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Abstract: The optimization of the properties for MD membranes is challenging due to the trade-off
between water productivity and wetting tendency. Herein, this study presents a novel methodology
to examine the properties of MD membranes. Seven polyvinylidene fluoride (PVDF) membranes
were synthesized under different conditions by the phase inversion method and characterized to
measure flux, rejection, contact angle (CA), liquid entry pressure (LEP), and pore sizes. Then, water
vapor permeability (Bw), salt leakage ratio (Lw), and fiber radius (Rf) were calculated for the in-depth
analysis. Results showed that the water vapor permeability and salt leakage ratio of the prepared
membranes ranged from 7.76× 10−8 s/m to 20.19× 10−8 s/m and from 0.0020 to 0.0151, respectively.
The Rf calculated using the Purcell model was in the range from 0.598 µm to 1.690 µm. Since the
Rf was relatively small, the prepared membranes can have high LEP (more than 1.13 bar) even at
low CA (less than 90.8◦). The trade-off relations between the water vapor permeability and the
other properties could be confirmed from the results of the prepared membranes. Based on these
results, the properties of an efficient MD membrane were suggested as a guideline for the membrane
development.

Keywords: membrane distillation; membrane fabrication; analysis; flux; wetting; liquid entry
pressure; contact angle

1. Introduction

The growth of world population and industry has posed challenges associated with
the imbalance between water demands and availability. The situation has been worsened by
the impact of climate change, which results in unexpected fluctuations in rainfall patterns
and the availability of water resources [1,2]. One of the technologies that alleviate this
problem is desalination of seawater, brackish water, or wastewater [3,4]. Since desalination
technique does not rely on freshwater resources, it can provide ongoing water supply by
utilizing alternative water sources [5]. This is the key driver that makes the widespread
adoption of desalination technology over the past decades [6–8].

However, the implementation of desalination requires a viable option for the man-
agement of brines, which is the remaining stream after the production of fresh water from
seawater or impaired water sources [9,10]. Conventional desalination processes including
multistage flash (MSF), multi-effect distillation (MED), and reverse osmosis (RO) result in
a substantial amount of brines ranging from 40% to 60% of the feed water [11]. Since the
brine exhibits a higher salinity than the feed water, its direct discharge may lead to harmful
effects on marine environment and aquatic ecosystems [12]. Accordingly, it is crucial to
explore novel techniques to reduce the adverse impact by reducing the volume or salinity
of the brine [12].

A promising option for brine management is to develop and apply membrane dis-
tillation (MD) process that allows the reduction of the brine volume and the additional
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production of fresh water [13–15]. MD is a special evaporation technique and requires
hydrophobic microporous membranes to separate feed water and vapors [16–18]. Since
MD is thermally driven, its operation is not limited by the osmotic pressure, allowing
the treatment of high salinity brine from RO or MSF/MED processes [19,20]. Moreover,
MD may use moderate-temperature thermal sources (50–70 ◦C) that are cheaper than
high-temperature heat sources used by MSF/MED [21]. MD can be considered as a part of
zero liquid discharge (ZLD) systems [22]. Many MD systems for brine management have
been reported in the literature due to their potential [17,23,24]. Nevertheless, most works
were done in laboratory scales [8,25].

One of the biggest hurdles MD technology faces is the availability of efficient MD
membranes [26,27]. There are several commercial hydrophobic membranes for MD experi-
ments but they are not specifically optimized for MD [23]. This is because the requirements
for MD membranes are quite unique [26]. Pore wetting is a critical issue in MD processes,
which affects the quality of product water. To minimize it, it is necessary to fabricate
hydrophobic MD membranes or increase the liquid entry pressure (LEP) [24,28]. On the
other hand, fouling and scale formation are also serious problems that reduce the flux and
lifespan of MD membranes. The pretreatment of feed water as well as physical/chemical
cleaning may be applied to mitigate the adverse impact of fouling and scaling [29]. Nev-
ertheless, it is also important to improve the fouling resistance of MD membranes by
surface modifications [29]. To prevent adsorptive fouling caused by hydrophobic organic
matters, MD membranes should be rather hydrophilic. The pore size of the MD membranes
should be as small as possible to decrease the possibility of pore wetting. On the contrary,
the flux and water productivity of the MD membrane increase with an increase in the
pore size [15,16]. Although numerous works have been done on the synthesis of MD
membranes [28,30–36], it is still challenging to optimize its conditions due to the complex
trade-offs.

Accordingly, it is necessary to implement systematic approaches to meet different re-
quirements of MD membranes. However, only limited information is available for in-depth
analysis of MD membrane characteristics. In addition to flux and rejection, more funda-
mental performance indexes should be used to provide insight into the multi-objective
optimization of synthesis conditions for MD membranes. Herein, a novel methodology to
examine the properties of MD membranes was developed and applied to several polyvinyli-
dene fluoride (PVDF) membranes synthesized under different conditions by the phase
inversion method. In previous works, protic or aprotic solvents such as methanol, propanol,
butanol, octanol, and N-methyl-prrolidone were added to the non-solvent, leading to an
increase in the hydrophobicity of the membrane surface [37–39]. However, these solvents
are toxic, and pose threats to the environment and human health. Therefore, water and
ethanol were used in this study because they are more environmentally friendly. The
prepared membranes were characterized to determine flux, rejection, contact angle (CA),
liquid entry pressure (LEP), and pore sizes. Then, a set of new performance measures
such as water vapor permeability (Bw), salt leakage ratio (Lw), and fiber radius (Rf) were
proposed. The correlations between different membrane properties were also investigated
to understand the trade-offs in MD membranes. Based on this analysis, the properties of
efficient MD membranes were explored.

2. Materials and Methods
2.1. Materials

PVDF was purchased from Sigma-Aldrich Co. (St. Louis, MO, USA) and its molecule
weight was 530,000 g/mol. N,N-Dimethylformamide (DMF, 99.9%), lithium chloride (LiCl,
98.2%), and ethyl alcohol (EtOH, 99.9%) were supplied by Samchun Inc. (Gyeonggi-do,
Korea). Deionized (DI) water was obtained using a water deionizer (HUMAN POWER, Hu-
man Co., Seoul, Korea). All chemicals were used without further purification in this work.
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2.2. Fabrication of PVDF Membranes

To begin, PVDF solutions of different concentrations were prepared by dissolving
PVDF powder and LiCl in DMF solvent and stirring at 300 rpm for 3 h at 80 ◦C [40], then
the solution was stood for 24 h to remove air bubbles. The prepared PVDF solution was
transferred on a flat glass plate. A casting machine (motorized film applicator, Elcometer
Inc., Manchester, UK) and casting knives (casting knife film applicator, Elcometer Inc.,
Manchester, UK) were used to control the thickness of the covered film at 300 µm. The
covered film solution was immediately soaked in a coagulation bath containing DI water
and/or EtOH for 1 h. As the final step, the membrane was placed in an oven at 60 ◦C
for 24 h to obtain a dried, flat-sheet of membrane. By varying the compositions of the
PVDF solution and the non-solvents, 7 different PVDF membranes were fabricated. The
conditions of the membrane fabrication are summarized in Table 1.

Table 1. Experimental conditions for membrane fabrication.

Membrane Sample PVDF Concentration
[w/w]

LiCl Concentration
[w/w] Solvent Non-Solvent [v/v]

S1 14.0% 0.0% DMF Water (100%)
S2 14.0% 3.0% DMF Water (100%)
S3 16.0% 3.0% DMF Water (100%)
S4 18.0% 3.0% DMF Water (100%)

S5 16.0% 3.0% DMF Water (90%) + EtOH
(10%)

S6 16.0% 3.0% DMF Water (80%) + EtOH
(20%)

S7 16.0% 3.0% DMF Water (70%) + EtOH
(30%)

2.3. Contact Angle (CA) Measurement

The technique of sessile drop contact angle measurement was applied to the fabri-
cated membranes as previously reported [11,40]. An instrument to measure the contact
angle (Smart Drop) was supplied by Femtobiomed (Gyeonggi-do, Korea). The following
procedures were used: (1) Membrane samples were placed on a plate; (2) water droplets
(5 µL) were placed onto the membrane surface; (3) after the stabilization, the camera in
the device captured images of the droplet from five different positions; and (4) the image
analysis software connected to the instrument automatically determined the CA from the
images. The measurements were repeated at least seven times per membrane sample and
the average and standard deviation were recorded.

2.4. Measurement of Liquid Entry Pressure

An in-house apparatus was used to measure the liquid entry pressure (LEP) of the
fabricated membranes [11,40]. As shown in Figure 1, the apparatus consists of an LEP
chamber, a pressure gauge, a high-pressure N2 gas cylinder, and a pipe. To begin, 50 mL
DI water was poured into the chamber and a dried membrane sample was mounted. The
chamber was then pressurized from its bottom using the N2 gas cylinder connected with
the pipe. The pressure was controlled using the gauge to determine the minimum pressure
that resulted in the first water drop on the membrane surface. The LEP measurements
were repeated three times and the average and the standard deviation were recorded.
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Figure 1. Schematic drawing of LEP apparatus.

2.5. Analysis of Membrane Morphology

A FE-SEM (FE-SEM 7800F Prime, JEOL Ltd., Tokyo, Japan) instrument was used for
observing the microstructures of the prepared membranes as previously reported [41].
Before the analysis, the membrane samples were completely dried at 60 ◦C for 2 h in a
drying oven. Then they were coated with platinum for 30 s by sputtering.

Atomic Force Microscope (AFM) was applied for an in-depth analysis of membrane
surface. An AFM instrument (AFM, Atomic Force microscope, XE-100, PSIA Inc., Gyeonggi-
do, Korea) was used to obtain the images. Based on the measurement results, the arith-
metical mean deviation (Ra), root mean square deviation (Rq), and the vertical distance
between the highest peak and lowest valley (Rmax) were calculated using the same scan
size (5 µm × 5 µm).

2.6. Analysis of Pore Size Distribution and Thickness Measurement

A capillary flow porometer (CFP-1500-AFL, porous materials Inc., Ithaca, New york,
USA) was employed to measure the pore size distribution of the membranes [40]. Prior
to the analysis, the membrane samples were soaked into the Galwick solution (porous
materials Inc., Ithaca, New york, USA, surface tension = 15.9 dynes/cm), then N2 gas was
applied to the wetted membrane samples to obtain raw data required for the calculation of
the pore size distribution of the membranes. The mean pore diameter (dmean), maximum
pore diameter (dmax), and the minimum pore diameter (dmin) were also estimated. The
thickness of the membranes was measured using digital vernier calipers (Mitutoyo Inc.,
Kawasaki, Japan). At least three different locations on each sample were selected and
analyzed to confirm the uniformity of the membranes, and the average and standard
deviation were provided.

2.7. Measurement of Porosity

The gravimetric method was adopted to estimate the porosity of the membranes [42].
First, the membrane samples of equal size (2 × 2 cm2) were immersed in ethanol. Second,
the weights of the samples before and after saturation with ethanol were compared. Using
the measured data, the membrane porosity (ε) was calculated:

ε =
(m1 −m2)/De[

(m1 −m2)/De + m2/Dp
] (1)

where m1 is the mass of the saturated membrane (g), m2 is the mass of the dry membrane
(g), De is the specific gravity of the ethanol (g/cm3), and Dp is the specific gravity of the
PVDF material (g/cm3).

2.8. Measurement of Flux and Rejection

The flux and salt rejection of the membranes were determined by carrying out a set
of direct contact membrane distillation (DCMD) experiments. The schematic diagram
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of the DCMD set-up is illustrated in Figure 2. Details on this technique were previously
reported [40,41] and only a slight modification was done in this work. The effective
membrane area was 12 cm2. The initial volumes of the feed and the permeate were 2.0 L
and 1.0 L, respectively. The feed and permeate temperatures were fixed at 60 ± 1.5 ◦C and
20 ± 1.5 ◦C, respectively, which were controlled using a heater and a chiller. The flow rates
of the feed and permeate were 0.7 L/min and 0.4 L/min, respectively. Moreover, the feed
and permeate pressures were measured to be 0.08 bar and 0.02 bar, respectively.
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Figure 2. Schematic diagram of an equipment for DCMD experiments.

The feed solution was 35 g/L NaCl solution and the permeate solution was the
DI water. The electrical conductivity of the feed and permeate was measured using a
conductivity meter (WTW multi 3420, WTW, Munich, Germany). The conductivity was
converted to the concentration using a standard curve [11,41]. The weight of the permeate
tank was periodically measured using an electronic balance (Explorer Pro, Ohaus, Newark,
NJ, USA) and the flux was calculated based on the following equation [13,43]:

Jv =
∆mg

Am∆t
(2)

where ∆mg is the increased mass of the permeate, Am is the membrane areas, and ∆t is the
time interval. The apparent salt rejection (Rapp) was calculated by [44]:

Rapp = 1−
cp

c f ,0
(3)

where cf,0 is the initial feed concentration, and the cp is the permeate concentration. It should
be noted that the intrinsic rejection (Rint) is different from the apparent rejection in the
DCMD operation. Accordingly, Rapp may be misleading because it generally overestimates
the rejection capability of the membrane. The technique to calculate Rint from Rapp will be
discussed later.

2.9. Calculation of Additional Membrane Properties

The flux, rejection, contact angle (CA), liquid entry pressure (LEP), and pore sizes are
primary properties of MD membranes. However, they are not sufficient to understand the
complicated trade-offs of MD membrane performances. The flux and rejection are apparent
properties and affected by the operating conditions. The CA and LEP cannot be directly
correlated if the membrane morphology is complex. Accordingly, a set of equations were
derived and used to evaluate additional (secondary) properties, including water vapor
permeability (Bw), salt leakage ratio (Lw), and fiber radius (Rf).

2.9.1. Calculation of Water Vapor Permeability (Bw)

The water vapor transport in the DCMD process is driven by the difference in the
vapor pressure between both sides of the membrane. The dependence of the water flux (Jv)
on the vapor pressure difference (∆pw) is described by [18,19]:

Jv = Bw∆pw = Bw(p0
w, f aw, f − p0

w,paw,p) ≈ Bw p0
w, f aw, f = Bw p0

w, f γw, f xw, f (4)
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where Bw is the water vapor permeability; pw is the vapor pressure; aw is the activity; γ is
the activity coefficient; xw is the mole fraction of water. The subscripts f and p refer to feed
and permeate, respectively, and the superscript 0 refers to pure water. Bw is an intrinsic
coefficient depending on the membrane properties such as pore diameter, porosity, and the
length of the pores, but also affected by the applied temperature.

The vapor pressure of pure water is estimated by the Antoine equation [45]:

p0
w, f = e(23.1964−3816.44/(Tf−46.13)) (5)

When NaCl is used to prepare the feed solution, the activity coefficient of the water in
the feed (γw,f) is given as a function of the mole fraction of NaCl (xNaCl) [16,45]:

γw, f = 1− 0.5xNaCl − 10x2
NaCl (6)

The mole fraction of the water in the feed is [16,45]:

xw, f = 1− xNaCl (7)

Combining the Equations (4)–(7), the Bw is calculated from experimentally-determined
flux by use of:

Bw =
Jv(

e(23.1964−3816.44/(Tf−46.13))
)(

1− 0.5xNaCl − 10x2
NaCl

)
(1− xNaCl)

(8)

Bw corresponds to water permeability of a membrane in pressure-driven membrane
processes such as MF, UF, and RO. Since it does not change by the feed concentration (i.e.,
xNaCl), it may be used as an intrinsic property of a membrane.

2.9.2. Estimation of Salt Leakage Ratio (Lw)

The salt transport in the DCMD process (Js) is attributed to two mechanisms: (1) the
transfer of salts with the water vapor (distillation) and (2) the leakage of feed water through
wetted pores. In theory, the distilled water does not contain any salts and the contribution
of the first mechanisms is negligible. Accordingly, the following equation is obtained to
calculate Js:

Js =

(
Jv

ρ

)
(1− Lw)cp,distill +

(
Jv

ρ

)
Lwcp,leak ≈

(
Jv

ρ

)
Lwcp,leak =

(
Jv

ρ

)
Lwc f =

(
Jv

ρ

)
cp,net (9)

where Lw is the leakage ratio, which is defined as the ratio of water leakage to total
permeate; ρ is the density of water, cp,distill is the salt concentration in the distilled water;
cp,leak is the salt concentration in the water leakage; cp,net is the salt concentration of the
water transferred through the membrane; cf is the salt concentration in the feed. It should
be noted that the cp,net is different from the apparent permeate concentration (cp) since
the water transferred through the membrane is mixed with the recirculated water in the
permeate side. Accordingly, cp,net = Lw cp,leak = Lw cf 6= cp. This leads to a difference between
the apparent rejection (Rapp) and the intrinsic rejection (Rint), which is given by:

Rint = 1−
cp,net

c f
= 1−

Lwc f

c f
= 1− Lw (10)

In DCMD processes, the mass balances of the salt and the water can be established
respectively as follows:

d
(
cpVp

)
dt

=

(
Jv

ρ

)
Lwc f Am (11)
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dVp

dt
=

(
Jv

ρ

)
Am (12)

Accordingly, the following equation is used to calculate Lw from the results of DCMD
experiments:

Lw =

(
ρ

Jv

) d(cpVp)
dt

c f Am
=

d(cpVp)
dt

c f
dVp
dt

≈
∆(cpVp)

∆t

c f
∆Vp
∆t

(13)

2.9.3. Determination of Fiber Radius (Rf)

The Young-Laplace model is a well-known equation to correlate LEP with contact
angle. With the assumption of cylindrical pores, LEP is described by [46]:

∆P =

(
−2γ

r

)
cos θ (14)

where ∆P is liquid entry pressure, γ is the surface tension of the feed solution, r is pore
radius, and θ is the intrinsic contact angle between the liquid and the membrane mate-
rial [47]. However, the Young-Laplace model does not reflect the effect of membrane surface
morphologies and cannot explain positive LEP values for membranes with θ less than 90◦,
which have been reported in the literature. In this case, the Purcell model (Figure 3) should
be applied instead of the Young-Laplace model since it allows the prediction of positive
LEP for membranes with relatively small contact angle. The equation for LEP in the Purcell
model is given by [47,48]:

∆P =

(
−2γ

r

)
cos(θ + α)

1 +
R f
r (1− cos(α))

(15)

sin(θ + α) =
sin θ

1 + r
R f

(16)

where Rf is the fiber radius and α is the angle below horizontal in the fiber. The Rf is
calculated by simultaneously solving Equations (15) and (16). It is worth noting that Rf is
an important intrinsic property of the MD membranes. Although the surface properties
are similar, the LEP of the membranes changes with different Rf values. In other words, the
LEP, which is related to wetting resistance, is affected not only by the hydrophobicity of
the material but also by morphological parameters such as Rf.
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3. Results and Discussion
3.1. Characterization of Fabricated Membranes

As indicated in Table 1, seven membranes were fabricated under different conditions.
The PVDF concentration, LiCl concentration, and the composition of the non-solvent were
varied. The surface and cross-sectional images of the prepared membranes were presented
in Figures 4 and 5. As a common observation, all the membranes were asymmetric and
showed both finger-like and sponge-like regions. Smaller pores seem to be formed in
the membranes prepared without LiCl (S1, Figures 4a and 5a) than the other membranes.
The addition of LiCl to the casting solution increased the rate of precipitation during the
immersion step of phase inversion process, leading to the formation of a coarser structure of
the membrane [39]. When the PVDF concentration increased from 14 wt.% to 18 wt.% in the
presence of LiCl (S2, S3, S4, Figures 4b–d and 5b–d), the sizes of the finger-like structures
were reduced as a result to the retardation of the phase separation rate [34,49]. On the other
hand, the addition of EtOH to the non-solvent (S5, S6, S7, Figures 4e–g and 5e–g) decreased
the sizes of the finger-like structures and enlarged the sponge-like regions. This is attributed
to a reduction in the phase separation rate as an increase in the EtOH concentration [49].
The solubility parameter for PVDF and EtOH is smaller than that for the PVDF and water
due to the effect of the hydrogen bonding [50], indicating that PVDF is more miscible with
EtOH than water. Accordingly, a slower phase separation is expected in the presence of
EtOH in the non-solvent.
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compositions: (a) (S1) PVDF 14 wt.% with water, (b) (S2) PVDF 14 wt.% + LiCl with water, (c) (S3) PVDF 16 wt.% + LiCl
with water, (d) (S4) PVDF 18 wt.% + LiCl with water, (e) (S5) PVDF 16 wt.% + LiCl with water (90%) + EtOH (10%), (f) (S6)
PVDF 16 wt.% + LiCl with water (80%) + EtOH (20%) and (g) (S7) PVDF 16 wt.% + LiCl with water (70%) + EtOH (30%).

Table 2 summarizes the characteristics of the fabricated membranes. The contact
angles of the fabricated membranes ranged between 75.1◦ and 90.3◦. The addition of LiCl
to the casting solution does not seem to significantly affect the contact angle (S1, S2). The
contact angle did not increase with an increase in the PVDF concentration from 14.0 wt.%
to 18.0 wt.% (S2, S3, S4). One the other hand, the contact angle increased by increasing the
EtOH concentration in the non-solvent from 0 wt.% to 30 wt.% (S3, S5, S6, S7). Since the
addition of EtOH instead of water retarded the rate of phase separation, the size of the
polymer crystals increased as well as the surface roughness, thereby increasing the contact
angle [26,39]. Although the contact angles were relatively small, the LEP values were
higher than generally expected. According to the Young-Laplace equation, the membranes
with the contact angle less than 90◦ should have negative LEP values. However, the LEP
values for the fabricated membranes were measured in the range between 1.13 bar to
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3.19 bar. Without LiCl, the LEP value was the highest (3.19 bar, S1), which is attributed
to its dense structures. In the presence of LiCl, the LEP increased with an increase in the
PVDF concentration (S2, S3, S4). It should be noted that the LEP values were different
with similar values of the contact angle in these cases. As the EtOH concentration in the
non-solvent increased, the LEP increased and then decreased (S3, S5, S6, S7). Again, the
LEP and contact angle did not exhibit a strong correlation.
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Figure 5. FE-SEM images of cross-section of flat-sheet membranes with different PVDF, LiCl concentration and non-solvent
compositions: (a) (S1) PVDF 14 wt.% with water, (b) (S2) PVDF 14 wt.% + LiCl with water, (c) (S3) PVDF 16 wt.% + LiCl
with water, (d) (S4) PVDF 18 wt.% + LiCl with water, (e) (S5) PVDF 16 wt.% + LiCl with water (90%) + EtOH (10%), (f) (S6)
PVDF 16 wt.% + LiCl with water (80%) + EtOH (20%) and (g) (S7) PVDF 16 wt.% + LiCl with water (70%) + EtOH (30%).

Table 2. Primary (measurable) properties of fabricated membranes.

Membrane
Sample

Contact
Angle (◦)

LEP
(bar)

Membrane
Thickness (µm)

Porosity
(%)

dmean
(µm)

dmax
(µm)

dmin
(µm)

S1 76.9 ± 3.3 3.19 ± 0.57 68.0 ± 3.4 85.4 ± 2.5 0.09 0.13 0.07
S2 75.1 ± 1.1 1.13 ± 0.09 80.3 ± 3.3 88.3 ± 2.3 0.17 0.29 0.12
S3 75.7 ± 1.7 1.77 ± 0.23 85.2 ± 6.4 85.2 ± 2.0 0.18 0.28 0.08
S4 76.9 ± 1.9 1.87 ± 0.14 98.8 ± 3.0 84.9 ± 1.3 0.16 0.26 0.10
S5 77.4 ± 2.8 2.45 ± 0.18 78.3 ± 2.4 86.1 ± 4.2 0.15 0.21 0.08
S6 83.6 ± 2.1 2.29 ± 0.06 79.7 ± 7.5 81.9 ± 1.5 0.16 0.25 0.08
S7 90.3 ± 3.6 2.08 ± 0.07 76.8 ± 0.8 83.6 ± 1.1 0.19 0.31 0.08

As presented in Table 2, the membrane thickness varied in the range from 68.0 µm to
98.8 µm. The thinnest membrane was obtained in the absence of LiCl (S1) while the thickest
membrane was prepared with the highest PVDF concentration (S4). In the other cases, the
thickness values were similar. The porosity of the membranes ranged from 81.9% to 88.3%.
Although the morphologies of the membranes were different as shown in Figures 4 and 5,
the porosities were not significantly different. This suggests that the size and shape of the
void space in the membranes are different even with the similar porosity.

The mean (average), maximum, and minimum diameters of the pores in the mem-
branes are presented in Table 2. The mean pore diameter of the membrane prepared
without LiCl (S1) was 0.09 µm, which was the smallest. The mean pore size increased after
adding LiCl. Moreover, the maximum and minimum pore diameters showed an increment
by up to 2.38 times (S7) and 1.71 times (S2), respectively. As presented in Figure 6a, the
pore size distribution shifted to the right by adding LiCl. However, no evident dependence
of the pore size distribution on the PVDF concentration was observed. With an increase in
the EtOH concentration from 10 wt.% to 30 wt.%, the pore size distribution moved to the
right, as illustrated in Figure 6b.
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Figure 6. Cumulative pore frequency versus pore size of the membranes with different PVDF, LiCl concentration and non-
solvent compositions: (a) (S1) PVDF 14 wt.% with water, (S2) PVDF 14 wt.% + LiCl with water, (S3) PVDF 16 wt.% + LiCl
with water, and (S4) PVDF 18 wt.% + LiCl with water; (b) (S5) PVDF 16 wt.% + LiCl with water (90%) + EtOH (10%), (S6)
PVDF 16 wt.% + LiCl with water (80%) + EtOH (20%), and (S7) PVDF 16 wt.% + LiCl with water (70%) + EtOH (30%).

3.2. DCMD Performance

Using the prepared membranes, a set of DCMD experiments were carried out in the
experimental set-up (shown in Figure 2). The results are presented in Figure 7. The black
symbols indicate the permeate flux and the red ones point out the permeate concentration
of NaCl. Each DCMD experiment was carried out for 24 h. As shown in Figure 7a, the
membrane prepared without LiCl (S1) resulted in a flux less than 6 kg/m2-h and a permeate
concentration less than 6 mg/L. The fabrication of the membranes in the presence of LiCl
(S2, S3, and S4) substantially increased both the flux and permeate concentration. When the
PVDF concentration was 14 wt.%, the increasing rate of the permeate concentration was the
highest (Figure 7b). This is attributed to the fact that S2 had a wide pore size distribution
and low LEP as shown in Table 2. A lower LEP may be related to a higher probability of
salt passage, leading to higher permeate concentration. It gradually decreased with an
increase in the PVDF concentration (Figure 7c,d). The increased concentration of EtOH in
the non-solvent (S5, S6, S7) also affected the flux and permeate concentration as presented
in Figure 7e–g.

The average flux and the apparent rejection in the DCMD experiments are summarized
in Table 3. It is evident that there is a trade-off between flux and rejection. The membrane
with the highest rejection showed the lowest flux (S1) while the membrane with the highest
flux exhibited the lowest rejection (S2). Nevertheless, there was also an exception that
allows relatively high flux and rejection simultaneously (S5, S7). Figure 8 gives an overview
of the effect of fabrication conditions on the flux and rejection of the MD membranes.
Since the focus of this work is not on the optimization of the membrane fabrication,
the performance of these membranes such as flux and rejection may not be optimized.
Nevertheless, it should be noted that the properties of the membranes are sensitive to their
fabrication conditions, leading to different performances. Accordingly, an in-depth analysis
to understand the relations among the membrane properties is required.
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Figure 7. Water flux and salt permeate concentration for 24 h operation by DCMD on 35 g/L NaCl solution: (a) (S1) PVDF
14 wt.% with water, (b) (S2) PVDF 14 wt.% + LiCl with water, (c) (S3) PVDF 16 wt.% + LiCl with water, (d) (S4) PVDF
18 wt.% + LiCl with water, (e) (S5) PVDF 16 wt.% + LiCl with water (90%) + EtOH (10%), (f) (S6) PVDF 16 wt.% + LiCl with
water (80%) + EtOH (20%), and (g) (S7) PVDF 16 wt.% + LiCl with water (70%) + EtOH (30%). For all DCMD experiments,
the feed and distillate temperatures were 60 and 20 ◦C, respectively.

Table 3. Average water flux and apparent rejection for 24 h operation by DCMD on 35 g/L NaCl solution.

Membrane Sample Flux (kg/m2-h) Apparent Rejection (%)

S1 5.45 ± 0.50 99.95 ± 0.005
S2 14.19 ± 1.14 99.75 ± 0.146
S3 13.32 ± 0.33 99.87 ± 0.061
S4 12.21 ± 0.78 99.91 ± 0.0043
S5 13.11 ± 0.19 99.95 ± 0.019
S6 13.73 ± 0.46 99.92 ± 0.0190
S7 13.87 ± 0.21 99.93 ± 0.041
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Figure 8. Changes in flux and apparent rejection with membrane fabrication conditions: An overview.

3.3. In-Depth Analysis of Membrane Properties

To further investigate the characteristics of the MD membranes, the “secondary”
properties were calculated using the Equations (8), (13), (15), and (16). The results are
presented in Table 4.

Table 4. Secondary (evaluated) properties of fabricated membranes.

Membrane
Sample

Water Vapor Permeability,
Bw (×10−8 s/m)

Salt Leakage Ratio,
Lw (-)

Fiber Radius,
Rf (µm)

S1 7.76 ± 0.71 0.0020 ± 0.0019 0.598
S2 20.19 ± 1.62 0.0151 ± 0.0043 1.690
S3 18.96 ± 0.47 0.0073 ± 0.0049 0.938
S4 17.38 ± 1.11 0.0054 ± 0.0033 0.936
S5 18.66 ± 0.27 0.0024 ± 0.0006 0.714
S6 19.54 ± 0.65 0.0026 ± 0.0010 0.975
S7 19.74 ± 0.30 0.0045 ± 0.0012 1.503

The average water vapor permeability (Bw) ranged from 7.76 s/m to 20.19 s/m. As
expected, a membrane with a high flux showed a high Bw. The salt leakage ratio (Lw) was
observed in the range from 0.0020 to 0.0151. A membrane having a high rejection resulted
in a low Lw. Since Bw and Lw are less dependent on the experimental conditions (i.e., feed
concentration, MD operation time) than flux and rejection, they may be used as intrinsic
properties of a membrane. Nevertheless, care should be taken because they may be also
affected by the conditions such as feed temperatures.

Table 4 also presents fiber radius (Rf), which is related with the morphology of the
membranes. Membranes prepared by the phase inversion technique often have pores
consisting of the spaces between individual membrane fibers. Rf is the radius of the
membrane fibers. In the Equations (15) and (16), LEP decreases as an increase in Rf if all
the other conditions are the same. This suggests that membranes with the same pore size
and hydrophobicity may have different LEP due to different Rf values. The Rf value of the
membranes was calculated in the range from 0.598 µm to 1.690 µm.

3.4. Correlations among Different Properties

As the next step, the correlations between different membrane properties were investi-
gated to explore the way to fabrication of efficient MD membranes. Figure 9a reveals the
relationship between Bw and Lw. As expected, an increase in Bw resulted in an increase in
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Lw, indicating a trade-off between the two properties. This is attributed to the fact that the
membranes with higher Bw values have larger pore sizes. As presented in Figure 9b, the
mean pore radius increased with an increase in Bw. Since Lw is related to the partial pore
wetting, the membranes with larger pore sizes may have higher Lw values. The dependence
of Rf on Bw is presented in Figure 9c. It is evident the Rf increases with an increase in Bw,
implying that it is difficult to obtain membranes with high Bw and small Rf. This is probably
because the membranes with large Rf may have larger pores due to their coarse structures.
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fabricated membranes.

To provide insight into the factors affecting LEP, the effect of contact angle and pore
size on LEP was further analyzed. As presented in Figure 10a, there was no correlation
between the contact angle and LEP. Although LEP is affected by chemical properties
represented by the contact angle, it is also a function of physical properties such as surface
morphology. At least in our case, the latter seems to be more important than the former.
On the other hand, the LEP is inversely proportional to the pore diameters as shown in
Figure 10b. Not only the maximum pore diameter (dmax) but also the mean pore diameter
(dmean) and minimum pore diameter (dmin) showed reasonable correlations. A reduction in
LEP by an increased pore size can be explained by the Equations (15) and (16).

As mentioned before, it is desired to obtain membranes with high Bw (or high flux)
and high LEP. Based on the Equations (15) and (16), LEP increases with an increase in pore
size and a decrease in Rf. Accordingly, the control of Rf may be a novel approach to increase
LEP without sacrificing flux. Unfortunately, it seems that there is also a trade-off between
the pore size and Rf. As presented in Figure 11, Rf increased as the pore size increased. This
is probably because small membrane fibers are required to form small pores. Nevertheless,
a further investigation is recommended to explore the method to increase the pore size and
decrease Rf simultaneously.
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•: mean pore diameter; #: maximum pore diameter).

Although Rf cannot be directly measured, it may be related to measurable properties
of the membranes. To explore the possibility, AFM analysis was performed to determine the
surface roughness parameters, which are used to correlate with Rf. The 3-D surface images
of membranes are presented in Figure 12. Using the images, the arithmetical mean deviation
(Ra), root mean square deviation (Rq), and vertical distance between highest peak and
lowest valley (Rmax) were calculated and summarized in Table 5. As a general observation,
the roughness parameters increased with an increase in the EtOH concentration. Although
S3 (0 wt.%) and S5 (10 wt.%) showed similar roughness parameters, S6 (20 wt.%) and
S7 (30 wt.%) clearly exhibited higher values of the roughness parameters. This may
be attributed to the occurrence of solid-liquid demixing (crystallization) in the presence
of EtOH.

Figure 13 presents the dependence of the roughness parameters on Rf. There are
increasing tendencies of the roughness parameters on Rf, suggesting that Rf may be related
to the measurable properties. It is also plausible that an increase in Rf increases the surface
roughness due to an increase in the distance between highest peak and lowest valley on
the membrane surface.

Table 6 lists membrane properties between the current work and the previous inves-
tigation [40]. Although the contact angle of the commercial PVDF membrane was the
highest (126◦), the LEP was the lowest among these membranes. This is attributed to the
fact that its pore size is the largest. The M1 and M2 membranes showed low contact angles
but their LEP values were high due to their relatively small pore size as well as small Rf
values. On the other hand, the S6 and S7 membranes showed moderate contact angles and
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high LEP values. The apparent rejection of all membranes was similar, but the salt leakage
ratio was different, ranging from 0.0015 (M1) to 0.0045 (S7). The Rf ranged from 0.350 (M2)
to 1.503 (S7) membranes.
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Table 5. Roughness parameters of the prepared membranes.

Membrane Sample Ra (nm) a Rq (nm) b Rmax (nm) c

S3 20.01 25.47 89.87
S5 18.51 23.97 83.49
S6 27.03 34.09 103.22
S7 40.80 51.13 129.44

a Ra (nm): Arithmetical mean deviation. b Rq (nm): Root mean square deviation. c Rmax (nm): Vertical distance
between highest peak and lowest valley.
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Table 6. Comparison of the membrane properties obtained in this study with the literature for DCMD process.

Membrane Sample Contact Angle (◦) LEP
(bar) dmean (µm) Flux (kg/m2h) Apparent Rejection (%) Water Vapor Permeability,

Bw, (×10−8 s/m)
Salt Leakage Ratio,

Lw (-)
Fiber Radius,

Rf (µm)

S6 83.6 ± 2.1 2.29 ± 0.06 0.16 13.73 ± 0.46 99.92 ± 0.0190 19.54 ± 0.65 0.0026 ± 0.0010 0.975
S7 90.3 ± 3.6 2.08 ± 0.07 0.19 13.87 ± 0.21 99.93 ± 0.0410 19.74 ± 0.30 0.0045 ± 0.0012 1.503

M1 [40] 75.7 ± 1.4 2.93 ± 0.06 0.11 20.20 ± 0.10 99.93 ± 0.0182 28.73 ± 0.27 0.0015 ± 0.0003 0.618
M2 [40] 73.2 ± 2.7 4.16 ± 0.25 0.07 8.6 ± 0.11 99.93 ± 0.0145 12.26 ± 0.12 0.0026 ± 0.0007 0.350

Commercial PVDF [40] 126.8 ± 1.1 1.81 ± 0.16 0.22 15.10 ± 0.61 99.93 ± 0.0087 21.69 ± 0.65 0.0023 ± 0.0009 0.429
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4. Conclusions

This study presents an approach to evaluate the properties of MD membranes using
seven PVDF membranes synthesized under different conditions. The following conclusions
were drawn based on the findings:

1. Depending on the fabrication conditions, membranes with flux, rejection, contact
angle (CA), liquid entry pressure (LEP), and pore sizes were obtained. Without LiCl, a
membrane with small pore size, high LEP and low flux was prepared. When LiCl was
used, an increase in PVDF concentration led to the formation of denser membranes.
The flux and rejection were further adjusted by controlling the EtOH concentration in
the non-solvent.

2. Using the equations derived in this work, Bw, Lw, and Rf were calculated. It was found
that Bw and Lw ranged from 7.76 × 10−8 s/m to 20.19 × 10−8 s/m and from 0.0020
to 0.0151, respectively. An increase in Bw resulted in an increased Lw, indicating a
trade-off between the two properties. This is attributed to the fact that the membranes
with higher Bw values have larger pore sizes.

3. Rf was calculated in the range from 0.598 µm to 1.690 µm. Since the Rf was relatively
small, the prepared membranes can have high LEP (more than 1.13 bar) even at
low CA (less than 90.8◦). Rf was found to be correlated with the surface roughness
measured by AFM.

4. An efficient MD membrane should have a high flux, rejection, and LEP with low
fouling propensity. The results in this study suggest that the pore size should be high
to ensure high Bw but Rf should be small to lower Lw. However, care should be taken
in this approach. Since there is a trade-off between pore size and Rf, it may not be
possible to simultaneously increase both properties. In addition, an increase in the
pore size above a critical value is not allowed due to high risk of the wetting.

5. If Rf is sufficiently small, it is plausible to fabricate membranes using moderately
hydrophobic materials, which is beneficial to retard fouling due to hydrophobic
foulants. Nevertheless, further work should be done to examine this hypothesis.
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Abbreviations

Am membrane area (m2)
aw activity of water (-)
Bw water vapor permeability (s/m)
cf salt concentration in the feed (kg/m3)
cf,0 initial feed concentration (kg/m3)
cp permeate concentration (kg/m3)
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cp,distill salt concentration in the distilled water (kg/m3)
cp,leak salt concentration in the water leakage (kg/m3)

cp,net
salt concentration of the water transferred through the membrane
(kg/m3)

De specific gravity of the ethanol (g/cm3)
Dp specific gravity of the PVDF material (g/cm3)
Jv permeate (water) flux (kg/m2-h)
Lw leakage ratio (-)
m1 mass of the saturated membrane (g)
m2 mass of the dry membrane (g)
pw vapor pressure (bar)
Rapp apparent salt rejection (-)
Rint intrinsic rejection (-)
subscript f feed
subscript p permeate
superscript 0 pure water
xNaCl mole fraction of NaCl (-)
xw mole fraction of water (-)
∆mg increased mass of the permeate (g)
∆pw vapor pressure difference (bar)
∆t time interval (s)
γ activity coefficient (-)
γ w,f activity coefficient of water in the feed (-)
ρ density of water (kg/m3)
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