
membranes

Article

COMTOP: Protein Residue–Residue Contact Prediction
through Mixed Integer Linear Optimization

Md. Selim Reza 1,2,†, Huiling Zhang 1,2,†, Md. Tofazzal Hossain 1,2, Langxi Jin 3, Shengzhong Feng 2

and Yanjie Wei 1,2,*

����������
�������

Citation: Reza, M..S.; Zhang, H.;

Hossain, M..T.; Jin, L.; Feng, S.; Wei, Y.

COMTOP: Protein Residue–Residue

Contact Prediction through Mixed

Integer Linear Optimization.

Membranes 2021, 11, 503. https://

doi.org/10.3390/membranes11070503

Academic Editors: Marco Lolicato

and Cristina Arrigoni

Received: 25 April 2021

Accepted: 25 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China; selim@siat.ac.cn (M.S.R.); hl.zhang@siat.ac.cn (H.Z.); tofazzal@siat.ac.cn (M.T.H.)

2 Centre for High Performance Computing, Joint Engineering Research Center for Health Big Data
Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China; sz.feng@siat.ac.cn

3 Department of Computer Science and Technology, School of Computer Science and Technology,
Harbin University of Science and Technology, 52 Xuefu Road, Nangang District, Harbin 150080, China;
1904010508@stu.hrbust.edu.cn

* Correspondence: yj.wei@siat.ac.cn
† These authors contribute equally to this work.

Abstract: Protein contact prediction helps reconstruct the tertiary structure that greatly determines a
protein’s function; therefore, contact prediction from the sequence is an important problem. Recently
there has been exciting progress on this problem, but many of the existing methods are still low
quality of prediction accuracy. In this paper, we present a new mixed integer linear programming
(MILP)-based consensus method: a Consensus scheme based On a Mixed integer linear opTimization
method for prOtein contact Prediction (COMTOP). The MILP-based consensus method combines
the strengths of seven selected protein contact prediction methods, including CCMpred, EVfold,
DeepCov, NNcon, PconsC4, plmDCA, and PSICOV, by optimizing the number of correctly predicted
contacts and achieving a better prediction accuracy. The proposed hybrid protein residue–residue
contact prediction scheme was tested in four independent test sets. For 239 highly non-redundant
proteins, the method showed a prediction accuracy of 59.68%, 70.79%, 78.86%, 89.04%, 94.51%, and
97.35% for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 contacts, respectively. When tested on
the CASP13 and CASP14 test sets, the proposed method obtained accuracies of 75.91% and 77.49%
for top-L/5 predictions, respectively. COMTOP was further tested on 57 non-redundant α-helical
transmembrane proteins and achieved prediction accuracies of 64.34% and 73.91% for top-L/2 and
top-L/5 predictions, respectively. For all test datasets, the improvement of COMTOP in accuracy
over the seven individual methods increased with the increasing number of predicted contacts. For
example, COMTOP performed much better for large number of contact predictions (such as top-5L
and top-3L) than for small number of contact predictions such as top-L/2 and top-L/5. The results
and analysis demonstrate that COMTOP can significantly improve the performance of the individual
methods; therefore, COMTOP is more robust against different types of test sets. COMTOP also
showed better/comparable predictions when compared with the state-of-the-art predictors.

Keywords: protein residue–residue contact; contact prediction; mixed integer linear programming;
machine learning; protein sequence

1. Introduction

Protein contact prediction aims at predicting which residues of a protein are in contact.
Two non-local residues are far away from each other in the protein primary structure,
but they are close to each other in the 3D structure. Protein contact prediction is helpful
in determining protein structure, model ranking, selection, and evaluation [1,2] and is
also important for other fields in evolutionary biology and biotechnology, such as protein
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function prediction and drug design [3]. A protein contact map is a 2D representation of
a protein’s 3D structure. Contact map information can be used as distance restraints to
guide protein structure modeling [4–10]. This creates a new direction for solving the grand
challenge of the de novo protein structure. The idea of residue–residue contact prediction
and using it to predict 3D models was introduced around two decades ago [11,12]; the
realization of that idea has only recently gained much attention by the community and has
come into practice as many authors have shown how residue contacts can be predicted
with reasonable accuracy [13–20].

The last decade has witnessed significant progress in the development of algorithms for
protein contact map prediction. The existing residue–residue contact prediction methods can
be broadly classified into three categories: (1) coevolution-based, (2) machine-learning-based,
and (3) mathematical optimization technique-based. Coevolution information-based analy-
sis predicts contacts by identifying co-evolved residues in a protein, such as plmDCA [13],
COLORS [17], EVfold [4], PSICOV [21], CCMpred [15], GREMLIN [22], MetaPSICOV [16],
FreeContact [23], and gDCA [24]. These coevolution-based methods use MSA (multiple
sequence alignment) as input, which can be generated using methods like PSI-Blast, HH-
blits, or Jackhmmer. Protein contact map prediction is regarded as a pattern recognition
problem in machine-learning-based approaches, and it is solved using machine learning
algorithms. Hidden Markov model, support vector machines, and/or artificial neural
networks were used in the early development of such methods; falling into this category of
methods are FragHMMent [25], SVMcon [26], SVMSEQ [27], and NNcon [28]. In recent
years, with the advancement of deep learning techniques, the precision of the predicted
contact maps has increased significantly. Methods in this category include PconsC4 [20],
DeepCov [19], RaptorX-contact [29], DNCON2 [30], SPOT-contact [31], DeepContact [32],
DeepConPred [33], plmConv [34], DeepFold [35], and so on. In the third group of methods,
such as recent ones include COMSAT [18], which is based on support vector machines
(SVM), and mixed integer linear programming (MILP) for residue–residue contact pre-
diction of TM proteins. Other optimization methods also solved the problem through
satisfying categories of constraints in the MILP models to maximize the probability of the
sum of residue contacts [36–39].

By combining multiple methods, prediction accuracy can be improved because non-
systematic errors can be removed by correctly combining them. This idea has been
broadly used in different areas of computational biology, such as protein contact pre-
diction [16,18,40,41], secondary structure prediction [42–45], fold recognition and thread-
ing [46–49], protein disorder prediction [50–52], prediction of gene coding sequences [53],
clustering and functional explanation of gene-expression data [54], computational studies
of protein folding [55–58], etc. One example of consensus methods for protein contact
prediction is COMSAT. It is based on support vector machines (SVM) and mixed integer
linear programming (MILP) for contact prediction of TM proteins. It is claimed that this
combined method overcomes the cross-validation prediction accuracy barrier of 64.5%
and a specificity of 99.4% [18]. LOMETS is an online server for protein structure predic-
tion using the consensus method [47]. CONCORD is a consensus method for secondary
structure prediction and uses seven selected secondary structure prediction methods. It
achieved an average prediction accuracy of about 83.04% with 6-fold cross-validation on a
PDBselect25 protein set [44]. Another consensus method for secondary structure prediction
is the consensus data mining (CDM) method. It combines two complementary methods
having different strengths: GOR and fragment database mining (FDM) methods. It is
claimed that this combined method overcomes the cross-validation prediction accuracy
barrier of 80% [42]. Kumar and Carugo [50] developed a consensus method for predicting
protein conformational disorder with an accuracy of 81.4% based on 12 methods, using
least-squares optimization.

Recently exciting progress has been made on this problem, but contact prediction
for proteins without many sequence homologs is still of low quality and insufficient
for accurate contact-assisted protein folding [59,60]. Jumper [61] recently established
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AlphaFold2, a novel strategy that used a different deep learning technique than CASP13
AlphaFold to simulate protein 3D structures. However, it had some targets where the
prediction was not very good. The protein targets set at the CASP14 conference do not
fully represent all the proteins with many unique structural prediction issues. Thus, the
algorithm could not be universally applicable to all proteins.

COMTOP is the first consensus method for protein contact prediction using MILP to
maximize the probability of the sum of residue contacts, based on the previous work [44].
This method uses seven selected residue–residue contact prediction methods, including
CCMpred [15], EVfold [4], DeepCov [19], NNcon [28], PconsC4 [20], plmDCA [13], and PSI-
COV [21]. COMTOP maximally combines the strengths of seven protein contact prediction
methods by optimizing the number of correctly predicted pairs of residues in the training
set. A consensus prediction score based on the confidence scores of the seven individual
methods is initiated to assess the likelihood of a residue pair being at one of the protein
contact states. Our method performed well compared with seven individual methods when
tested by 239 proteins, and a prediction accuracy of about 89.04%, 94.51%, and 97.35% for
top-L, top-L/2, and top-L/5 predicted contacts, respectively, was obtained. When tested
on CASP13, CASP14, and 57 non-redundant TM proteins, the consensus method achieved
accuracies of 75.91%, 77.49%, and 73.91% for top-L/5 predictions, which was better than
the seven individual methods and could achieve state-of-the-art prediction performance.

2. Materials and Methods
2.1. Data Description

High-quality training sets and test sets are crucial for the development and validation
of prediction models. To train our proposed methods, a training set and a validation
set were constructed as follows. We first downloaded a list of 3298 protein chains from
PISCES website [62] with a maximum sequence identity of 20%, a maximum R-factor of
0.3, and resolutions better than 2.0 Å. Further, we removed the protein chains with less
than 50 amino acids, and 3133 chains (Table S1) were left for our database construction.
Then we generated the confidence score by the seven locally installed methods (CCMpred,
EVfold, DeepCov, NNcon, PconsC4, PlmDCA, PSICOV) based on 3133 proteins, but some
methods could not predict the confidence score for some protein chains. We deleted
those proteins from our dataset because our method combines seven individual methods.
Following this criterion, we had 1189 proteins in our dataset. The selected protein set was
divided into two parts: a training set with 950 proteins (Table S2) and a testing set with
239 proteins (Table S3). Then we ranked the confidence score for the training set and test
set, and prepared the dataset for MILP model by selecting the top-5L, top-3L, top-2L, top-L,
top-L/2, and top-L/5 predictions where L was the length of a protein.

The second test set was based on the CASP13 protein domains (http://www.predicti
oncenter.org/download_area/CASP13/, accessed on 5 March 2021). There were 32 target
domains, and certain methods were unable to predict the confidence score for two target
domains, so they were excluded from the test set, leaving 30 target domains in the CASP13
dataset, which are listed in Table S4 of the Supplementary Materials.

The third test dataset was based on the CASP14 target domains (https://www.pr
edictioncenter.org/casp14/index.cgi, accessed on 5 March 2021). There were 45 target
domains, and 28 of them had PDB IDs. After excluding the targets that were unable
to obtain confidence scores from all the seven methods, the CASP14 dataset contained
25 target domains, as shown in Table S5.

Finally, we assessed our method on a non-redundant α-helical TM protein test set
consisting of 57 α-helical TM proteins through culling the α-helical TM proteins in the
PDBTM database against the training test sets of COMTOP and the individual methods
NNcon, DeepCov, and PconsC4 (EVfold, plmDCA, PSICOV, and CCMpred had no train-
ing sets) with a maximum sequence identity of 25%, a maximum R-factor of 0.3, and
resolutions better than 2.0 Å. The 57 α-helical TM proteins are listed in Table S6 of the
Supplementary Materials.

http://www.predictioncenter.org/download_area/CASP13/
http://www.predictioncenter.org/download_area/CASP13/
https://www.predictioncenter.org/casp14/index.cgi
https://www.predictioncenter.org/casp14/index.cgi
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2.2. Method Description
2.2.1. List of the Sets, Parameters and Variables

This section lists the sets, parameters, and variables used in this method.

(I) Indices and sets

(I,J): set of pairs of amino acid positions of a protein, i∈I, j∈J;
P: set of training proteins, p∈P;
M: set of the methods used, [1–7], m∈M. Seven methods were used in this consensus

method: m = 1 indicates the CCMpred method; m = 2 indicates the DeepCov method;
m = 3 indicates the EVfold method; m = 4 indicates the NNcon method; m = 5 indicates
the PconsC4 method; m = 6 indicates the plmDCA method; m = 7 indicates the PSICOV
method; and subsetP(I,J)(p,(I,J)): subset indicates the number of pairs of residues for each
protein p.

(II) Parameters

confS(p,(i,j),m): the confidence score predicted by method m for pairs of residues (i,j)
of a protein p, p∈P, (i,j)∈subsetP(I,J)(p,(I,J)), m∈M. Firstly the score was normalized for
each protein; we used min-max normalization,

zij =
xij −min(xij

)
max

(
xij
)
− min(xij

) (1)

where xij is the ith and jth score for a residue pair (i,j) of a protein. Then we selected the
top 4.5 L prediction score from the top 5 L prediction score for each protein and created a
score matrix by using top 4.5 L scores of method M; however, the score matrix generated
nan-value because all methods were unable to predict the same pair of residues of a protein.
Thus, the predictions scoring matrix dealt with missing values by the following strategy;

Missing value =

 xp −
xp(

yp ∗ 1000
) , when the pairs is indeed contact

zp , when the pairs is not a contact
(2)

where xp, yp, and zp are the minimum value, maximum value, and average value of the
p-th protein. P: set of training proteins, [1 . . . 950], p∈P; predSS(p,(i,j),m): the training
model label matrix depends on the real prediction, 1 for a true prediction and 0 for a false
prediction, p∈P, (i,j)∈subset P(I,J)(p,(I,J)), m∈M. So, we handled the missing nan value by
this strategy for label matrix;

missing value =

{
1
0

when the pairs are not a contact
when the pairs are indeed contact

(3)

(III) Binary variables

y(p, (i,j)): equals to 1 if the sum of the scores of the correct contact predictions is higher
than the sum of the incorrect ones for residue pair (i,j) of a protein p by at least ε(p, (i, j)),
p∈P, i,j∈subset(I,J) (P, (I,J));

y2(p): equals to 1 if the sum of the scores of the correct contact predictions of all
pairs of amino acid (i,j) of a protein p is higher than the sum of the score of the incorrect
prediction of the same protein p by at least ε2(p), p∈P, i,j∈subset(I,J) (P, (I,J));

(IV) Positive variables

λ(m): the weight variables for different methods, 0 ≤ λ(m) ≤ 1, m∈M;
ε(p, (i, j)): a soft margin variable for the binary variable y((p, (i,j)), p∈P, i,j∈subset(I,J)

(P, (I,J)) (see Section 2.2.1 (III)); and
ε2(p) : a soft margin variable for the binary variable y2(p), p∈P (see Section 2.2.1 (III))
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2.2.2. The Training Objective Function

For protein contact prediction, the training objective function of the MILP model takes
the following format:

Max

 ∑
(p,(i,j))

y(p, (i, j))− ∑
(p,(i,j))

ε(p, (i, j))

, ∀ (p, (i, j))∈ subsetP(I, J)(P, (I, J)) (4)

where y(p,(i,j)) is a set of binary variables, and it equals to 1 if the sum of the scores of
the correct contact predictions is higher than the sum of the incorrect ones for pairs of
amino acids (i,j) of a protein p by at least ε(p,(i,j)), and this objective function is to maximize
the total number of pair of residues. ε(p, (i, j)) is included here to minimize the sum of
soft margins.

The training objective function was conducted on the individual contact/pairs of
residues of a protein. The principle of this function is that some protein contact prediction
approaches have better prediction performance in some native regions of a protein than
other approaches. The consensus approach aims to identify the correct contact prediction
for proteins from various approaches by relying on confidence scores for each contact of
residues in a protein.

2.2.3. The Model Constraints

For the protein contact prediction, there are two basic constraints in the consensus
scheme. The first constraint makes sure that the binary variable y(p,(i,j)) is equal to zero
for each contact of residues of a protein if the difference between the sum of the scores of
correct contact predictions and the sum of the scores of incorrect predictions from different
methods is lower than e(p,(i,j)); this constraint is expressed as:

∑
m

λ(m) ∗ con f S(p, (i, j), m) ∗ (1− predSS(p, (i, j), m))−∑
m

λ(m) ∗ con f S(p, (i, j), m) ∗ predSS(p, (i, j), m)

+ε(p, (i, j)) < 1− y(p, (i, j)), ∀ (p, (i, j)) ∈ subsetP(I, J)(P, (I, J)), m ∈ M
(5)

The second type of constraint used in the model normalizes the weights terms λ(m)
of the seven methods.

∑
m

λ(m) = 1, λ(m) ≥ 0, m ∈ M (6)

2.2.4. The Prediction Score and Prediction Label

By carefully selecting the weight variables λ(m) of each individual method through
the MILP optimization-based approach, the consensus method was developed to score
higher for the correct contact predictions than for the incorrect contact predictions from
different methods. The consensus method ensures that pairs of residues have contact if the
sum of scores of correct predictions is higher than the sum of scores of incorrect predictions
of each pairs of residues for different methods. It is expressed as

S(p, (i, j), m) = ∑
m

λ(m) ∗ con f S(p, (i, j), m) , ∀ (p, (i, j)) ∈ subsetP(I, J)(P, (I, J)), m ∈ M (7)

where S(p,(i,j),m) is the consensus contact confidence score for (i,j) residues of pth protein
and mth method, conf (p,(i,j), m) is the confidence score for the mth method, λ(m) is the
weighting factor for the mth method.

The consensus label matrix is the prediction result of method m for the (i,j) residues of
a protein p (a value of 1 corresponds to a true prediction, a value of 0 corresponds to a false
prediction). It is expressed by

Label matrix =

{
1, returned prediction by methods
0, not returned prediction by methods

(8)
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2.2.5. The Training and Prediction Procedure

The MILP based training system uses CPLEX (ILOG CPLEX 8.0 reference manual)
to optimize the training objective function, from which the weight parameters λ(m) are
attained. The training system for each fold takes around two/four weeks. For the prediction
procedure, the seven individual programs run in parallel rather than serially. Once we get
the results from the individual methods, the prediction from the MILP model of COMTOP
can finish in one second. The running time taken by COMTOP depends on the slowest
time of the seven methods, and each protein contact prediction takes around 5–25 min,
depending on the size of the database used for sequence-profile/MSA analysis.

2.2.6. Evaluation Measures for Prediction Performance

The effectiveness of our proposed method was evaluated by five widely used met-
rics: the prediction accuracy, coverage, specificity, negative predictive value (NPV), and
Matthews’s correlation coefficient (MCC).

The accuracy is defined as the ratio of correct predictions to total predictions. Accuracy
can also be written in terms of true positives (TP) and false positives (FP), as shown in
Equation (9). A higher value of accuracy means a better contact prediction model.

Accuracy =
Ncorr

Npred
=

TP
TP + FP

(9)

where Ncorr is the number of correctly predicted protein contacts, Npred is the number of
total predicted contacts, TP is the number of true positive contacts, and FP is the number of
false positive contacts.

Coverage, also called the true positive rate or referred to as “sensitivity” is defined as
the ratio of correct predictions to the number of protein contacts in the native structure,
as shown in Equation (10). A higher value of coverage means a better contact predic-
tion model.

Coverage =
Ncorr

Nnative
=

TP
TP + FN

(10)

where, Ncorr is the number of correctly predicted protein contacts, Nnative is the number of
protein contacts in the native structure, and FN is the number of false negative contacts.

Specificity, also called the true negative rate, is the percentage of predicted contacts
that are present in the native structure, as shown in Equation (11). It denotes how good the
test is at identifying negative conditions.

Specificity =
TN

TN + FP
(11)

where TN is the number of true negative contacts.
When a screening test returns a negative result, the negative predictive value (NPV)

is the probability of properly detecting all pairs of residues that do not have contact from
among pairs of residues that might or might not have contact and can be calculated using
the following formula:

NPV =
TN

(TN + FN)
(12)

The last metric used to measure the performance of the contact prediction method
was Matthew’s correlation coefficient (MCC), a measure of the quality of two-class classifi-
cations, which can be calculated using the following formula:

MCC =
(TP× TN)− (FP× FN)√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(13)

The proposed method was developed with the purpose of producing higher accuracy,
so we consider that accuracy should have a higher weight than the other metrics.
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3. Results
3.1. Performance Evaluation Based on the Training Set

The overall workflow of protein contact prediction is illustrated in Figure 1. The
measure of COMTOP performance depends on the weight values given by seven individual
methods, which balances the accuracy, coverage, specificity, and MCC. For the training
process, a set of optimal parameters from the MILP model were generated (listed in
Supplementary Table S7); these parameters were the weights for the seven individual
methods that should be used in the consensus prediction model.

Figure 1. The workflow of COMTOP model for protein contact prediction.

Figure 2 shows the weight values and overall performance with different numbers of
sample sizes for the training dataset. Figure 2A shows that PconsC4 generated the highest
weight value and DeepCov generated the second highest weight value, while the PSICOV
and NNcon generated the lowest weight values at different sample sizes. The fact that
different systems reveal different weights is owing to the different prediction accuracies
of each method. Similarity between seven different approaches plays an important role
in determining the weight values (Table 1). Jaccard’s similarity coefficient value was
0.585 between PconsC4 and DeepCov, so PconsC4 and DeepCov generated the highest
weight values. CCMpred, PSICOV, and EVfold are similar type methods (see Table 1) and
generated lowest weight values. This explains why CCMpred, plmDCA, NNcon, and
PISICOV methods had the smallest weights. On the other hand, note that even though
the CCMpred method has the third highest accuracy after PconsC4 and DeepCov for
contact prediction, its weight for two cases was very small. This is because many of these
seven contact prediction methods use PSI-Blast, HHblits, or Jackhmmer (e.g., CCMpred,
EVfold, plmDCA, and PISICOV), artificial neural networks use NNcon and deep learning
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approaches (e.g., DeepCov, PconsC4), and the prediction results of the different methods
may correlate with each other in some fashion.

Figure 2. The weight values and the overall performance for the training set. (A) The weight values of PconsC4, DeepCov,
CCMpred, EVfold, plmDCA, PSICOV, and NNcon with the variation of the sample size. (B) The average accuracy, coverage,
specificity, and MCC of COMTOP at different sample sizes.

Table 1. Jaccard’s similarity coefficient based on training dataset of seven methods.

NNcon EVfold plmDCA PSICOV CCMpred DeepCov PconsC4

Nncon 1
EVfold 0.076 1

plmDCA 0.064 0.353 1
PSICOV 0.068 0.488 0.351 1

CCMpred 0.079 0.517 0.306 0.540 1
DeepCov 0.210 0.215 0.176 0.243 0.285 1
PconsC4 0.194 0.291 0.207 0.321 0.375 0.585 1

Figure 2B shows overall performance based on the training dataset, the average ac-
curacies, coverages, specificities, and MCCs for COMTOP are plotted against different
sample sizes. The prediction accuracy, coverages, and specificities were highest when the
sample sizes were small, such as top-L/5 and top-L/2 predictions, respectively, while the
accuracy and coverage decreased monotonically with the increasing sample size. This rep-
resents the classic trade-off phenomenon common to many prediction problems. Although
MCC is also an important estimator in protein contact prediction evaluation, this value
increased with increasing sample size. The prediction accuracy of the different training
models based on the different sample size was 98.99%, 96.88%, 92.18%, 89.91%, 85.77%,
and 79.09%, respectively.

3.2. Performance Evaluation Based on the Independent Set

The measure of COMTOP’s performance for residue contact prediction depends on
the best range that balances the accuracy, coverage, specificity, NPV, and MCC. We used
four datasets to evaluate the performance of our method (see Section 2.1). Figures 3 and 4
and Table 2 summarize the performance of COMTOP in terms of accuracy (alternatively
known as positive predictive value) compared with the seven individual methods when
applied to the 239 test proteins.
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Figure 3. The overall performance of the COMTOP model. (A): the prediction accuracy of COMTOP with seven individual
methods against predicted number of protein contacts for 239 proteins test dataset. (B,D): Bland–Altman plots between
COMTOP and DeepCov, with the representation of the limits of agreement (dotted line), from +2SD to −2SD. (C,E): Bland–
Altman plots between COMTOP and PconsC4, with the representation of the limits of agreement (dotted line), from
+2SD to −2SD.

Figure 4. The average accuracy, coverage, specificity, NPV, and MCC of COMTOP in terms of the
predicted contact size on the 239 non-redundant proteins.
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Table 2. The prediction accuracies for COMTOP and the seven individual methods (PconsC4,
DeepCov, CCMpred, EVfold, plmDCA, PSICOV, and NNcon) on the 239 non-redundant proteins.

Methods Top-5L Top-3L Top-2L Top-L Top-L/2 Top-L/5

NNcon 15.66 18.27 21.24 27.44 34.34 43.18
PSICOV 16.75 20.26 23.28 28.60 34.26 42.71
plmDCA 17.11 24.39 30.16 40.98 50.72 59.26
EVfold 17.58 24.04 29.89 41.80 54.62 67.57

CCMpred 22.21 29.34 36.76 51.43 63.98 74.00
DeepCov 29.89 41.27 51.92 70.21 83.28 91.61
PconsC4 34.79 47.35 59.85 78.29 89.41 95.76

COMTOP 59.68 70.79 78.86 89.04 94.51 97.35

We have evaluated the accuracy of the top L/k (k = 5, 2, 1) and top K*L (K = 5, 3, 2, 1)
predicted contacts where L is the length of a protein. The prediction accuracy is defined
as the percentage of native contacts among the top L/k and KL predicted contacts. On
239 proteins, we evaluated our method using the suggested weight values. The prediction
results of our method, together with the other seven individual methods, are shown in
Table 2 and Figure 3. We observe that our method generated the highest prediction scores
compared with the seven individual methods.

The COMTOP model has six sub-models (see in Table S7), and the accuracy of the
COMTOP model was 59.68%, 70.79%, 78.86%, 89.04%, 94.51%, and 97.35% for top-5L,
top-3L, top-2L, top-L, top-L/2, and top-L/5 predictions, respectively. Among the seven
methods, the PconsC4 method had the highest score of accuracy with 34.79%, 47.35%,
59.85%, 78.29%, 89.41%, and 95.76% for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5
predictions, respectively. The DeepCov method had the second highest score of accuracy
with 29.89%, 41.27%, 51.92%, 70.21%, 83.28%, and 91.61% for top-5L, top-3L, top-2L, top-L,
top-L/2, and top-L/5 predictions, respectively. On the other hand, the NNcon method had
the lowest score of accuracy with 15.66%, 18.27%, 21.24%, 27.44%, 34.34%, and 43.18% for
top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 predictions, respectively. The prediction
accuracies of all the methods were ranked as follows: PconsC4 > DeepCov > CCMpred
> EVfold > plmDCA > PSICOV > NNcon, whereas the ranking of all methods by weight
values was as follows: PconsC4 > DeepCov > CCMpred > plmDCA > EVfold > NNcon >
PSICOV. The weight values are highly dependent on an individual method’s performance.
The improvement of COMTOP in accuracy over the seven individual methods increased
with the increasing number of predicted contacts. For example, the improvements of
COMTOP in accuracy over the best individual method PconsC4 were 24.89%, 23.34%,
19.01%, 10.75%, 5.1%, and 1.59% for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5
predictions, respectively.

Figure 3A shows the overall performance of the COMTOP model in terms of its aver-
age accuracy. For comparison, results for CCMpred, EVfold, DeepCov, NNcon, PconsC4,
PlmDCA, and PSICOV are also shown. Clearly, the COMTOP model significantly outper-
forms the other individual methods. To see this in more detail, Figure 3B–E shows the
Bland–Altman plot indicating the relationship of COMTOP against PconsC4 and DeepCov.
For Figure 3B–E, the majority of the points are above the zero line, and about 95%, 95.8%,
95.4%, and 97.5% fall within the confidence limit, respectively. The mean/bias values of
the differences are also all positive, indicating that COMTOP outperformed DeepCov and
PconsC4 for test datasets [63].

In Figure 4, the average accuracies, coverages, specificities, NPVs, and MCCs for
COMTOP are plotted against the different sample sizes on the 239 non-redundant proteins.
The prediction accuracies and specificities are highest when the sample sizes are small, such
as top-L/5 predictions, while the accuracy and specificities decrease monotonically with the
increasing sample size. The accuracies of the COMTOP model for top-5L, top-3L, top-2L,
top-L, top-L/2, and top-L/5 predictions were 59.68%, 70.79%, 78.86%, 89.04%, 94.51%, and
97.35%, respectively, while the corresponding NPVs were 99.22%, 95.41%, 91.66%, 82.34%,
70.10%, and 59.85%, respectively [64]. The coverage improves monotonically with the
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increase of the sample size. This represents the classic trade-off phenomenon common to
many prediction problems. Although MCC is also an important estimator in protein contact
prediction evaluation, this value is highest when the sample size is top-L and top-2L. More
importantly, top-L is the best range for protein contact prediction. Concerning the number
of contacts required for accurate folding, the top-L contacts have been shown to produce
good results [65,66]; nevertheless, the researchers have recommended that the number of
contacts required be specific to the prediction methods.

3.3. Testing on CASP13 Targets

The critical assessment of protein structure prediction (CASP) is a biennial worldwide
competition for protein structure prediction, identifying what progress has been made
and highlighting where future effort may be most productively focused. The competition
unfolds in a double-blind fashion: The structures of the target domains are unknown to
the predictors and the organizers (http://predictioncenter.org/download_area/CASP13/,
accessed on 25 April 2021).

3.3.1. Comparison of COMTOP’s Performance with the Seven Individual Methods

In this section, we tested COMTOP on 30 domains in CASP13 using the proposed
parameter sets listed in Table S7. The prediction results of COMTOP, together with the other
seven individual methods, are shown in Table 3 and Figure 5A, and the COMTOP model
significantly beat the other individual techniques. As shown in Table 3, the improvement
of COMTOP in accuracy over the seven individual methods increases with the increasing
number of predicted contacts. For example, the improvement of COMTOP in accuracies
over the top individual method DeepCov were 27.1%, 23.40%, 22.0%, 14.1%, 9.5%, and
0.81% for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 predictions, respectively.

Table 3. The prediction accuracy on CASP13 target domains for COMTOP with seven individual
methods (PconsC4, DeepCov, CCMpred, EVfold, plmDCA, PSICOV, and NNcon).

Methods Top-5L Top-3L Top-2L Top-L Top-L/2 Top-L/5

PSICOV 14.50 14.90 17.90 21.80 26.50 32.90
NNcon 10.50 13.90 17.40 23.50 29.10 36.70

plmDCA 12.10 15.40 18.70 25.00 32.00 40.10
EVfold 12.20 15.80 19.30 25.60 32.10 39.00

CCMpred 13.30 17.20 21.70 29.30 36.10 42.30
PconsC4 21.50 30.10 37.80 49.70 58.90 63.90
DeepCov 21.40 29.80 38.10 52.60 64.40 75.10

COMTOP 48.50 53.20 60.10 66.70 73.90 75.91

Figure 5B–E as Bland–Altman plots shows the relationship of COMTOP against
PconsC4 and DeepCov. For Figure 5B–E, the majority of the points are above the zero line,
and about 93.4%, 93.4%, 93.4%, and 96.7% fall within the confidence limit, respectively. The
mean/bias of the differences are also shown to be all positive, indicating that COMTOP
outperformed DeepCov and PconsC4 for CASP13 datasets. In Figure 6, the average
accuracies, coverages, specificities, NPVs, and MCCs for COMTOP are plotted against the
different number of contact predictions for 30 domains on CASP13 datasets. For top-L/5
predictions, the accuracy and specificity of the COMTOP model were 75.91% and 91.24%,
respectively, while NPVs and coverage were 64.66% and 61.45%. Although MCC is also an
important estimator in protein contact prediction evaluation, this value was highest when
the sample size was top-5L and top-2L, respectively.

http://predictioncenter.org/download_area/CASP13/
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Figure 5. The overall performance of the COMTOP model. (A): the prediction accuracy of COMTOP with seven individual
methods against predicted number of protein contacts size for CASP13 dataset. (B,D): Bland–Altman plots between
COMTOP and DeepCov, with the representation of the limits of agreement (dotted line), from +2SD to −2SD. (C,E): Bland–
Altman plots between COMTOP and PconsC4, with the representation of the limits of agreement (dotted line), from +2SD
to −2SD.

Figure 6. The average accuracy, coverage, specificity, NPV, and MCC of COMTOP at predicted
contact sizes on CASP13 dataset.
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Table 4 shows the accuracies achieved by COMTOP on the domains classified as
FM/TBM-easy/TBM-hard/FM/TBM based on CASP13 datasets. Over these target do-
mains, COMTOP achieved average accuracies of 75.91% and 73.90% when considering the
top-L/5 and top-L/2 predictions. For top-L/5 predictions, COMTOP showed prediction
accuracies larger than 90% for 18 domains and accuracies of about 100% for 16 of these
domains. Remarkably, our system obtained high accuracies for TBM-easy, TBM-hard, and
FM/TBM classification domain. Among all the individual methods, DeepCov performed
best with an accuracy value of 21.40%, 29.80%, 38.10%, 52.60%, 64.40%, and 75.10% for
top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 predictions, respectively. CCMpred,
EVfold, and plmDCA methods had the same ranking as the test set, with 239 proteins,
but DeepCov, PconsC4, PSICOV, and NNcon showed different rankings. The prediction
accuracies of all the methods were ranked as follows: DeepCov > PconsC4 > CCMpred
> EVfold > plmDCA > NNcon > PSICOV, whereas the ranks of all methods based on the
test set with 239 proteins were as follows: PconsC4 > DeepCov > CCMpred > EVfold >
plmDCA > PSICOV > NNcon.

Table 4. Performance of COMTOP scheme in CASP13. Top-L/2 and top-L/5 overall accuracy is
shown for 30 FM/TBM and FM domains. Targets are ordered by domain classification.

Domain Length of
Domain

Classification of
Domain

Accuracy of
Top-L/2 (%)

Accuracy of
Top-L/5 (%)

T0950-D1 342 FM 63.2 75
T0953s1-D1 67 FM 92.9 100
T0953s2-D2 127 FM 68.8 33.3
T0953s2-D3 77 FM 28.6 0
T0957s1-D1 108 FM 61.1 50
T0957s2-D1 155 FM 70 70
T0960-D2 84 FM 63.7 60
T0963-D2 82 FM 80 100

T0968s1-D1 118 FM 96.8 100
T0968s2-D1 115 FM 100 100
T0951-D1 266 TBM-easy 97.8 100
T0960-D5 105 TBM-easy 100 100
T0963-D5 94 TBM-easy 100 100
T1003-D1 434 TBM-easy 88 89.1
T1016-D1 202 TBM-easy 97 100
T0954-D1 336 TBM-hard 100 100

T0957s1-D2 54 TBM-hard 33.3 50
T0960-D3 89 TBM-hard 100 100
T0963-D3 93 TBM-hard 100 100
T0966-D1 492 TBM-hard 84.6 91.9
T1009-D1 718 TBM-hard 92.7 100
T1011-D1 280 TBM-hard 95.8 100

T0953s2-D1 44 FM/TBM 75 100
T0958-D1 77 FM/TBM 84.6 100
T1005-D1 326 FM/TBM 89.7 91.3
T0960-D1 32 not evaluated 0 0
T0960-D4 64 not evaluated 38.5 33.3
T0963-D1 31 not evaluated 0 0
T0963-D4 64 not evaluated 30 33.3
T1011-D2 160 not evaluated 84.4 100

The prediction accuracy of COMTOP was reduced from an accuracy of 97.35% on
the 239 proteins to 75.91% on the CASP13 dataset for the top-L/5 predictions. Moreover,
the prediction accuracy of COMTOP was reduced about 11.18%, 17.59%, 18.76%, 22.34%,
20.61%, and 21.45% in CASP13 for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5
predictions, respectively. Among the seven individual methods, PconsC4 method had the
largest decrease in accuracy, about 13.29%, 17.25%, 29.75%, 28.59%, 30.51%, and 31.86% in
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CASP13 for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 predictions, respectively.
The CCMpred method had the second largest decrease in accuracy, about 8.91%, 12.14%,
19.56%, 22.13%, 27.88%, and 31.70% in CASP13 for top-5L, top-3L, top-2L, top-L, top-L/2,
and top-L/5 predictions, respectively. On the other hand, PSICOV performed better for
CASP13 targets than the test dataset only for top-L/5 predicted contacts; the prediction
accuracy improved from 40.45% to 42.06%.

3.3.2. Comparison of COMTOP’s Performance with a Few State-of-the-Art Schemes

Finally, we compared our COMTOP system with a few state-of-the-art systems that
were not used for developing COMTOP; another set of five contact prediction systems was
chosen: RapterX [29], Yang_Server [67], TripletRes [68], ResTriplet [68], and DNCON3 [69].
For this assessment, 20 domains were selected from the CASP13 dataset for which the native
structures were publicly available, and all 7 methods generated the results. These 20 do-
mains included both FM (free-modeling) and TBM (template-based modeling) domains.
To get the predicted contacts for other methods, we evaluated the contact predictions of
the top-L/2 and top-L/5 groups in CASP13 over these 20 targets from the webserver at
https://predictioncenter.org/casp13/rrc_results.cgi, accessed on 25 April 2021.

The performance of the COMTOP scheme, together with five state-of-the-art systems
in terms of accuracy of top-L/2 and top-L/5 predictions is shown in Table 5. From the
table, we can see that COMTOP performed better than Yang_server, TripletRes, ResTriplet,
and DNCON3 schemes for the top-L/2 contacts and better than TripletRes, ResTriplet,
and DNCON3 schemes for the top-L/5 predictions. On the other hand, our model had
accuracies of 84.02% and 88.87% for top-L/2 and top-L/5 predictions, respectively, after
RapterX. In addition, Yang_server has a slightly better performance than our method for
top-L/5 predictions.

Table 5. Comparison of COMTOP model performance with a few state-of-the-art systems for
20 domains.

Methods Top-L/2 Top-L/5

RapterX 85.92 93.37
COMTOP 84.02 88.87

Yang_server 77.16 92.24
TripletRes 76.98 88.61
ResTriplet 75.47 87.63
DNCON3 52.24 64.87

3.4. Testing on CASP14 Targets

In this section, we tested COMTOP on 25 CASP14 target domains using the proposed
parameter sets. These 25 domains in the CASP14 dataset included both FM and TBM
domains, for which the native structures were publicly available.

3.4.1. Performance Comparison of COMTOP against the Seven Individual Methods

Table 6 shows the COMTOP prediction results alongside the seven individual methods,
and the COMTOP model significantly outperformed the other methods.

For top-L/2 and top-L/5 predictions, COMTOP achieved average accuracies of 68.33%
and 77.49%, respectively. Our prediction accuracies were more than 90% for 13 domains,
with 11 of these domains showing 100% accuracies for top-L/5 predictions. Among all
the individual methods, DeepCov performed best with accuracies of 67.65% and 71.86%
for top_L/2 and top_L/5 contacts, respectively. The overall ranking differed from the
CASP13 dataset. DeepCov, PconsC4, PSICOV, and plmDCA methods had the same ranking
as the CASP14 dataset, but the ranking of EVfold, NNcon, and CCMpred changed. The
prediction accuracies of all the methods were ranked as follows: DeepCov > PconsC4 >
NNcon > CCMpred > plmDCA > EVfold > PSICOV. As shown in Table 6, the improvement

https://predictioncenter.org/casp13/rrc_results.cgi
https://predictioncenter.org/casp13/rrc_results.cgi
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of COMTOP in accuracy over the seven individual methods increased with the increasing
number of predicted contacts.

Table 6. The prediction accuracy of COMTOP with seven individual methods on CASP14
target domains.

Methods Top-5L Top-3L Top-2L Top-L Top-L/2 Top-L/5

PSICOV 08.58 09.23 09.61 11.76 12.88 14.46
plmDCA 08.06 08.35 09.00 11.78 14.38 19.95
EVfold 09.90 10.90 11.48 10.86 13.49 17.36

CCMpred 09.02 10.29 11.89 14.97 18.92 24.34
NNcon 17.61 18.88 19.73 27.54 34.47 43.99

PconsC4 22.32 24.76 30.87 41.50 65.62 69.46
DeepCov 22.00 32.19 38.24 48.64 67.65 71.86

COMTOP 41.27 46.92 53.10 61.18 68.33 77.49

For the CASP14 dataset, COMTOP’s prediction accuracy for top-L/5 contacts in-
creased by 1.58% compared with the CASP13 dataset; overall it reduced by 7.23%, 6.28%,
7%, 5.52%, and 5.57% for the top-5L, top-3L, top-2L, top-L, and top-L/2 predictions. In
addition, COMTOP’s prediction accuracy for the top-L/2, and top-L/5 contacts decreased
by 26.18% and 19.86% in the CASP14 dataset from the 239 proteins test dataset. Other
methods also showed a decreasing trend in accuracy for CASP14 than for CASP13 and the
239 proteins test dataset, indicating that CASP14 was more difficult than others. Among the
seven individual methods, the best performing method, DeepCov, decreased in accuracy
for top-L/5 contacts, approximately by 3.24% and 19.75% in the CASP14 from the CASP13
and the test set with 239 proteins, respectively. The second-best method, PconsC4, showed
a 5.56% improvement in accuracy for top-L/5 contacts in the CASP14 from CASP13 dataset
but a 26.3% decrease from the 239 proteins test dataset.

3.4.2. Performance Comparison of COMTOP against State-of-the-Art Methods

We compared our COMTOP model against a group of seven state-of-the-art contact pre-
diction systems that were recently developed: MULTICOM-AI [70], Kiharalab_Contact [71],
tFold, DeepPotential, trfold, RapterX [29], and TripletRes [68]. To get the prediction ac-
curacy for state-of-the-art systems, we took the contact predictions of the top-L/2 and
top-L/5 predictions of these methods from the webserver at https://predictioncenter.o
rg/casp14/rrc_results.cgi, accessed on 25 April 2021. Table 7 compares the prediction
accuracy of the COMTOP method with state-of-the-art systems on the CASP14 dataset.
From Table 7, COMTOP performed better than tFold, MULTICOM-AI, RaptorX, trfold,
and Kiharalab_Contact schemes for the top-L/2 and top-L/5 predictions, respectively. On
the other hand, TripletRes and DeepPotential had better performance for top-L/2 and
top-L/5 predictions.

Table 7. Comparison of COMTOP’s performance with a few state-of-the-art methods on the CASP14
da-taset.

Methods Top-L/2 Top-L/5

TripletRes 76.07 83.45
DeepPotential 73.31 81.23

COMTOP 68.33 77.49
tFold 67.56 77.11

MULTICOM-AI 66.67 74.93
RaptorX 62.34 70.12

trfold 56.74 66.04
Kiharalab_Contact 53.11 59.87

https://predictioncenter.org/casp14/rrc_results.cgi
https://predictioncenter.org/casp14/rrc_results.cgi
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3.5. Testing on the Independent TM Test Set

In this section, we tested COMTOP on 57 α-helical TM proteins using the proposed
parameter sets. Table 8 compares the COMTOP prediction results to the seven individual
approaches, revealing that the COMTOP model beat the others by a substantial margin.
COMTOP obtained an average accuracy of 41.56%, 53.38%, 64.34%, and 73.91% for the
top-2L, top-L, top-L/2, and top-L/5 predictions, respectively.

Table 8. The prediction accuracy of COMTOP with seven individual methods for 57 α-helical TM
proteins dataset.

Methods top-2L top-L top-L/2 top-L/5

PSICOV 24.75 25.21 26.83 29.17
NNcon 23.69 24.61 26.41 29.22
EVfold 27.82 29.89 32.94 37.62

PlmDCA 27.98 30.95 35.59 42.83
CCMpred 30.65 34.83 40.88 47.74
DeepCov 35.45 42.34 53.24 63.03
PconsC4 37.32 45.44 55.16 65.26

COMTOP 41.56 53.38 64.34 73.91

Among the seven methods, PconsC4 had the highest accuracy with 37.32%, 45.44%,
55.16%, and 65.26% for top-2L, top-L, top-L/2, and top-L/5 predictions, respectively. The
DeepCov method had second-highest score of accuracy with 35.45%, 42.34%, 53.24%, and
63.03% for top-2L, top-L, top-L/2, and top-L/5 predictions, respectively. On the other
hand, the PSICOV method had the lowest accuracy with 24.75%, 25.21%, 26.83%, and
29.17% for top-2L, top-L, top-L/2, and top-L/5 predictions, respectively. The prediction
accuracies of all the methods were ranked as follows: PconsC4 > DeepCov > CCMpred >
plmDCA > EVfold > NNcon > PSICOV, whereas the ranking of all methods based on test
dataset was as follows: PconsC4 > DeepCov > CCMpred > EVfold > plmDCA > PSICOV
> NNcon. COMTOP’s prediction accuracy for top-L/5 contacts decreased by 23.44%, 2%,
and 3.58% in the TM protein dataset from the 239 non-redundant proteins, CAS13, and
CASP14 datasets, respectively.

4. Discussion

In this paper, the proposed hybrid framework COMTOP model used information
from the seven individual methods that were different from each other in terms of both
methodology and input features. The seven methods can be roughly classified into three
different categories: traditional machine learning, evolutionary coupling analysis, and
deep learning. These methods also rely on different input data types. As shown in
our previous work [72], the prediction results of these methods show certain degrees of
similarity and difference, and the differences of prediction results from methods in the
different categories are larger than that in the same category. COMTOP selects the weight
variables for each individual method through the MILP optimization-based approach. Our
consensus method scores higher for the correct contact predictions than for the incorrect
contact predictions from the different methods; thus, individual methods with higher
accuracy usually obtain higher weights. The seven methods can complement each other in
prediction performance, so our method produces higher accuracy compared with seven
individual methods and shows better or close prediction performance when compared
with other state-of-the-art methods.

These seven methods were selected among the available methods based on two criteria:
methods that (1) have comparatively better prediction accuracy and (2) belong to different
method categories and complement each other. These seven contact prediction methods are
classified into two categories: (1) coevolution-derived information-based, and (2) machine-
learning-based. Most of these coevolution-derived approaches have been used MSA as
input, which can be generated by approaches such as PSI-Blast, HHblits, or Jackhmmer.
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Most of these machine-learning-based methods have accepted a wide range of features
as input, including features involved with the local window of the amino acids, amino
acid type information (polarity and acidic properties), and the protein itself. This includes
features such as mutual information of sequence profiles, information about the amino
acid type (polarity and acidic properties), sequence profiles, sequence separation length
between the amino acids under consideration, secondary structure, solvent accessibility,
and pairwise information between all the amino acids involved [73]. The commonly used
machine learning techniques for contact prediction are hidden Markov model, support
vector machines, shallow neural networks and deep learning techniques.

COMTOP uses the confidence scores of the predicted contact and the weights of the
seven individual methods to determine the protein residue–residue contact. The contact
prediction of COMTOP is based on the sum of the products between the confidence score
and the weight term over all methods; thus, the consensus method can also provide the con-
fidence scores of the prediction for each pair of residues. Although the results for COMTOP
use seven individual methods, COMTOP consistently shows better performance than the
seven individual methods for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 contacts.
It can be seen in Table 2 that the prediction accuracy of our methods is about 24.89%,
23.44%, 19.01%, 10.75%, 5.10%, and 1.59% better than the best of the individual methods,
PconsC4, for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 contacts, respectively.

We also tested the performance of our method on CASP13, CASP14, and a non-
redundant TM protein test set. The prediction accuracies were 75.91%, 77.49%, and 73.91%,
respectively, for top-L/5 contacts. The prediction accuracies of COMTOP for all test sets
significantly outperformed those of the seven individual methods. Furthermore, when
we compared our method with a few state-of-the-art methods, it can be observed that
the RapterX method showed better performance than our model for the CASP13 dataset.
The COMTOP model outperformed Yang_server, TripletRes, ResTriplet, and DNCON3
schemes for the top-L/2 and top-L/5 contact predictions for CASP13 targets. In the
CASP14 dataset, COMTOP performs better than tFold, MULTICOM-AI, RaptorX, trfold,
and Kiharalab_Contact schemes for the top-L/2 and top-L/5 contacts, respectively. On
the other hand, TripletRes and DeepPotential have better performance for top-L/2 and
top-L/5 contacts. The results and analysis demonstrate that COMTOP can significantly
improve the performance of the individual methods; therefore, COMTOP is more robust
against different types of test sets. COMTOP also showed better/comparable predictions
when compared with the state-of-the-art predictors.

5. Conclusions

In this paper, we presented a novel hybrid consensus method named as COMTOP
and based on seven methods, aiming to predict high-quality protein contacts that can be
used for 3D structure prediction. This consensus contact prediction method is based on a
MILP model that produces the parameters for protein residue–residue contact prediction.
The test on the 239 targets showed that COMTOP performed well compared with seven
individual methods according to the prediction accuracy. COMTOP achieved a prediction
accuracy of 75.91%, 77.49%, and 73.91% for top-L/5 contacts test on the CASP13, CASP14,
and 50 TM target proteins, respectively, and showed satisfactory results compared with the
state-of-the-art predictors. For all test datasets, the improvement of COMTOP in accuracy
over the seven individual methods increases with the increasing number of predicted
contacts. For example, COMTOP performs much better with a large number of contact
predictions (such as top-5L and top-3L) than for a small number of contact predictions,
such as top-L/2 and top-L/5.



Membranes 2021, 11, 503 18 of 21

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/membranes11070503/s1, Table S1: The non-redundant list with 3133 proteins, Table S2: The
training set of COMTOP, Table S3: 239 non-redundant proteins used for testing, Table S4: 30 CASP13
target domains used for testing, Table S5: 25 CASP14 target domains list used for testing, Table S6:
57 non-redundant TM proteins used for testing, Table S7: Parameters λ(m1)i (for the seven method
COMTOP) obtained from the overall training process are shown in columns 1 to 6, respectively.
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