetics
model. Furthermore, Salima et al. [51] and Mahanty et al. [82] also concluded that PSO
model can suitably describe the mechanism of extractions by PIMs. Figure 14 illustrates
the mechanism of the MG extraction, while Figure 15 shows the plotting of the theoretical
and experimental data Ct vs. t of the extraction process at different MG concentrations.
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5. Conclusions

The present study has successfully fabricated and characterized a new PVDF-co-HFP-
based PIM with B2EHP as the carrier and DOP as the plasticizer. The membrane was
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applied in MG extraction which involves transporting the MG ions across the membrane
from the feeding phase into the receiving phase.

Results show that the membrane with 21% of the B2EHP carrier achieved the best per-
formance with 86.68% of MG extraction, 0.1188 cm/min of permeability, 1.1913 mg cm/min
of flux and 78% IEC. This revealed that the performance of the membrane is dependent on
the content of the carrier in the membrane. More than 97% of MG extraction was achieved
within the selected range of initial dye concentration. Furthermore, the characterization
of the membrane revealed that with the incorporation of the carrier, the surface of the
membrane turned rougher, plus higher conductivity was achieved with a less hydrophobic
surface. From the kinetic simulation of the experimental data, it was discovered that the
trend of MG extraction was inclined towards PSO (R2 value >0.999) which subsequently
described that the extraction took place via chemisorption mechanisms. This supports the
idea where ions’ oxidation and reduction are involved in the process of MG extraction.
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