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Abstract: Membrane processes are complex systems, often comprising several physicochemical
phenomena, as well as biological reactions, depending on the systems studied. Therefore, process
modelling is a requirement to simulate (and predict) process and membrane performance, to infer
about optimal process conditions, to assess fouling development, and ultimately, for process monitor-
ing and control. Despite the actual dissemination of terms such as Machine Learning, the use of such
computational tools to model membrane processes was regarded by many in the past as not useful
from a scientific point-of-view, not contributing to the understanding of the phenomena involved.
Despite the controversy, in the last 25 years, data driven, non-mechanistic modelling is being applied
to describe different membrane processes and in the development of new modelling and monitoring
approaches. Thus, this work aims at providing a personal perspective of the use of non-mechanistic
modelling in membrane processes, reviewing the evolution supported in our own experience, gained
as research group working in the field of membrane processes. Additionally, some guidelines are
provided for the application of advanced mathematical tools to model membrane processes.

Keywords: membrane processes; modelling; multivariate data analysis; artificial intelligence; chemo-
metrics; fluorescence excitation-emission matrices (EEM); big data; PLS; ANN; PCA

1. Introduction

Typically, membrane processes require close monitoring to assess the performance of
separation and ensure the quality and characteristics of the fractions achieved. Additionally,
and independently of the system studied, the monitoring of membrane performance and of
fouling formation is usually an essential requirement to make decisions about membrane
cleaning procedures and thus, to maximize the lifespan of membranes. In this context,
modelling of the membrane process is indispensable, since it allows to simulate (and
predict) membrane performance, to infer about optimal process conditions, to correlate
experimental measurements with fouling potential and fouling development, to control the
process (in particular when online monitoring data is available), to increase the knowledge
about the process and ultimately for process design.

In general, when applied to membrane processes, mathematical models can be devel-
oped to describe the filtration process (e.g., permeability, selectivity) through well-known
physical equations that describe the mechanisms involved in the membrane process. Some
models aim to describe variables that cannot be assessed experimentally (or are difficult
to assess) and correlate them with mensurable variables (usually performance variables),
disclosing the mechanical behavior of the process. When these models are regulated by
physicochemical laws, they are usually called mechanistic or deterministic models. Indeed,
there are many possible ways to classify mathematical models [1], but in this work, only
the mechanistic and non-mechanistic classification will be discussed.

However, besides the mechanistic models, based on known physicochemical equa-
tions, non-mechanistic models can also be used in membrane processes to describe the
performance and behavior of the systems. Such models are based on experimental data
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and sometimes are called empirical models; however, when models are developed based
on statistical tools, they are also called statistical models. For the purpose of the present
work, non-mechanistic models are defined as data-driven models based on mathematical
tools, implemented through computational algorithms. These non-mechanistic models
are also commonly called black-box models due to the character of the mathematical
correlation (sometimes unknown or hidden in complex algorithms), which is not driven
from physicochemical insights. However, nowadays, terms as Chemometrics, Machine
Learning, and Artificial Intelligence are also commonly used to describe the use of such
mathematical/computational tools and are usually recognized as valuable in different
areas of science.

Multiparametric non-mechanistic modelling tools usually involve principal compo-
nents analysis (PCA), or one of its several variations, multilinear regressions, such as
projection to latent structures (PLS) regression (also called partial least squares regression)
or artificial neural networks (ANN), among other tools. Independently of the modelling
tools used, machine learning techniques require computational algorithms, a significant
amount of data, have statistical parameters to assess validity, and correlate a group of pa-
rameters (called inputs) to disclose the key variables selected to be modelled (the outputs).
Such methods also require a calibration (i.e., the learning of the mathematical structure),
where the algorithms are trained using experimental data (both input and output pa-
rameters assessed experimentally are required) in order to define the models. After the
calibration, a step of validation (also called test) with a new set of experimental data (not
used for calibration) is required. The models achieved can then be used to predict the
outputs based only on the input parameters.

Despite the actual dissemination of terms as Machine Learning and Artificial Intel-
ligence, just a few years ago, the use of such computational tools to disclose correlations
between different variables when modelling membrane processes was not very common
and usually regarded as not useful from a scientific point-of-view, lacking physicochemical
meaning, and not contributing to the understanding of the phenomena involved. This
work aims at providing a personal and historical perspective of the use of non-mechanistic
modelling in membrane processes. Furthermore, the present work aims at showing how
advanced mathematical tools (non-mechanistic models) can be used for the modelling of
membrane processes to solve practical problems (such as process monitoring and fouling
development) and the advantages of using such tools in situations where mechanistic
models are not sufficient because the understanding of the bio/physical phenomena is
incomplete.

2. Non-Mechanistic Modelling

The work developed using conventional mechanistic modelling of membrane pro-
cesses is huge and comprises different membrane types and membrane processes [2]. In
fact, these models and modelling systems are useful and non-replaceable; however, there
are situations where the knowledge about physicochemical phenomena and interactions
is not sufficient to allow the development of successful and useful models. Furthermore,
when dealing with large and complex amounts of data resulting from monitoring a mem-
brane process, the use of computational tools is essential to extract meaningful information,
able to be used in an insightful way. While mechanistic modelling aims at describing the
system (and the experimental data) based on a priori knowledge, non-mechanistic mod-
elling aims at finding the system phenomena and dynamics that are inherently contained
in the experimental data.

Multivariate data analysis aims at study data sets composed by several variables
that describe the system, and different multivariate methods can be used with distinct
objectives. For data mining and non-mechanistic modelling, several mathematical tools are
available and can be used, alone or in combination, depending on the data available and the
objectives of modelling. Some multivariate data analysis methods are called unsupervised
and aim at finding variance within data to identify patterns and/or groups (or clusters) in
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data sets. For example, principal component analysis (PCA) is a non-supervised modelling
tool, able to transform the initial variables into independently linear combinations, called
principal components (PC). PCA decomposes a matrix of data (X) into a product of two
new matrices with reduced dimensionality, the scores matrix (C), having the same number
of rows and as many columns as PCs, and the loadings matrix (PT), with the same number
of columns of X, plus a “noise” matrix (ε), containing the data variance not explained by
the number of PC used in decomposition.

X = C · PT + ε (1)

In multivariate regression methods, two or more input variables are correlated to
predict an output variable, in the same way of a regression between two variables. Multi-
variate regression tools may include linear or non-linear functions to correlate the input
variables with the output and are called supervised modelling tools, due to their ability to
learn simultaneously from a X matrix (inputs) and an Y matrix (outputs), correlating both
sets of data, and aiming at predicting the outputs (Y). Projection to latent structures (PLS)
modelling is a multivariate regression technique using linear correlations (multilinear)
related with PCA, where the variables space is reduced and the covariance between the
matrices X and Y maximized. Therefore, redundancy in input and output data is elimi-
nated, allowing higher robustness when there is collinearity and noise in the experimental
data sets.

While PLS modelling results in multilinear regressions between the inputs, to predict
the outputs other nonlinear mathematical tools are available. Artificial neural networks
(ANN) are well known algorithms organized in nodes (inputs, hidden layer(s) and outputs),
as a representation of brain neurons, where each node contains a mathematical function.
ANN modelling is based on patterns, within the neural network structure, and can be used
to reveal complex nonlinear correlations between inputs and outputs.

An example where the non-mechanistic modelling is useful to extract some mean-
ingful information from a complex data set is when using spectroscopic techniques for
process monitoring, which may result in large sets of data (the spectra). In these cases,
the spectra acquired are not always easy of interpretation, especially when the system
monitored is complex and prone to interferences, requiring data-mining techniques to
extract rapidly meaningful information. The advantage of using computational methods
to extract information from these data sets is obvious and usually well accepted by users,
since they permit to recover information which otherwise would not be possible to assess.

Aiming at monitoring an extractive membrane bioreactor (EMB) for the degradation
of chlorinated organic compounds, operating with mixed cultures, Wolf et al. explored in
the early 2000 decade the use of two-dimensional (2D) fluorescence spectroscopy, which
provides 3D spectra (excitation-emission matrices, EEMs) by scanning simultaneously
a range of different excitation and emission wavelengths, in combination with artificial
neural networks (ANN) [3–5]. In membrane processes involving biological reactions, there
are several parameters to monitor, to assess both membrane and biological performance,
as well as phenomena occurring due to the interaction of the biological media with the
membranes (e.g., biofilm and/or fouling formation). Therefore, Wolf et al. used artificial
neural networks (ANN) to extract the information relative to biofilm developed at the
membrane surface comprised in the complex fluorescence matrices obtained on-line, in
real time, during the EMB operation (Figure 1).
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Figure 1. Schematic representation of using 2D fluorescence spectroscopy and operating parameters
as inputs of artificial neural networks (ANN) to predict process performance parameters in an
extractive membrane bioreactor (EMB).

Machine learning, and in particular ANNs, were a novelty as modeling tools in
biotechnology and medical applications in the beginning of the XXI century [6], particularly
interesting due to the complex character of biological interactions, the high number of
compounds involved and non-linearity of biological systems. Furthermore, spectroscopic
techniques as analytical and fingerprinting tools were also being widely explored to
characterize biological media, as reviewed by Pons et al. [7]. In particular, 2D fluorescence
spectroscopy was studied by Scheper and co-workers as a monitoring tool for microbial
processes [8–10]. Thus, it is not surprising that the use of these same tools was extended
firstly to monitor membrane processes involving biological reactions, as done by Wolf and
co-workers.

3. Concerns about “Black Box” Modelling and Precautions Required When Using
This Approach

While the use of non-mechanistic modelling to deconvolute spectral data offers a
clear advantage, the use of the same modelling tools to correlate operating variables with
performance parameters raised several concerns among the scientific community.

The most evident concerns are related with the validity of the mathematical corre-
lations, since they are not based in physicochemical phenomena and require calibration
with experimental data, being very susceptible to variations of the conditions used during
calibration (the extrapolation ability of such models is limited). Problems related with data
selection and preparation prior to the calibration process (or “learning”), the selection of
internal structures (latent variables in PLS or number of nodes in ANN) of mathematical
algorithms, and proper validation of the correlations achieved can result in overfitted
models, with poor predictive ability, or misleading correlations, where random values are
wrongly correlated. However, pitfalls in calibration and validation common to non-expert
users can easily be avoided and evaluated by following good modelling practices.

As shown in Figure 2, the first step to apply non-mechanistic models consists in
selecting a good data set to be used for non-mechanistic modelling. The data set needs to
be representative of the system studied, using significant parameters (variables) to describe
the system at hands, both for inputs and outputs. Furthermore, each variable should
contain enough variability, to allow the mathematical structure to “learn” about the system
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behavior (i.e., how variations in selected parameters correlate with the process status). An
additional step is often required to assure that the inputs used have the same initial weight,
avoiding that input parameters with higher values (independently of variance captured)
have more impact in the modelling structure than the other parameters. Although different
scaling procedures can be used, this step is usually performed to normalize the range of
each variable (x), according with the following equation:

x′ =
x− x

σx
(2)

The standardized values (x′) are calculated based on average and standard deviation
found for each parameter (x and σx, respectively). Thus, the variance across each input
variable is enhanced when related to changes in system performance.

Before calibration of a modelling structure, it is also needed to ensure that a good test
data set is available for final validation of the model achieved. This data set can be selected
randomly from the initial data set or acquired afterwards. Nevertheless, it should comprise
data in the same range of conditions of the calibration set because non-mechanistic models
are valid only within calibration conditions and comprise enough variability, to test the
model in all range of calibration.

The selection of the most appropriated modelling tools is also an important step. For
example, avoiding non-linear correlations when the system is linear or there is not sufficient
data has a higher success in achieving good models by decreasing the possibility of data
overfitting. Additionally, the assessment of the calibration procedure can be done through
cross-validation. Cross-validation is usually performed by leave-one-out or leave-one-
batch-out techniques, aiming at assessing how the use of different sub-sets of the calibration
set performs to estimate the data left out. Cross-validation is performed sequentially across
the entire calibration data set and allows to optimize the internal structure of the algorithm
and minimize data overfitting [11].
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Beyond the importance of the external validation using the test data set, it is im-
perative to assess accurately the quality of fitting and estimation ability of the models
achieved. Therefore, other critical aspect when using non-mechanistic modelling is the
use of adequate parameters to infer about the quality of the models. Such evaluating
parameters should include average errors for calibration, cross-validation, and test sets
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(usually through root mean squared error: RMSEC, RMSECV, and RMSEP, respectively),
as well as fitting ability, as calculated by the coefficient of determination (R2) for the same
data sets. Additional statistic tests (e.g., Akaike information criterion [12]) are also useful
to assess the quality of the models, although their use requires usually larger data sets and
initial data following specific statistical behavior, such as Gaussian distribution.

Besides mathematical considerations about the unreliability of non-mechanistic meth-
ods, easily overcome with adequate modelling practices and evaluating parameters, a
common criticism of such models is that as “black box” models, they do not lead to a
better understanding of the physical phenomena involved in the process, having a limited
application. However, the analysis of functions used in the computation algorithms can be
in fact used to gain knowledge with the correlation found. This can be done by assessing
the equations resulting from tools such as PLS regression (also called grey box, because
they provide equations) or through sensitivity analysis of the input parameters related
with the output(s).

In PLS regressions, the equation used to estimate an output (y) is based on the multi-
linear regression of input variables (x):

y = b0 + b1x1 + b2x2 + · · ·+ bvxv (3)

Based on this type of equation, it is possible to determine for each output (y) the
contribution (i.e., the weight (z)) of each input (v), using standard deviation (σv) and the
regression coefficients (bv) of all variables:

zv =
|bv|·σv

∑V
v=1|bv|·σv

(4)

For the ANN, the impact of each input can be assessed through a sensitivity analysis
of each output value followed by an average for all observations. Sensitivity is calculated
for each value by determining the normalized ratio between the output variables and input
parameters [3].

The knowledge about which inputs are relevant in the prediction of outputs, as well as
their relative weight in the model, provides a mechanistic insight about the processes being
modelled. In fact, several studies aiming at modelling membrane processes (e.g., [3,13,14])
also provided this type of mechanistic insight, providing more than a useful tool for
prediction, as it is discussed in Section 5.

4. Hybrid Modelling

Hybrid modelling refers to the combination of mechanistic and non-mechanistic
models to model a specific system or process. The way each type of functions (mechanistic
or non-mechanistic) interacts in hybrid models can be different regarding the modelling
objectives. Usually, hybrid model structures can be classified as parallel or serial (Figure 3).
While in serial configuration the non-mechanistic model is typically used to estimate
the inputs required to the mechanistic model (Figure 3A), in parallel configuration, both
mechanistic and non-mechanistic models are fed simultaneously by inputs (in parallel).
Typically, in parallel configuration, the non-mechanistic model aims at predicting the
deviation of the mechanistic model (the residuals), and thus, by combining both models,
the mechanistic model is corrected to improve the output prediction. The rationale behind
this hybrid modelling approach is that the residuals from the mechanistic model are not
noise; they comprise information that can be uncovered with the non-mechanistic model.
Furthermore, the description of the residuals from the mechanistic model can be achieved
using the same inputs used in the mechanistic model (X) and/or using additional inputs
(W), able to describe the missing information (Figure 3B).
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Figure 3. Hybrid modelling structures: (A) serial; (B) parallel.

Santos et al. [15] assessed the use of mechanistic, non-mechanistic, and hybrid mod-
elling strategies to describe the solvent transport through nanofiltration membranes. Since
most used mechanistic models developed to the date were not sufficiently general to cover
a wide range of membrane–solvent systems, alternative membrane and solvent descriptors
were selected for that work, which were incorporated as inputs in the modelling structure
alternatively through PLS regression, ANN, and PCA combined with ANN (Figure 4).
In this parallel hybrid approach, the non-mechanistic models were used to estimate the
deviations of the solution-diffusion model by incorporating the descriptor parameters as
inputs. The hybrid modelling resulted not only in a better description of the experimental
results (collected from several publications) but also allowed to identify which variables
were more relevant for process performance, namely the ones whose contribution was
not considered by the solution-diffusion model. Hence, the analysis of the input contri-
butions in the PLS equation found that the mechanistic model used lacks further relevant
information about solvent polarity.
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Figure 4. Hybrid modelling structure used for prediction of solvent permeability through nanofil-
tration membranes (PLS—projection to latent structures; ANN—artificial neural network; PCA—
principal components analysis).

In a different membrane process, hybrid modelling was also used to improve the
modelling ability of an activated sludge model (ASM), commonly used to assess biological
performance in wastewater treatment systems, applied to a membrane bioreactor, with
minimal additional monitoring effort [16]. In the study, a parallel hybrid approach was
used to improve the prediction of suspended solids, chemical oxygen demand in effluent
and nitrate plus nitrite in effluent. Since the ASM used was calibrated with initial condi-
tions (from first 50 days of operation) and performed for 400 days of operation without
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further recalibration, the ASM lacked detailed and real-time information from wastewater
and operating parameters. The aim of the work was to improve the model prediction
without using laborious analytical experiments, thus, 2D fluorescence spectroscopy data,
collected directly in wastewater, biological media, and effluent, were used with a PCA plus
PLS regression modelling approach to estimate the residuals from the ASM. The hybrid
model allowed the improvement of ASM by incorporating fluorescence data, which can be
obtained from monitoring the process in real time. Furthermore, adding operating condi-
tions and analytical data together in the hybrid modelling did not significantly improve the
predictions, showing that monitoring data from 2D fluorescence spectroscopy is sufficient
to capture the variations in media composition lacking in the mechanistic model.

In other study [17], hybrid modelling was used for prediction of counterion fluxes
across an ion-exchange membrane in a membrane-supported biofilm reactor. The hybrid
strategy was used to account for the complex biofilm contribution to the transport. In
that work, besides the parallel hybrid strategy, where the inputs were also used with
PLS regression to estimate the residual of the mechanistic transport model, a competitive
mixture-of-experts structure was used (Figure 5). The mixture-of-experts structure used
both mechanistic and non-mechanistic models to predict the counterion mass-transfer
across the membrane and a gating system mediating the use of one or the other model
based on the contribution of the inputs (the operating conditions) for the prediction of the
output. By using the parallel approach, the PLS regression model was able to capture the
information missing in the mechanistic model from the process operating data. However,
for some counterions the prediction was unsatisfactory due to error variance included by
the mechanistic model in the PLS calibration. Therefore, the limitations found with the
parallel structure were avoided with the competitive mixture-of-experts structure being
this modeling strategy chosen as a better choice in this application.
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As shown for these membrane processes, hybrid models allowed a better understand-
ing of the process than non-mechanistic models, not only because the known physical
relations were used through a mechanistic model but also because by incorporating non-
mechanistic models, it is possible to detect when or why the mechanistic model fails,
identifying the type of information that is missing in mechanistic modelling (through the
new inputs selected or different correlations).

Furthermore, such models are useful to reveal when the complexity of the system
modelled is higher than the mechanistic models available. Therefore, hybrid modelling
can be used in situations where the mechanistic models are not enough to describe the
system, due to the complexity of interactions or by extending the use of models to operating
conditions beyond the system assumptions (required for the mechanistic models). On
the other hand, non-mechanistic modelling usually requires a relatively large amount of
experimental data and has a limited extrapolation potential, which may also be overcome
with the incorporation of a mechanistic model (even if using simplified assumptions), in a
hybrid modelling structure.
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However, it should be noted that when a mechanistic model is not enough to describe
a system and hybrid modelling can be used, the assessment of using only non-mechanistic
modelling should be performed. The use of non-mechanistic models can in fact simplify
the mathematical correlations (by directly correlating the input parameters with the out-
puts) without requiring different functions (as in hybrid models) to monitor the process.
Therefore, before following a hybrid modelling approach, the objectives of the modelling
work should be well defined, and the use of only mechanistic and only non-mechanistic
modelling should be first considered.

Besides their utility, the combination of non-mechanistic with mechanistic models
increases the acceptability by users since it is easier to understand the mechanical concepts
and the limitations causing the need for adding non-mechanistic models.

5. When Non-Mechanistic Modelling Is Seen as Learning

When aiming at modelling membrane processes, the requirement for using non-
mechanistic modelling can firstly be originated from the need to incorporate non-conventional
inputs as system descriptors, such as spectroscopic data, online analytical data, or system
properties/operating conditions (as by using hybrid modelling, discussed in Section 4), or
to deconvolute complex, large data sets resulting from system monitoring (as mentioned in
Section 3).

In fact, our journey in non-mechanistic modelling started with the objective of us-
ing 2D fluorescence spectroscopy to monitor membrane processes involving biological
reactions. 2D fluorescence is a tool able to capture a large amount of information about bio-
logical systems (due to the several natural fluorophores present, e.g., amino acids, NADH,
pigments) without disturbing the system (Figure 6). Fluorescence excitation–emission ma-
trices (EEMs) can be acquired with an optical probe to assess the process directly from the
media without sampling, and the probe can also be oriented towards the membrane surface,
collecting data directly from it. The fluorescence spectra reflect not only the fluorophores
present but also other media properties, since this technique is sensitive to the presence
of several compounds which interact with the fluorophores, changing their fluorescence
response, and/or with excitation and emission light (e.g., inner-filter effect). While a large
amount of data is assessed by 2D fluorescence, the EEMs acquired are complex, and useful
information cannot be extracted directly due to the several interferences present. Thus,
non-mechanistic modelling should be used to extract meaningful information not only
from fluorophores but also from the interferences, as they reflect the presence of other
compounds.
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When using non-mechanistic modelling to deconvolute fluorescence spectra applied
to membrane processes monitoring, different modelling approaches were already stud-
ied. Firstly, and more intuitively, the mathematical tools were applied to correlate 2D
fluorescence with compounds concentration or process performance parameters.

When modelling an extractive membrane bioreactor (EMB) for the degradation of
chlorinated organic compounds, 2D fluorescence spectra acquired in different positions of
the membrane surface, where a biofilm develops, were used as inputs in ANN to estimate
the concentration of 1,2-dichloroethane, ammonia and chloride in the bioreactor liquid
medium [3]. The use of ANN was selected in this work after analyzing the possibility of
spectra subtraction and concluding that a nonlinear technique based in pattern recognition
would be better for fluorescence spectra deconvolution.

In membrane bioreactors (MBR) for wastewater treatment, a similar approach was
also used correlating 2D fluorescence spectra acquired in the influent wastewater stream
and in effluent permeate stream to predict chemical oxygen demand (COD) respectively in
each stream [18]. In this study, projection to latent studies (PLS) regression was used as the
non-mechanistic modelling tool. This tool was selected for being a multilinear tool, less
complex than non-linear ANN, which can minimize overfitting and results in equations
easier to interpret.

Nevertheless, besides estimation of concentrations in liquid media, both studies
showed how such non-mechanistic models can help in elucidating system mechanisms [3,18].
The regression coefficients of the PLS multilinear equation can be used to assess the weight
of each input parameter (i.e., each excitation/emission wavelength pair) and hence the
contribution of each part of the fluorescence spectra, for the prediction of each output
compound. While when using ANN, a sensitivity analysis can be used to highlight which
input parameters most significantly influence the prediction of the output parameters.

The non-mechanistic deconvolution of fluorescence spectroscopy in both type of
biological membrane reactors, extractive membrane bioreactor (EMB) and membrane biore-
actor (MBR), were also subject to improvement through the use of principal components
analysis (PCA) to compress the fluorescence data set into a smaller number of variables
(principal components, PC), prior to correlating it with process performance [5,19]. Such
approach simplifies and reduces the number of inputs to be used for models learning,
regardless of the modelling tool used (ANN or PLS), reducing the computational effort.
Furthermore, it allows the simplification of the correlations and can deal a priory with
noise removal, since only the main variance captured in the fluorescence spectra are used
in the final correlations.

Using the methodology of PCA followed by PLS, 2D fluorescence was posteriorly
used to develop a monitoring tool for the harvesting of microalgae (Dunaliella salina) by
membrane micro- and ultrafiltration [20,21]. These studies focused mainly on monitoring
cell concentration (Figure 7) and cell integrity, due to the fragility of the microalga assessed.
Cell rupture occurs easily in D. salina, resulting in the release of valuable intracellular
compounds to the water media (which are then lost in the permeate). Due to the current
difficulty on analyzing the concentration of intact cells and assess the integrity of the mi-
croalga in real time (usually optical microscopy or flow cytometry techniques are required),
the aim of these studies was to develop a monitoring tool able to be used online, with
an optical probe to assess fluorescence, in order to decide at real time when to stop the
filtration process, assuring cell integrity. Additional computational tools were used to select
the most useful inputs from the original data set. Therefore, as can be seen in Figure 8,
from the 20 principal components (PC) resulting from PCA to spectral data (10 PCs from
fluorescence acquired in the concentrate and 10 PCs from fluorescence acquired in the
permeate) only 4 were selected as useful for predicting microalgae cell disruption, with
different weights [20].
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Besides the characterization of membrane processes involving biological reactions,
PCA was also used to extract information (qualitative information) from fluorescence scans
of membrane surfaces during a reverse electrodialysis (RED) process (Figure 9) using real
sea and river water streams [22]. In that study, the PCA of data acquired before, during
and after long-term operation of the RED system allowed to follow the development of
fouling on both anion and cation exchange membranes (AEM and CEM) in contact with
both water sources and characterize the effects of fouling on membrane surfaces and of
membrane cleaning efficiency, thus, allowing for membrane surface characterization and
monitoring of the membrane status.

Furthermore, by using non-mechanistic modelling, it is possible to incorporate differ-
ent data descriptors, including fluorescence, process operating conditions, and/or other
analysis performed in real time (Figure 9). Thus, in the same RED system, PLS regression
was used to model three performance parameters (pressure drop, stack electric resistance,
and net power density) with and without adding as input fluorescence data acquired at
membrane surfaces [23]. The study showed that fluorescence data containing informa-
tion from fouling highly improved the prediction ability of the models. Additionally, by
acquiring fluorescence in different membrane surfaces (anion-exchange membranes and
cation-exchange membranes, river and sea sides) it was possible to confirm that fouling of
anion-exchange membranes facing river water was the main factor affecting the RED stack
performance.
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exchange membrane; CEM—cation exchange membrane) [22,23].

In EMB the combination of fluorescence, current and historic process operation, was
used with ANN modelling to successfully predict the state of the process [4]. That work also
revealed the high relevance of operating conditions (both current and past) to the overall
performance of the system, which is commonly pointed out as a weakness of mechanistic
models aiming at modelling processes involving biological reactions. In a similar way, a
MBR was also modelled using fluorescence data (after PCA compression), operating and
analytical data as input parameters of a PLS model [24]. Five performance parameters
(including COD, N and P in permeate) were successfully predicted only based on data
known at real time. Furthermore, in that study the deconvolution of data with non-linear
correlations was achieved through the incorporation of quadratic and interaction terms of
the compressed fluorescence matrices.

Although the use of additional monitoring data may be a relevant improvement
in the modelling of membrane processes, non-mechanistic modelling proved also to be
suitable to predict and describe the correlations existing in different membrane processes by
correlating the inputs in a more complex way than mechanistic modelling or by including
additional descriptors. Operating conditions of a membrane-supported biofilm reactor
for industrial effluent treatment were used alone, with elapsed time and with elapsed
time plus previous operating conditions in three different modelling approaches, based on
ANN, for prediction of process state [25]. Each approach proved to be suitable for different
process configuration, being the process performance prediction dependent on the history
of process operation for configurations resulting in the formation of an axial concentration
gradient in the wastewater compartment, which was developing with time.

In another work [13], PLS regression was used to describe the apparent rejection and
adsorption of micropollutants during nanofiltration of contaminated water streams. As
inputs, physicochemical properties and molecular size parameters of the micropollutants,
descriptors of the membrane and of the water matrices, and operating related conditions
were used. The models developed allowed to predict the rejection and adsorption of
a compound based on the properties of the compound, membrane permeability, water
alkalinity, and operating conditions. Additionally, the analysis of the regression coefficients,
after input selection, allowed also to understand which properties affect more the rejection
and adsorption of micropollutants (being geometry of the molecule important to determine
rejection, when molecules have very different geometry, while it is not so relevant for
predicting adsorption) (Figure 10).
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All through the examples shown, non-mechanistic modelling showed to be effective
not only for estimation of performance variables in membrane processes, as well as useful
in disclosing the relevance of input parameters to each output, independently of the
algorithms used. Therefore, besides monitoring and characterization of membrane systems,
machine learning techniques proved suitable to increase the knowledge about each system
studied.

The examples described in this paper covered different membrane processes with
biological reactions, micro and ultrafiltration, nanofiltration and ion-exchange membranes;
however, the application of non-mechanistic models to other membrane processes is also be-
ing increasingly studied by different research groups with successful results (e.g., [26–30]).
Kadel and co-workers studied peptide migration and selectivity during electrodialysis with
filtration membranes by multivariate regression models [26,27]. Membrane distillation
was modelled using ANN by Acevedo et al. [28] and by Dudchenko and Mauter [30]. The
solubility of gases was predicted in nanocomposite membranes by Dashti et al. [29], using
several machine learning tools. In fact, the increasing knowledge about machine learning
methods (applied to several areas) and increasing number of publications, as well as the
global interest and acceptability of these methods, will thus lead to increased application
in several membrane processes. Furthermore, mathematical modelling, and in particular
the use of machine learning methods (able to use different types of data descriptors as
variables), shows to be essential and may provide further advantages when monitoring
membrane process performance and fouling formation (for example to achieve online
monitoring and establish anti-fouling strategies) and to optimize process performance (for
example by disclosing correlations between process variables).

6. Strategies for Model Development

When there is no conceptual knowledge available to develop a mechanistic model,
data mining and machine learning techniques are powerful tools at hand. However, even
when there is not a specific need for non-mechanistic modelling techniques, the use of
machine learning can be advantageous for monitoring and membrane process modelling, in
particular when the mechanistic modelling is complex and there are process data available.

Machine learning can be used to extract information from complex monitoring data
sets, such as spectroscopic data. This is an advantage specially when online monitoring is
aimed and can be done either through the development of correlations between spectra
and performance parameters (e.g., using PLS or ANN) or through unsupervised tools
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(e.g., PCA) to characterize the system status based on patterns (e.g., membrane surface
characterization through operation and cleaning). Additionally, both non-mechanistic
techniques can be combined to process data (e.g., reducing dimensionality by PCA) prior
to the establishment of correlations between inputs and outputs, reducing computational
effort and eliminating collinearity and noise from input data.

Furthermore, machine learning can be used to incorporate different types of process
descriptors in the same tool (e.g., by using spectroscopic data and operating conditions as
inputs), increasing the quality of the models achieved. In a similar way, this property can
be used in hybrid modelling to improve predictions.

Ultimately, in the presence of several process descriptors, the assessment of the impact
of each parameter in the model used for estimation of the output parameter allows to learn
about the system and infer the mechanics involved and the relationships between inputs
and outputs.

Selection of modelling tools should be based on the simplicity principle, trying first
simpler structures, which may result in models with higher robustness and less overfitting.
Thus, multilinear regressions (such as PLS) can be firstly assessed and, if the system presents
non-linear interactions, non-linearity may be taking in account either by incorporating
transformation of inputs (e.g., quadratic and interaction terms) or by using non-linear tools,
such as ANN. Independently from the algorithms used for learning, the models achieved
should always be properly assessed and evaluated in terms of calibration and external
validation.

In a similar way, the selection of hybrid modelling structures depends on the objectives
of modelling. Thus, hybrid modelling can be used not only for prediction when the
mechanistic and the non-mechanistic models alone fail but also to complement information
and gain knowledge about the system (e.g., to disclose missing information not integrated
in mechanistic models).

7. Conclusions and Perspectives

Nowadays, based on the several successful studies performed for membrane process-
ing, it is easier to look to these non-mechanistic tools with confidence, learn with the results
obtained, and, above all, trust in the results for practical applications. Thus, machine learn-
ing methods may be applied to solve problems common in process implementation, such
as monitoring the process performance, monitoring fouling development, and optimization
of membrane processes, through meaningful predictions based on varied input data.

In fact, non-mechanistic tools proved to have the potential to translate monitoring
data into process performance parameters, which can be done in real time, allowing for
advanced process control. Furthermore, the ability of machine learning tools to incorporate
different data sets and combine different functions (such as in hybrid modelling) is a huge
advantage in the development of control tools for membrane processes. Control tools based
on such modelling approaches could be used for continuous update of dynamic modelling
structures, learning, and improving predictions from the online monitoring.

Finally, the approaches used to gain further knowledge from non-mechanistic models
applied to membrane processes show also the potential of machine learning to promote
process optimization.
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