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Abstract: Phosphotungstic acid (HPW)-filled composite proton exchange membranes possess high
proton conductivity under low relative humidity (RH). However, the leaching of HPW limits their
wide application. Herein, we propose a novel approach for anchoring water soluble phosphotungstic
acid (HPW) by polydopamine (PDA) coated graphene oxide and halloysite nanotubes (DGO and
DHNTs) in order to construct hybrid three-dimensional proton transport networks in a sulfonated
poly(ether ether ketone) (SPEEK) membrane. The introduction of PDA on the surfaces of the hybrid
fillers could provide hydroxyl groups and secondary amine groups to anchor HPW, resulting in the
uniform dispersion of HPW in the SPEEK matrix. The SPEEK/DGO/DHNTs/HPW (90/5/5/60)
composite membrane exhibited higher water uptake and much better conductivity than the SPEEK
membrane at low relative humidity. The best conductivity reached wass 0.062 S cm−1 for the
composite membrane, which is quite stable during the water immersion test.

Keywords: proton transport network; low relative humidity; stable conductivity; polydopamine;
graphene oxide; halloysite nanotube; phosphotungstic acid

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) have been considered to be one of
the most promising energy conversion devices due to their high energy efficiency and
zero-emission [1–4]. PEMFC, working at high temperatures, has some advantages that
may improve its efficiency [5]. However, most of the PEMs (a key component of PEMFCs)
are incapable of operating at high temperatures since water evaporating out from the
membrane would result in the loss of proton conductivity. Therefore, PEMs that possess
high proton conductivity under low relative humidity (RH) are in urgent need in a range of
wide applications [6–8]. One of the most promising strategies to obtain such PEMs involves
the incorporation of phosphotungstic acid (HPW) into the composite membrane, which
can retain water under low RH due to the excellent water retention ability of HPW [9–11].
However, HPW is easy to leach out from HPW-filled composite membranes due to the
high water solubility, which limits its further application [12].

To avoid the leakage of water soluble HPW, various substrates (e.g., carbon nanotubes,
sub-micro-porous chitosan, polyvinylpyrrolidone, graphene oxide, and graphitic carbon
nitride) were used to anchor HPW [13–17]. In our previous work, imidazole-functionalized
halloysite nanotubes (HNTs) [18], polydopamine coated HNTs [19], β-cyclodextrins modi-
fied HNTs [20] and amino-modified HNTs [21] were investigated as the effective carriers
for HPW and created the additional proton transport pathways along the high aspect-ratio
HNTs. The sulfonated poly(ether ether ketone) (SPEEK) membranes adding those fillers
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exhibited much higher proton conductivity than the SPEEK control membrane, and the
HPW leakage was successfully slowed down or prevented in those membranes since the
membrane conductivity remained almost constant for a long time under immersion in
liquid water.

Furthermore, it has been demonstrated that, by introducing hybrid fillers with various
dimensions, the formation of three-dimensional thermal/electrical conduction networks
would improve the thermal/electrical conductivity of the composites [22–25]. For instance,
carbon nanotubes (CNTs) and graphite sheets as hybrid fillers easily formed a contin-
uous network, with the one-dimensional CNTs bridging the adjacent two-dimensional
platelets to create additional pathways for heat flow [26]. Xie et al. prepared a thermal
grease filled with 1 wt% graphene nanosheets and 63 vol% alumina particles, and the
combination of hybrid fillers improved the thermal conductivity of the grease from 2.7 to
3.45 W m−1 K−1 [27].

Similar to heat or electron conduction, proton conduction might also benefit from
the combined advantages of each filler. However, up to now, studies on the proton con-
ductive membranes with hybrid filler consisting of nanotubes and nanosheets have not
been reported. Therefore, in this work, sulfonated poly(ether ether ketone) (SPEEK) com-
posite membranes filled with hybrid fillers, polydopamine (PDA) coated graphene oxide
(DGO), and HNTs (DHNTs) that were anchored with HPW were prepared to construct
three-dimensional proton transport networks, resulting in significant improvement in
proton conductivity.

2. Experimental
2.1. Materials

SPEEK was obtained from the sulfonation of poly(ether ether ketone) (PEEK, P450F,
Victrex, Lancashire, UK) according to our previous work [28]. HNTs (Golden Sunshine
Ceramic Co. Ltd., Zhengzhou, China) were purified according to the literature [29]. GO
was synthesized by the oxidation of graphite powder (Qingdao Golden Days Graphite
Co., Qingdao, China) by a modified Hummers method [30]. Sodium hexametaphosphate,
concentrated sulfuric acid, sodium hydroxide (NaOH), sodium nitrate (NaNO3), potassium
permanganate (KMnO4), hydrogen peroxide (H2O2), tris(hydroxymethyl)-aminomethane
hydrochloride (Tris-HCl, 99.0%), dopamine hydrochloride (DA-HCl, 99.0%), dimethylac-
etamide (DMAc), and HPW (99.0%) were bought from Innochem Technology Co., Ltd.,
Beijing, China. All materials were used as received unless mentioned otherwise.

2.2. Samples Preparation

For the preparation of DHNTs and DGO, we used DA self-polymerization to form
thin and surface-adherent PDA coating onto HNTs and GO [31]. Scheme 1 presents the
polymerization mechanism behind the formation of PDA [32]. Specifically, 4 g HNTs or
GO were ultrasonically (200 W, 40 kHz) dispersed in 100 mL of deionized (DI) water, and
then tris-HCl (0.315 g) and DA-HCl (0.379 g) were added into the mixture sequentially,
followed by an adjusting of pH to 8.5 (using NaOH). After stirring for 4 h, the mixture was
centrifuged to retain the precipitate, which was repeatedly rinsed and centrifuged at least
five times. The precipitate was first freeze-dried and then grounded to obtain DGO.

For the preparation of SPEEK/DGO/DHNTs (and SPEEK/DGO/DHNTs/HPW)
composite membranes, SPEEK was dissolved in DMAc, and then DGO and DHNTs (and
HPW) were ultrasonically (200 W, 40 kHz) dispersed in the SPEEK solution followed
by magnetically stirring for 24 h. After degassing to remove air bubbles, the solution
was solution casted (convection oven: 80 ◦C × 24 h; under vacuum: 100 ◦C × 12 h) to
obtain the composite membranes (~60 µm thick). All the composite membranes were
treated with sulfuric acid solution (1 mol/L) and washed by DI water sequentially before
further characterization.
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Scheme 1. Polymerization mechanism behind the formation of PDA.

2.3. Characterization and Measurement

XPS characterization was performed by a PHI Quantera SXM X-ray photoelectron
spectroscopy (XPS) (ULVAC-PHI, Miyazaki, Japan) with a 150 W monochromatic Al Kα radiation.

TGA analysis was carried out using thermogravimetric analyzer (TG-Q500, TA In-
struments, New Castle, DE, USA) from 35 ◦C to 800 ◦C in the nitrogen environment at a
heating rate of 20 ◦C /min.

XRD analysis was conducted by a diffractometer (D/Max-III C, Rigaku, Japan) with
CuKa radiation operating at 40 kV and 200 mA [33–35] with a scan rate of 5.00◦·min−1.

Morphological images were observed by scanning electron microscopy (SEM) (SU8010,
Hitachi Co. Ltd., Tokyo, Japan) at an accelerating voltage of 5 kV. The samples were
sputtered with gold before observation [36], and a certain selected area was scanned by an
energy-dispersive X-ray spectroscopy (EDX) (X-Max20001, Horiba, Kyoto, Japan).

The ion exchange capacity (IEC) of a membrane sample was determined by the
titration method [37] and calculated according to the following Equation:

IEC = 0.01 × VNaOH/mdry (1)

where mdry is the dry weight of the sample, and VNaOH is the volume of the NaOH standard
solution (0.01 M) consumed during titration.

To determine the proton conductivity, membrane samples were placed in a custom
built four-probe conductivity cell in liquid water (or in a humidity cabinet), and AC
impedance measurement was performed on an electrochemical workstation (Zennium
Pro., Zahner, Kronach, Germany). The proton conductivity (σ) of the membranes was
determined according to the following Equation [38]:

σ = L/(R × S) (2)

where L is the distance between the two electrodes, R is the membrane resistance, and S is
the cross-sectional area of the membrane.
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The membrane samples were fully equilibrated in DI water or at various RHs before
water uptake test. Water uptake of the membranes was calculated using the following
Equation [39]:

Water uptake =
mw− md

md
× 100% (3)

where mw and md are the wet and dry weight of the membrane, respectively.

3. Results and Discussions
3.1. Structure of DGO and DHNTs

XPS, TGA and XRD were used to verify the successful introduction of PDA on the
surfaces of GO and HNTs, which could provide many hydroxyl groups and secondary
amine groups to anchor HPW via hydrogen bond interactions and acid-base pairs, respec-
tively. For the XPS survey curves as shown in Figure 1a,d, compared to GO and HNTs,
both DGO and DHNTs show an additional characteristic N1s peak that originates from the
PDA coating on filler surfaces. For the TGA curves in Figure 1b, the weight loss of GO at
200 ◦C was ~40 wt%, due to the evaporation of interlamellar water and the decomposition
of surface oxygen-containing groups. In contrast, the weight loss of DGO was ~23 wt%.
This phenomenon might result from the partial reduction of GO by PDA [40,41], which
lowers the content of oxygen-containing groups on GO and improves the thermal stability
of the nanosheets. The reduction of GO by PDA would also reduce the interlayer spacing,
which is confirmed by XRD. As shown in Figure 1c, a sharp diffraction peak (2θ = 11.7◦)
was assigned to the 002 plane of GO with d-spacing of 0.95 nm. After adding PDA, the
peak shifts to smaller angle (2θ = 10.8◦), indicating the decrease of d-spacing [42]. As for
HNTs, by the addition of PDA, no chemical reaction occurs between the nanotubes and
PDA. Therefore, for HNTs and DHNTs, similar degradation behavior and the same XRD
pattern are found as shown in Figure 1e,f, respectively. The slightly larger weight loss for
DHNTs than that for HNTs is due to the additional degradation of PDA.
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3.2. Performance of SPEEK/DGO/DHNTs Composite Membranes

IEC, water uptake, and proton conductivity of SPEEK/DGO/DHNTs composite mem-
branes are shown in Figure 2. The composite membranes exhibit a decreased IEC with the
increase of DGO/DHNTs content, since DGO and DHNTs do not contain any ion-exchange
groups showing very low IEC. Meanwhile, the formation of acid-base pairs between the
basic secondary amine groups on PDA and the sulfonic acid groups in SPEEK also reduced
the membrane IEC. However, the acid-base pairs, as well as the hydrogen bonding interac-
tions, could also facilitate the dissociation of sulfonic acids to promote the proton transport
in the composite membrane [18]. As a result, the proton conductivity of the composite
membranes remains almost unchanged with the increase of DGO/DHNTs content. As for
the water uptake, when a small amount of DGO/DHNTs is added, the acid-base pairs
result in the decrease of water absorption of the membrane. However, due to the existence
of many hydroxyl groups on the PDA coating, DGO and DHNTs would show very high
intrinsic water absorption. Therefore, the water uptake of the composite membrane in-
creased with a further increase of DGO/DHNTs content. Furthermore, the filler dispersion
was observed by SEM. As shown in Figure 3, with the increase of DGO/DHNTs content,
more aggregates are exposed on the fracture surface and more cracks are found, indicating
the poorer dispersion of DGO and DHNTs.

Membranes 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. Proton conductivity, water uptake, and IEC of SPEEK/DGO/DHNTs composite mem-
branes. 

 
Figure 3. SEM images of SPEEK/DGO/DHNTs composite membranes with DGO/DHNTs (1:1) con-
tent of (a) 5 wt%, (b) 10 wt%, (c) 15 wt%, and (d) 20 wt%. 

3.3. Performance of SPEEK/DGO/DHNTs/HPW Composite Membranes 
In this work, we aimed to anchor HPW by DGO/DHNTs, while the poor dispersion 

would harm the anchoring efficiency. Moreover, the optimal performance is achieved for 
the composite membrane at the 10 wt% DGO/DHNTs. Therefore, the 
SPEEK/DGO/DHNTs/HPW composite membranes with various HPW contents were pre-
pared based on the SPEEK/DGO/DHNTs (90/5/5) composite membrane. It is found that 

Figure 2. Proton conductivity, water uptake, and IEC of SPEEK/DGO/DHNTs composite membranes.

3.3. Performance of SPEEK/DGO/DHNTs/HPW Composite Membranes

In this work, we aimed to anchor HPW by DGO/DHNTs, while the poor dispersion
would harm the anchoring efficiency. Moreover, the optimal performance is achieved for the
composite membrane at the 10 wt% DGO/DHNTs. Therefore, the SPEEK/DGO/DHNTs/
HPW composite membranes with various HPW contents were prepared based on the
SPEEK/DGO/DHNTs (90/5/5) composite membrane. It is found that the HPW (containing
O, P and W) is uniformly dispersed in SPEEK matrix based on the SEM-EDX mapping of
SPEEK/DGO/DHNTs/HPW (90/5/5/60) composite membrane (Figure 4).
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composite membrane.

As shown in Figure 5, the IEC of the composite membranes decreases with the increase
of HPW content, which is due to the low intrinsic IEC of HPW (1.04 mmol/g) and the
formation of acid-base pairs between DGO/DHNTs and HPW that could reduce the
number of exchangeable protons during titration. The proton conductivity of the composite
membranes shows an upward trend by adding HPW due to the following reasons: (i) HPW
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possesses better proton conducting ability than SPEEK; (ii) one-dimensional DHNTs and
two-dimensional DGO are connected to anchor HPW, forming three-dimensional proton
transport networks that provide sufficient transport pathways for protons (Scheme 2);
(iii) both DGO and DHNTs can form acid-base pairs and hydrogen bond interactions with
HPW and SPEEK to shorten the proton conduction distance. The highest conductivity
was 0.062 S cm−1 for the SPEEK/DGO/DHNTs/HPW (90/5/5/60) composite membrane,
~248% higher than that of the composite membrane without HPW (0.025 S cm−1). For the
membrane water uptake, the presence of HPW inhibited the water absorption of DHNTs
and DGO through the formation of acid-base pairs. However, when further increasing
the HPW content, the composite membranes exhibit increased water uptake owing to the
strong intrinsic water absorption capacity of HPW. As a result, the water uptake of the
composite membranes firstly decreased and then increased with the increase of HPW.
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The proton conductivity and water uptake of SPEEK and SPEEK/DGO/DHNTs/HPW
composite membrane at various RHs are shown in Figure 6. Owing to the excellent water-
retaining capacity of HPW, the composite membrane exhibited higher water uptake than
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SPEEK membrane at RHs of 30~80%. The composite membrane also exhibited much higher
conductivity than that of SPEEK membrane. On the one hand, the reserved water in the
membrane could promote proton transfer. On the other hand, HPW is a strong acid, which
also benefits the improvement of proton conductivity.
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Moreover, the immobilization of HPW by DGO/DHNTs was confirmed via a mem-
brane conductivity stability test, where the composite membranes with the same content of
HPW were immersed in water that flowed continuously at 25 ◦C. As shown in Figure 7,
the conductivity of the SPEEK/HPW composite membrane decreased rapidly, while that
of the SPEEK/DGO/DHNTs/HPW composite membrane remains almost constant after
31 days, indicating the leakage of HPW has been successfully prevented.
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4. Conclusions

In this work, we first introduced PDA on the surfaces of GO and HNTs, which was con-
firmed by XPS, TGA, and XRD, and then prepared the SPEEK/DGO/DHNTs/HPW com-
posite membranes with various HPW contents based on SPEEK/DGO/DHNTs (90/5/5).
It was found that HPW dispersed uniformly in SPEEK matrix. Although IEC decreased
with the increase of HPW, the proton conductivity of the composite membranes showed an
upward trend. The highest conductivity of 0.062 S cm−1 was achieved in the SPEEK/DGO/
DHNTs/HPW (90/5/5/60) composite membrane, which exhibited higher water uptake
and much better conductivity than the SPEEK membrane at low RHs. The conductivity of
the SPEEK/DGO/DHNTs/HPW composite membrane remained almost constant during
31 days water immersion test, indicating the leakage of HPW has been successfully pre-
vented. Therefore, our work provides a promising method to effectively anchor HPW in
the composite PEMs with high and stable proton conductivity under low RH.
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