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Abstract: Accurate prediction of blood toxin concentration during and after dialysis will greatly
contribute to the determination of dialysis treatment conditions. Conventional models, namely
single-compartment model and two-compartment model, have advantages and disadvantages in
terms of accuracy and practical application. In this study, we attempted to derive the mathematical
model that predicts blood toxin concentrations during and after dialysis, which has both accuracy
and practicality. To propose the accurate model, a new two-compartment model was mathematically
derived by adapting volume-averaging theory to the mass transfer around peripheral tissues. Subse-
quently, to propose a practical model for predicting the blood toxin concentration during dialysis,
an analytical solution expressed as algebraic expression was derived by adopting variable transfor-
mation. Furthermore, the other analytical solution that predicts rebound phenomena after dialysis
was also derived through similar steps. The comparisons with the clinical data revealed that the
proposed analytical solutions can reproduce the behavior of the measured blood urea concentration
during and after dialysis. The analytical solutions proposed as algebraic expressions will allow a
doctor to estimate the blood toxin concentration of a patient during and after dialysis. The proposed
analytical solutions may be useful to consider the treatment conditions for dialysis, including the
rebound phenomenon.

Keywords: analytical solution; dialysis treatment; two-compartment model; volume-average theory

1. Introduction

The standardized Kt/V, which indicates the ratio of blood purification amount by
dialysis to the amount of body fluid for the patient, is widely used today as an index
to evaluate dialysis adequacy [1,2]. The standardized Kt/V consists of three important
dialysis parameters, namely, K: clearance (mL/min), t: dialysis time (min), and V: total
volume of body fluid (m3) for the patient. This standardized Kt/V was proposed by Gotch
and Sargent [1] for predicting the blood toxin concentration during dialysis. They assumed
that a whole body is a contaminated pool (single compartment) and a loop for blood
purification is connected during dialysis treatment (see Figure 1a). Their model was simple
and acceptable to doctors who treated with dialysis at the time, however, the model did
not consider the effect of the volume decrease by ultrafiltration and toxin production in the
body. Subsequently, several improved models have been proposed, so that the Daugirdas
formula is recommended by the K/DOQI guidelines; on the other hand, the Shinzato
formula is recommended by the Japanese Society for Dialysis Therapy [3–5]. However,
their models are also proposed based on single-compartment assumption.
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Daugirdas formula is recommended by the K/DOQI guidelines; on the other hand, the 
Shinzato formula is recommended by the Japanese Society for Dialysis Therapy [3–5]. 
However, their models are also proposed based on single-compartment assumption. 

Pedrini et al. [6] raised the question of the validity of the models derived by the sin-
gle-compartment assumption. Subsequently, some models taking into account the non-
uniformity of metabolic substances in the body have been proposed [7,8]. There is the two-
compartment model [8] in them, which was proposed based on an assumption that the 
body consists of intracellular and extracellular fluids (see Figure 1b). In this model, a loop 
for blood purification is connected at an extracellular fluid, and mass transfer takes place 
between intracellular and extracellular fluids. This model was a more realistic model be-
cause blood purification in dialysis is performed via blood. On the other hand, this model 
was more complicated than the single-compartment model. Some expression formulas [8–
14] have been proposed as two-compartment models so far, and none were mathemati-
cally modeled from mass transfer in the body. Furthermore, in almost these studies, nu-
merical simulation was used to evaluate the blood toxin concentration. Similarly, there is 
peritoneal dialysis as a treatment method for purifying blood. In peritoneal dialysis, the 
mass transfer takes place between multiple compartments such as blood, peritoneum, and 
dialysate. Several multi-compartment models have been proposed so far [15–18], which 
have been evaluated both numerically and analytically. Generically, numerical simulation 
requires considerable calculation time and is less accurate than an analytical solution. In 
contrast, an analytical solution is an algebraic expression, so that we can obtain the blood 
toxin concentration in any time period and any conditions when substituting dialysis con-
ditions. Furthermore, the analytical solution can be implemented into the dialysis device, 
and the doctor may perform hemodialysis by predicting the blood toxin concentration. 

In the present study, we attempted to derive the mathematical model that predicts 
blood toxin concentrations during and after dialysis, which has both accuracy and practi-
cality. First, the new two-compartment model was mathematically derived by adapting 
volume-averaging theory to the mass transfer around peripheral tissues. Volume-averag-
ing theory is a kind of multi-scale theory that derives a macroscopic governing equation 
from a microscopic governing equation by coupling heat or mass transport phenomena 
in numerous small elements existing in a large space [19–23]. Subsequently, analytical so-
lutions for a two-compartment model were derived as a practical model for predicting 
blood toxin concentrations during and after dialysis. The post dialysis analytical solution 
for predicting the post dialysis rebound phenomenon was derived from the same proce-
dure. The validity of the proposed solutions was examined by comparing with clinical 
data and numerical solutions. Furthermore, the proposed analytical solutions were com-
pared with Gotch formula [1] and Shinzato formula [4], which are the single-compartment 
models. 

  
(a) (b) 

Figure 1. Pool model images for assessing the toxin concentration in the body during dialysis; (a) shows single-compart-
ment model for which a whole body is a contaminated pool, while (b) shows the two-compartment model where the body 
is divided into intracellular and extracellular fluids. 

Figure 1. Pool model images for assessing the toxin concentration in the body during dialysis; (a) shows single-compartment
model for which a whole body is a contaminated pool, while (b) shows the two-compartment model where the body is
divided into intracellular and extracellular fluids.

Pedrini et al. [6] raised the question of the validity of the models derived by the
single-compartment assumption. Subsequently, some models taking into account the
non-uniformity of metabolic substances in the body have been proposed [7,8]. There is
the two-compartment model [8] in them, which was proposed based on an assumption
that the body consists of intracellular and extracellular fluids (see Figure 1b). In this
model, a loop for blood purification is connected at an extracellular fluid, and mass transfer
takes place between intracellular and extracellular fluids. This model was a more realistic
model because blood purification in dialysis is performed via blood. On the other hand,
this model was more complicated than the single-compartment model. Some expression
formulas [8–14] have been proposed as two-compartment models so far, and none were
mathematically modeled from mass transfer in the body. Furthermore, in almost these
studies, numerical simulation was used to evaluate the blood toxin concentration. Similarly,
there is peritoneal dialysis as a treatment method for purifying blood. In peritoneal
dialysis, the mass transfer takes place between multiple compartments such as blood,
peritoneum, and dialysate. Several multi-compartment models have been proposed so
far [15–18], which have been evaluated both numerically and analytically. Generically,
numerical simulation requires considerable calculation time and is less accurate than an
analytical solution. In contrast, an analytical solution is an algebraic expression, so that
we can obtain the blood toxin concentration in any time period and any conditions when
substituting dialysis conditions. Furthermore, the analytical solution can be implemented
into the dialysis device, and the doctor may perform hemodialysis by predicting the blood
toxin concentration.

In the present study, we attempted to derive the mathematical model that predicts
blood toxin concentrations during and after dialysis, which has both accuracy and practi-
cality. First, the new two-compartment model was mathematically derived by adapting
volume-averaging theory to the mass transfer around peripheral tissues. Volume-averaging
theory is a kind of multi-scale theory that derives a macroscopic governing equation from
a microscopic governing equation by coupling heat or mass transport phenomena in nu-
merous small elements existing in a large space [19–23]. Subsequently, analytical solutions
for a two-compartment model were derived as a practical model for predicting blood
toxin concentrations during and after dialysis. The post dialysis analytical solution for
predicting the post dialysis rebound phenomenon was derived from the same procedure.
The validity of the proposed solutions was examined by comparing with clinical data and
numerical solutions. Furthermore, the proposed analytical solutions were compared with
Gotch formula [1] and Shinzato formula [4], which are the single-compartment models.
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2. Theory and Analytical Solutions

We shall consider the mass transport phenomena around peripheral tissues, as shown
in Figure 2. According to Pedrini et al. [6], the toxin concentration differs mainly inside and
outside the cell, because mass transfer resistance at the cell membrane is higher than that of
the capillary wall. Therefore, in the present study, we focus on the toxin concentrations in
extracellular and intracellular fluid phases and consider the mass transfer between theses
phases. Note that active transport via ion channels is not considered in the present study.
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Figure 2. Analysis object viewing peripheral tissues as porous media. In the present study, mass 
transfer between extracellular and intracellular fluid phases is considered. 

Figure 2. Analysis object viewing peripheral tissues as porous media. In the present study, mass
transfer between extracellular and intracellular fluid phases is considered.

In volume-averaging theory, the intrinsic volume average of a certain variable φ is
defined as:

〈φ〉phase =
1

Vphase

∫
Vphase

φdV (1)

where Vphase is the volume occupied by intracellular and extracellular fluids. When apply-
ing volume averaging theory, considering the control volume scale [22], the control volume
scale V in Figure 2 should be much greater than the microscopic characteristic length (cell
length), but at the same time, should be much smaller than the macroscopic characteristic
length (human length). Furthermore, a variable is decomposed into its intrinsic average
and the spatial deviation therefrom:

φ = 〈φ〉phase + φ̃ (2)

In volume-averaging theory, the following spatial average relationships are used (for
details, see [19–23]):

〈φ1φ2〉phase = 〈φ1〉phase〈φ2〉phase +
〈
φ̃1φ̃2

〉phase (3a)

〈
∂φ

∂xi

〉phase
=

1
εphase

∂εphase〈φ〉phase

∂xi
+

1
Vphase

∫
Aint

φnidA (3b)

〈
∂φ

∂t

〉phase
=

∂〈φ〉phase

∂t
(3c)

where εphase = Vphase/V is the local volume fraction of each space, and Aint is the interfacial
area between each phase within the control volume. In the present study, ni is defined as a
unit vector pointing outward from the extracellular fluid to the intracellular fluid.
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The microscopic species mass transfer equations for the individual phases can be
written as follows:

∂c
∂t

+
∂ujc
∂xj

=
∂

∂xj

(
Dphase

∂c
∂xj

)
+ s (4)

where D is the diffusion coefficient, and the species concentration c can be treated as
an independent component in metabolic substances, such as urea nitrogen or creatinine.
Furthermore, s indicates the toxin production rate per unit volume, which is assumed as a
constant value and it would be zero extracellular fluid phases. The xj indicates Cartesian
coordinate, which has x, y and z. The index j is a subscript of Einstein notation, which
represents from 1 to 3.

The macroscopic governing equations for the extracellular and intracellular phases
can be expressed using the above spatial average relationships:

∂εex〈c〉ex

∂t +
∂εex〈uj〉ex〈c〉ex

∂xj

= ∂
∂xj

(
εexD ∂〈c〉ex

∂xj
+ D

V
∫

Aint
cnjdA− ρεex

〈
c̃ũj
〉ex
)
+ 1

V
∫

Aint
D ∂c

∂xj
njdA + 1

V
∫

Aint
cujnjdA

(5)

∂εin〈c〉in

∂t
=

∂

∂xj

(
εinD

∂〈c〉in

∂xj
− D

V

∫
Aint

cnjdA− ρεin
〈
c̃ũj
〉in
)
− 1

V

∫
Aint

D
∂c
∂xj

njdA− 1
V

∫
Aint

cujnjdA + s (6)

where the subscripts ex and in indicate extracellular fluid and intracellular fluid phases,
respectively. Note that the velocity in the intracellular fluid vanished because the integral
of the velocity vector in the cell (i.e., closed space) is zero. In contrast, the last term on the
right-hand side, which expresses the mass transport with flow through cell membranes
(i.e., plasma refilling [24]), cannot be eliminated because of the product of the unit vector. In
this analysis, the assumption that the perfusion by plasma refilling via the cell membrane
has a uniform velocity vector in the normal direction of the cell membrane was applied.
Based on a previous paper [25], the perfusion rate for plasma refilling per unit volume
νpl (s−1) is defined as:

νpl =
1
V

∫
Aint

ujnjdA (7)

and the third terms in Equations (5) and (6) can be modeled as:

1
V

∫
Adint

cujnd jdA = νpl〈c〉in (8)

On the other hand, the second term on the right-hand side in Equations (5) and (6),
which describes the diffusive mass transport between extracellular and intracellular fluid
phases, may be modeled via Newton’s cooling law as:

1
V

∫
Aint

D
∂c
∂xj

njdA = as f h
(
〈c〉in − 〈c〉ex

)
(9)

where asf is the specific surface area, and h is the overall mass transfer coefficient between
the extracellular fluid and intracellular fluid phases. Furthermore, the second and third
bracketed terms on the right-hand sides of Equations (5) and (6), which describe the
effects of tortuosity and mechanical dispersion, respectively, are negligibly small around
peripheral tissues. Thus, the macroscopic species mass transfer equations for extracellular
fluid and intracellular fluid phases can be expressed as:

∂εex〈c〉ex

∂t
+
〈
uj
〉∂〈c〉ex

∂xj
=

∂

∂xj

(
εexD

∂〈c〉ex

∂xj

)
− as f h

(
〈c〉ex − 〈c〉in

)
+ νpl〈c〉in (10)
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∂εin〈c〉in

∂t
=

∂

∂xj

(
εinD

∂〈c〉in

∂xj

)
− as f h

(
〈c〉in − 〈c〉ex

)
− νpl〈c〉in + s (11)

We shall derive the two-compartment models from Equations (10) and (11). Com-
monly, the measured toxin concentration from a vein during and after dialysis is considered
to be the average concentration, rather than the concentration in an individual organ. There-
fore, the above macroscopic mass transfer (Equations (10) and (11)) around capillaries is
integrated over extracellular and intracellular fluid volumes Vex and Vin, respectively, with
the assumption that the volume of the solute is small enough that it does not affect each
volume Vex and Vin. The lumped parameter models of Equations (12) and (13) can be led
as follows:

dVex(t)Cex(t)
dt

= −Ah[Cex(t)− Cin(t)] + ωplCin(t) + B.C. (12)

dVin(t)Cin(t)
dt

= −Ah[Cin(t)− Cex(t)]−ωplCin(t) + S (13)

where C(t) is a function of time t and indicates the average concentration over the in-
trinsic volume of each phase in the body. Therefore, the terms on the left-hand side in
Equations (12) and (13) indicate the amount of toxin change per unit of time in the extra-
cellular and intracellular fluid volumes, respectively. On the other hand, the first terms
on the right-hand side in Equations (12) and (13) indicate the mass transport that occurs
between the extracellular and intracellular fluid phases, where A is the total surface area
between the extracellular and intracellular fluid phases. Furthermore, h is the overall mass
transfer coefficient. The second terms on the right-hand side in Equations (12) and (13)
indicate the amount of toxin transported with plasma refilling. Here, the perfusion rate
of plasma refilling ωpl (mL/s) was assumed to be a positive value because plasma mainly
flows out from the intracellular fluid phase to the extracellular fluid phase during dial-
ysis. Moreover, the third term in Equation (13) indicates the amount of toxin produced
in the body, S is the value of s integrated over the intracellular fluid volume Vin. There-
fore, Equations (12) and (13) are a general two-compartment model obtained from mass
transport phenomena in the body.

We shall derive analytical solution of Equations (12) and (13). In Equation (12), B.C.
indicates the mass increase–decrease rate associated with the boundary condition. In the
present study, firstly, we shall attempt to analyze the time development toxin concentration
in the body during dialysis. The boundary condition during dialysis is given using the
clearance K:

B.C. = −KCex(t) (14)

This equation indicates the toxin removal rate per unit of time in a dialyzer, which
is taken into account in the toxin removal rates by diffusion and ultrafiltration in the
dialyzer [26,27].

As shown in Equations (12) and (13), each volume is also a function of time because
the intracellular and extracellular volumes change during dialysis. The volumes of the
extracellular and intracellular fluids are changed due to ultrafiltration and plasma refilling
over the dialysis treatment time as follows:

Vex(t) = Vex(0)−
(

ω f −ωpl

)
t (15)

Vin(t) = Vin(0)−ωplt (16)

where ωf indicates the ultrafiltration flow rate in the dialyzer, for which it is assumed that
the ultrafiltration flow rate ωf is always greater than the perfusion rate of plasma refilling
ωpl. This is because, in dialysis, the plasma feeding occurs due to the decrease in blood vol-
ume with ultrafiltration. By substituting Equations (15) and (16) into Equations (12) and (13)
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and then removing V from the time derivatives according to the differential formula rule,
the following mass balance equations can be obtained:

Vex(t)
dCex(t)

dt
= −Ah[Cex(t)− Cin(t)] + ωplCin(t) +

(
ω f −ωpl

)
Cex(t)− KCex(t) (17)

Vin(t)
dCin(t)

dt
= Ah[Cex(t)− Cin(t)] + S (18)

In the present study, we attempt to derive analytical solutions of the mass balance
equations, i.e., Equations (17) and (18). Based on the papers [10–13,28], the extracellular
fluid volume and intracellular fluid volume are assumed to maintain a constant ratio:

ε =
Vex(t)
Vin(t)

= const. (19)

The term ωpl can be estimated from Equations (15), (16) and (19) as follows:

ωpl =
εVin(0)−

[
Vex(0)−ω f t

]
(1 + ε)t

∼= const. (20)

From Equation (20), ωpl is approximately constant under dialysis treatment conditions.
Therefore, in the present study, ωpl was treated as a constant.

During dialysis (0 5 t 5 T), the extracellular fluid volume and the intracellular fluid
volume change over time. Therefore, for obtaining the general solutions of Equations (17)
and (18), we essentially use Formulas (19) and (20). In the present study, we introduce
a variable transformation. A new parameter, t*, that satisfies the following relationship
is introduced:

dt
dt∗
≡ d f (t∗)

dt∗
≡ Vex(t) (21)

Thus, from Equations (15) and (21), the following relationship is obtained:

dt∗ =
dt

Vex(0)−
(

ω f −ωpl

)
t

(22)

By integrating this equation under the initial conditions (at t = 0: t* = 0), a relational
expression between t and t* can be obtained as follows:

t =
Vex(0)

ω f −ωpl

{
1− exp

[
−
(

ω f −ωpl

)
t∗
]}

(23)

On the other hand, the concentrations for the extracellular and intracellular fluid
phases, which are functions f of t*, are defined as:

Cex(t∗) ≡ Cex( f (t∗)) = Cex(t) (24)

Cin(t∗) ≡
1
ε

Cin( f (t∗)) =
1
ε

Cin(t) (25)

Differentiating Cex(t∗) and Cin(t∗) with respect to t*, the following relations can
be obtained:

dCex(t∗)
dt∗

=
d f (t∗)

dt∗
dCex( f (t∗))

d f (t∗)
= Vex(t)

dCex(t)
dt

(26)

dCin(t∗)
dt∗

=
1
ε

d f (t∗)
dt∗

dCin( f (t∗))
d f (t∗)

= Vin(t)
dCin(t)

dt
(27)
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In other words, the differential values of Cex(t∗) and Cin(t∗) correspond to the left-
hand sides of Equations (17) and (18), respectively. The right-hand sides of Equations (17)
and (18) are similarly rewritten in terms of Cex(t∗) and Cin(t∗), as follows:

dCex(t∗)
dt∗

= −Ah
[
Cex(t∗)− εCin(t∗)

]
+ εωplCin(t∗)+

(
ω f −ωpl

)
Cex(t∗)−KCex(t∗) (28)

dCin(t∗)
dt∗

= Ah
[
Cex(t∗)− εCin(t∗)

]
+ S (29)

Thus, the number of governing equations, i.e., Equations (28) and (29), and the number
of unknowns became the same by introducing the defining equations, i.e., Equations (21),
(24) and (25), which means that we can solve the analytical solutions. Therefore, in the
present study, the analytical solutions are derived from Equations (28) and (29).

From simultaneous Equations (19) and (20), the second-order ordinary differential
equation can be obtained as follows:

α
d2Cex(t∗)

dt∗2 + β
dCex(t∗)

dt∗
+ γCex(t∗) = S (30)

where
α =

1

ε
(

Ah + ωpl

) (31a)

β =
(1 + ε)Ah + K−ω f + ωpl

ε
(

Ah + ωpl

) (31b)

γ =
Ah
(

K−ω f

)
Ah + ωpl

(31c)

are constants. Equation (30) can be solved, and the general solution of Cex(t∗) is given
as follows:

Cex(t∗) = C1 exp(−λ1t∗) + C2 exp(−λ2t∗) +
S
γ

(32)

where

− λ1or2 =
−β2 ∓

√
β2 − 4αγ

2α
(33)

and C1 and C2 are integration constants. In Equation (30), the analytical solution associated
with the multiple root is omitted to enhance the understanding of the content for the reader,
since it was confirmed that there is probably no multiple root within the range in dialysis
treatment by an exhaustive investigation. Furthermore, by substituting Equation (32) into
Equation (29), the general solution of Cin(t∗) is obtained as follows:

Cin(t∗) =
Ah+K−ω f +ωpl−λ1

ε(Ah+ωpl)
C1 exp(−λ1t∗) +

Ah+K−ω f +ωpl−λ2

ε(Ah+ωpl)
C2 exp(−λ2t∗)+

Ah+K−ω f +ωpl

ε(Ah+ωpl)
S
γ (34)

By exploiting Equation (23) through Equation (25), the analytical solutions for the
toxin concentrations in the extracellular and intracellular fluids during dialysis are derived
as follows.

Analytical solution during dialysis:

Cex(t) = C1

[
1−

ω f −ωpl

Vex(0)
t
] λ1

ω f −ωpl
+ C2

[
1−

ω f −ωpl

Vex(0)
t
] λ2

ω f −ωpl
+

S
γ

(35)

Cin(t) =
Ah+K−ω f +ωpl−λ1

Ah+ωpl
C1

[
1− ω f−ωpl

Vex(0)
t
] λ1

ω f −ωpl +
Ah+K−ω f +ωpl−λ2

Ah+ωpl
C2

[
1− ω f−ωpl

Vex(0)
t
] λ2

ω f −ωpl +
Ah+K−ω f +ωpl

Ah+ωpl
S
γ (36)
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where the integration constants C1 and C2 can be determined by the initial conditions
of the extracellular and intracellular fluid phases. In the present study, we adopted the
following initial conditions:

t = 0: Cex(0) = Cin(0) = CS (37)

Thus, C1 and C2 were estimated as follows:

C1 =
Ah
(

K−ω f

)(
−K + ω f + λ2

)
Cs − λ2

(
Ah + ωpl

)
S

Ah
(

K−ω f

)
(λ2 − λ1)

(38)

C2 = −
Ah
(

K−ω f

)(
−K + ω f + λ1

)
Cs − λ1

(
Ah + ωpl

)
S

Ah
(

K−ω f

)
(λ2 − λ1)

(39)

Next, we shall derive analytical solution during the process in which intracellular and
extracellular toxin concentrations re-equilibrate after dialysis (i.e., rebound process). After
dialysis (t 5 T), the blood purification in the dialyzer was completed, so K = 0 mL/min
and ω f = 0 mL/min. Accordingly, ωpl is considered to be 0 mL/min. If the patient is not
eating or drinking, then the extracellular and intracellular fluid volumes after dialysis are
constant. Thus, the general solutions of Equations (17) and (18) can be obtained without
introducing variable conversion. From Equations (17) and (18), the second-order ordinary
differential equation for evaluating the rebound process can be obtained as follows:

Vex(T) ·Vin(T)
Ah

d2Cex(t)
dt

+ [Vex(T) + Vin(T)]
dCex(t)

dt
= S (40)

Thus, the general solution of Cex(t) is given as follows:

Cex(t) = C3 exp(−λ3t) + C4 +
S

Vex(T) + Vin(T)
t (41)

where

− λ3 = −Ah[Vex(T) + Vin(T)]
Vex(T) ·Vin(T)

(42)

where C3 and C4 are integration constants, and by substituting Equation (41) into Equa-
tion (18), the general solution of Cin(t∗) is given as follows:

Cin(t) =
[

1− Vex(T)
Ah

λ3

]
C3 exp(−λ3t) + C4 +

S
Vex(T) + Vin(T)

[
t +

Vex(T)
Ah

]
(43)

where integration constants C3 and C4 can be estimated based on the initial conditions for
the extracellular and intracellular fluid phases. In the present study, the toxin concentrations
in the extracellular and intracellular fluids at the end of dialysis Cex(T) and Cin(T) were
adopted as the initial conditions, which were calculated from the analytical solutions, i.e.,
Equations (35) and (36):

t = T : Cex(T) = Cex(T) during dialysis , Cin(T) = Cin(T) during dialysis (44)

As a result of this initial condition, C3 and C4 were estimated as follows:

C3 = − 1
λ3 exp(−λ3T)

[
(Cin(T)− Cex(T))Ah

Vex(T)
− S

Vex(T) + Vin(T)

]
(45)

C4 = Cex(T) +
(Cin(T)− Cex(T))Ah

Vex(T) · λ3
− S

Vex(T) + Vin(T)

(
1

λ3
+ T

)
(46)
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Combining the analytical solutions during dialysis (i.e., Equations (35) and (36) with
Equations (38) and (39)) and the analytical solutions after dialysis (i.e., Equations (41)
and (43) with Equations (45) and (46)), it is possible to predict the time development of the
toxin concentration in the body during and after dialysis.

3. Results and Discussion
3.1. Validity of the Proposed Analytical Solutions

Comparison with numerical solutions is performed because the behavior indicated
by the proposed analytical solution is unknown, and it is possible to determine whether
the solution is valid by comparing the proposed analytical solution with the numerical
solution. The numerical solution for the urea concentrations in the extracellular fluid and
intracellular fluid phases was obtained by the finite difference calculation based on the
mass balance equations, i.e., Equations (17) and (18). In the calculations during dialysis
(0 = t = T), the urea concentration after time step ∆t from t was predicted by the following
difference formulas:

Cex(t + ∆t) = Cex(t)−
∆t

Vex(t)

{
KCex(t) + Ah[Cex(t)− Cin(t)]−ωplCin(t)−

(
ω f −ωpl

)
t
}

(47)

Cin(t + ∆t) = Cin(t) +
∆t

Vin(T)
{Ah[Cex(t)− Cin(t)] + S} (48)

The calculation conditions, which were adopted as the common dialysis conditions
in Japan according to a previous study [29], are shown in Table 1. Furthermore, the urine
concentrations at the start of dialysis (t = 0 min) were set to Cs = Cex(0) = Cin(0) =
80 mg/dL. The flow rate of ultrafiltration in the dialyzer ωf was set to 20 mL/min. The
perfusion rate of plasma refilling ωpl is a function of ultrafiltration in the dialyzer ωf
(see Equation (20)), which was estimated to be 12 mL/min. The time step was set to be
sufficiently small in order to minimize the numerical error of the numerical simulation.

Table 1. Calculation conditions for validation.

K [mL/min] T [min] ε [-] Vex (0) [mL] Vin (0) [mL] Cs [mg/dL]

200 240 0.667 14,400 21,600 80

ωf [mL/Min] ωpl [mL/Min] Ah [mL/min] S [mg/min]

20 12 500 4.0

On the other hand, in the post-dialysis calculations (t 5 T), the following difference
formulas were adopted:

Cex(t + ∆t) = Cex(t)−
Ah · ∆t
Vex(T)

[Cex(t)− Cin(t)] (49)

Cin(t + ∆t) = Cin(t) +
∆t

Vin(T)
{Ah[Cex(t)− Cin(t)] + S} (50)

In this calculation after the dialysis, the parameters in Table 1 were also adopted, and
the clearance K and the perfusion rates of plasma refilling ωpl and ultrafiltration ωf in
the dialyzer are not needed for this calculation (i.e., K = 0 mL/min, ω f = 0 mL/min, and
ωpl = 0 mL/min). The initial conditions for the analytical and numerical calculations are
the urea concentrations at the end of dialysis (t = 240 min), which were obtained by analyti-
cal and numerical calculations, respectively, during the dialysis. The urea concentrations in
the extracellular and intracellular fluid phases for 160 min after dialysis were calculated.

Figure 3 shows the urea concentrations in the extracellular and intracellular fluid
phases during dialysis (0 5 t 5 240 min) and after dialysis (240 < t 5 400 min), which were
estimated from the proposed analytical solutions and numerical simulation, as explained
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above. As can be seen, the urea concentrations in the extracellular and intracellular fluid
phases decrease during dialysis, and the decrease rate in the extracellular fluid phase is
faster than that in the intracellular fluid phase. This is because the blood purification
in a dialyzer is performed at the blood phase, which is a component of the extracellular
fluid. This decrease in the urea concentration in the extracellular fluid causes the difference
in the urea concentration between the extracellular and intracellular fluid phases, which
induces mass transfer between the extracellular and intracellular fluid phases. Furthermore,
plasma refilling occurs from the cells into the extracellular fluid, and urea is removed from
intracellular fluid phases with plasma refilling.
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Figure 3. Comparison between analytical and numerical solutions. The time developments of the
urea concentration obtained by the analytical solution and the numerical simulation agree well with
each other, which proves the validity of the analytical solution.

In contrast, after dialysis in Figure 3, the urea concentration in the extracellular fluid
increases and approaches that of the intracellular fluid. This is because mass transfer
between the extracellular and intracellular fluid phases continues after dialysis. The
urea concentration in the intracellular fluid phase is higher than that in the extracellular
fluid at the end of dialysis. Therefore, urea moves from the intracellular fluid phase
to the extracellular fluid phase after dialysis. This phenomenon, in which the blood
toxin concentration increases after dialysis, is referred to as rebound, which indicates that
the proposed analysis can also predict the rebound phenomenon. Incidentally, the urea
concentrations in the extracellular and intracellular fluid phases slightly increase after
dialysis because urea is produced in the cells. As shown in Figure 3, the time developments
of the urea concentration obtained by the analytical solution and the numerical simulation
agree well with each other, which proves the validity of the analytical solution.

3.2. Comparison of the Analytical Solution and Clinical Data

In order to prove the usefulness of the proposed analytical solution, the solution
must be able to reproduce clinical data. Therefore, using the proposed analytical solutions,
we attempted to reproduce the clinical data for blood urea concentration during dialysis
(240 min) and after dialysis (60 min) for three chronic dialysis patients, as investigated by
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Ono et al. [11]. Furthermore, the proposed analytical solution was compared with Gotch
formula [1] and Shinzato formula [4], which are the single-compartment model.

In reproducing the clinical data, the clearance of the dialyzer K, the volumetric mass
transfer coefficient at the cell membrane Ah, and the urea production rate S were varied to
fit the clinical data. Table 2 lists the other constant parameters. The initial concentrations
were used for the blood urea concentration at t = 0 min based on the blood sampling data.
Furthermore, since in the previous study [29], the weight and body water content for each
patient were not presented, the average values for Japanese dialysis patients were applied
as follows: initial weight 60 kg, body fluid content ratio 60%, and ratio of the extracellular
fluid to intracellular fluid phases 4:6. The amount of ultrafiltration in the dialyzer was
set such that 4800 mL of water was removed by dialysis for 240 min. Although some
of the parameters used in the analysis may differ from the personal data, the adopted
values are very commonly used clinically [9,29,30], and verifying the proposed analysis
solutions is not problematic. In the reproduction of clinical data by the Shinzato and Gotch
formulas, the clearance of the dialyzer in the Shinzato formula KShinzato and the clearance
of the dialyzer in the Gotch formula KGotch was set so as to match the measured blood urea
concentration at the end of dialysis. The toxin concentration of the Shinzato formula is
given as follows [4]:

Table 2. Calculation conditions for comparison with clinical data.

T [min] ε [-] Vex(0) [mL] Vin(0) [mL] ωf [mL/min] ωpl [mL/min]

240 0.667 14,400 21,600 20 12

During dialysis (0 ≤ t ≤ T)

CShinzato(t) = CS exp
(
−KShinzatot

Ventire

)
+

S
KShinzato

[
1− exp

(
−KShinzatot

Ventire

)]
(51)

After dialysis (t > T)

CShinzato(t) = CShinzato(T) +
S

Ventire
(t− T) (52)

where, Ventire is the urea distribution volume, which satisfies a relation Ventire = Vin(0) + Vex(0).
CShinzato(t) is the urea concentration during and after dialysis, and CShinzato(T) is the urea
concentration at the end of dialysis. In this study, the urea production rate was treated as a
constant value.

On the other hand, the toxin concentration of the Gotch formula is given as follows [1]:

CGotch(t) ∼= CS exp
(
−KGotcht

Ventire

)
(53)

where, CGotch(t) is the urea concentration during dialysis.
Figure 4a–c show the blood urea concentration during dialysis (240 min) and after

dialysis (60 min) for three chronic dialysis patients reproduced by the proposed analytical
solutions, where clinical data are shown for comparison. As shown in Figure 4, the
urea concentrations in the extracellular and intracellular fluids decrease at different rates
during dialysis and then approach each concentration equilibrium again after dialysis.
The proposed analytical solutions accurately reproduce the behavior of measured blood
urea concentrations during and after dialysis, including the rebound phenomenon. This
indicates the validity of the analytical solution. On the other hand, Figure 4 also shows a
comparison of the proposed analytical solution with the Gotch formula during dialysis and
with the Shinzato formula during and after dialysis. In the Shinzato and Gotch formulas,
there is an error as compared with the measured data in blood urea concentration during
and after dialysis. From the viewpoint of accuracy, the proposed analytical solutions may
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be able to more accurately reproduce the transition of blood urea concentrations, including
the rebound phenomenon. Thus, if personal data of the patient, such as the volumetric
mass transfer coefficient, are measured by the proposed analytical solutions in advance, the
analytical solutions proposed as algebraic expressions allow a doctor to instantly determine
the blood toxin concentrations of a patient during and after dialysis. The present model
can be easily implemented into a dialysis device, which means that dialysis conditions can
be set automatically to be the blood toxin concentration after dialysis desired by the doctor.
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Figure 4. Blood urea concentration reproduced by the proposed analytical solutions, Gotch formula and Shinzato formula.
(a–c) show the case of clinical data of chronic dialysis patients A, B and C, respectively. The proposed analytical solution
accurately reproduces the behavior of measured blood urea levels during and after dialysis. This demonstrates the usefulness
of the proposed analytical solution.

4. Conclusions

In the present study, a new two-compartment model was derived by adapting volume-
averaging theory to the mass transfer around peripheral tissues. Subsequently, the ana-
lytical solutions for blood toxin concentration during and after dialysis were proposed by
adopting variable transformation. As a set of analytical results, it was found that the urea
concentrations in the extracellular and intracellular fluid phases decrease during dialysis,
and the decrease rate in the extracellular fluid phase is faster than that in the intracellular
fluid phase. Furthermore, after dialysis, the urea concentration in the extracellular fluid
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increased and approached that of the intracellular fluid, which indicates that the proposed
analysis can also predict the rebound phenomenon. Subsequently, comparing the proposed
analytical solutions with clinical data for three chronic dialysis patients, it was found
that the proposed analytical solutions accurately reproduce the blood urea concentrations
during and after dialysis. Furthermore, the proposed analytical solutions may be able to
more accurately reproduce the transition of blood urea concentrations as compared with
the Gotch and Shinzato formulas.
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