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Abstract: In this study, PVDF/PTFE composite membranes were prepared by adding a PTFE na-
noemulsion to a PVDF solution and casting it through the conventional non-solvent-induced phase
separation method. The objective was to explore the effectiveness of using a simple and economical
method to modify PVDF membranes with PTFE to enhance their anticorrosion performance, espe-
cially under highly acidic or alkaline conditions. PTFE nanoparticles (of around 200 nm in size) in
nanoemulsion form were blended with PVDF at a mass ratio of PTFE:PVDF in the range of 0–0.3:1.
The obtained membranes were examined to determine the effect of the added PTFE nanoparticles on
the structure of the modified PVDF membranes as well as on their mechanical strength and surface
characteristics. The membranes were then immersed in various concentrations of acidic or alkaline
solutions for varied durations ranging from a few days up to as long as 180 days (6 months). The
impacts of by the corrosive solutions on the tensile strength, surface roughness, and water flux of
the membranes with different exposure times were quantified. The results showed that although a
certain extent of change may occur with extended immersion times, greatly enhanced anticorrosion
performance was obtained with the prepared PVDF/PTFE membranes compared with the unmodi-
fied PVDF membrane. For example, after being immersed in 5 mol-H+··L−1 H2SO4, HCl, and HNO3

solutions for 6 months, the tensile strength at breaking point remained at up to 69.70, 74.07, and
71.38%, respectively, of the initial strength for the PVDF/PTFE (M30) membrane. This was in contrast
to values of only 55.77, 70.43, and 61.78% for the unmodified PVDF membrane (M0). Although the
water flux and surface roughness showed a change trends to the tensile strength, the PVDF/PTFE
(M30) membrane had much higher stability than the PVDF (M0) membrane. In a continuous filtration
experiment containing H2SO4 at 0.01 mol-H+·L−1 for 336 h (14 days), the PVDF/PTFE membrane
showed a maximum flux change of less than 30%. This was in comparison with a change of up to
50% for the PVDF membrane. However, the PVDF/PTFE membranes did not seem to have a greatly
enhanced anticorrosion performance in the alkaline solution environment tested.

Keywords: PVDF/PTFE composite membrane; PTFE nanoparticle; polymer blending; non-solvent
induced phase separation method; anticorrosive performance

1. Introduction

Many industries, including electroplating, semiconductor fabrication, acid mining,
pharmaceutical manufacturing, and phosphorus acid production industries, often produce
highly corrosive wastewater during their processes. This includes concentrated acidic or
alkaline effluents that must be treated or purified to specific standards before discharge or
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reuse [1]. Currently, the methods used for treating corrosive wastewater, especially acidic or
alkaline water, include neutralization, chemical precipitation, solvent extraction, membrane
filtration, ion exchange, and adsorption [2–6]. Many of the conventional treatment methods
still heavily rely on the use of expensive chemicals. Due to the highly corrosive or toxic
nature of industrial effluents, the ability to treat them directly by a more economic biological
method has been limited [4–7]. In recent years, membrane separation technology, a highly
effective physical process, has increasingly and more widely been used for the treatment
of various municipal and industrial wastewaters due to its many social, environmental,
and economic benefits, for example, its high effluent quality, the potential for resource
recovery and reuse, the reduction or elimination of secondary pollution, and the low
carbon emissions. The interest in membrane technology for application in the treatment
of highly corrosive industrial effluents, particularly for the recovery of acids and metal
components and the reuse of treated effluents to attain a zero discharge status, has increased
considerably over the years [8,9]. Generally, when effluents are only mildly corrosive, many
conventional membranes that are available in the market can be satisfactorily used to purify
wastewater. However, there have been many situations where the industrial wastewater
generated, for example, in the metal plating and acid mining industries, can have a very
high acid concentration and, therefore, be highly corrosive. Most of the conventional or
available membranes in the market are not tolerated that well, and the membranes have
often been limited to a pH application range of 2–12 or even narrower.

The two types of membranes that may currently be used for highly corrosive industrial
wastewater treatment include ceramic membranes and polytetrafluoroethylene (PTFE)
membranes [10,11]. Ceramic membranes, which are mainly made of metal oxides and
are very stable, are generally expensive with high production costs and high operational
energy consumption and often require stringent installation conditions, as they are brittle
with low elasticity, all of which greatly limits their application as the first choice in many
situations [12,13]. The C-C bonds of the skeleton of PTFE, a unique organic polymer,
are perfectly protected from chemical degradation due to its specially formed molecular
structure (the strong electronegativity of the F atom and the complete helical sheath
structure formed by the electron cloud of the C-F covalent bonds). Therefore, PTFE
membranes show excellent corrosion resistance or chemical inertness [14]. Nowadays,
PTFE membranes are increasingly being used in various applications, such as exhaust-gas
treatment, membrane distillation (MD), and oil–water separation [15–18]. Zhu et al. [17]
prepared hollow fiber PTFE membranes through a cold-pressing method and achieved
a salt rejection rate of 99.9%. Xue et al. [18] used catechol (CA) and polyethyleneimine
(PEI) to hydrophilically modify flat PTFE membranes for oil–water separation. The as-
prepared hydrophilized flat PTFE membranes have excellent oil resistance with an oil
rejection ratio of near 99%. Although PTFE membranes, as a type of organic membrane,
may have greater flexibility in regard to fabrication into various forms, they cannot be
manufactured by the more economical and well-established non-solvent-induced phase
separation (NIPS) method [19]. The cost of PTFE materials is several times higher than that
of PVDF materials, and the more costly thermal preparation process for PTFE membranes
has made them much more expensive than other organic polymeric membranes on the
market. Furthermore, solo PTFE membranes display a superhydrophobic feature and have
very poor water permeability as well as a low mechanical strength [20]. These features
have made solo PTFE membranes less viable for use in industrial wastewater treatment,
especially in large-scale practical applications.

One of the most popular organic membranes used in practical applications is polyvinyli-
dene fluoride (PVDF) membranes. They show moderate acid and alkali resistance (in the
pH range of 2–12) and chemical stability and are used for the treatment of many commonly
found industrial wastewaters. PVDF has a similar spatial configuration and constituent
elements to PTFE and, therefore, shares some of its advantages. However, PVDF, which is
much cheaper than PTFE, can be easily dissolved in many popular organic solvents, such
as DMF, DMSO, and NMP, and the membranes can be prepared by the traditional and well-
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established NIPS method at a greatly reduced production cost. PVDF membranes have
widely been used for water and wastewater treatment, and they have a widely accepted sys-
tem design and operational experience. Since, unlike PTFE membranes, PVDF membranes
are not highly tolerant to corrosive industrial wastewaters, such as wastewater with a pH
lower than 2 or high than 12, it has been of great research and engineering interest to im-
prove or enhance the anticorrosive property of PVDF membranes to allow their application
to be expanded, for example, into acidic or alkaline industrial wastewater treatment.

One approach is to prepare PVDF/PTFE composite membranes [21–25]. Most ap-
proaches of this type have to use the more expensive method of thermally induced phase
inversion (TIPI). This usually involves heating materials to up to 220 ◦C or above, because
PTFE has no known solvent able to obtain the PVDF/PTFE membrane casting solution [23].
There have also been some attempts to prepare PVDF/PTFE composite membranes through
the common and less-energy-intensive NIPS method by blending PTFE powder with PVDF.
It has been reported that the addition of 4 µm of PTFE powder to PVDF in the 0 to 12 wt%
range can be used to prepare nanofibrous PVDF-PTFE membranes through electrostatic
spinning [24]. This was shown to produce membranes with a water contact angle (WCA)
in the range of 130.4◦to 152.2◦ and an increase in the liquid entry pressure (LEPw) of
the pore of the membranes from 84 to 137 kPa due to the greatly increased hydropho-
bicity. The electrostatic spinning method requires a high voltage of up to 30 KV, which
may limit its large-scale industrial application. In membrane distillation, Teo et al. [25]
prepared a PVDF/PTFE membrane by dispersing PTFE particles (<1 µm) into a 20–40 wt%
PVDF cast solution and fabricating the membranes using a dry-jet wet-spinning process.
They found that the addition of PTFE microparticles greatly suppressed the formation of
macrovoids and increased the surface hydrophobicity of the obtained membranes. The
prepared membrane became a good candidate for membrane distillation rather than for
the permeation of water and wastewater in the normal membrane filtration process. Khu-
malo et al. [22] prepared PVDF/PTFE/fMSNs nanocomposite membranes using the phase
inversion technique through the immersion precipitation method by inserting a polymer
solution cast on a glass plate into a deionized water coagulation bath. The increase in PTFE
loading improved the membrane structure, resulting in the formation of smaller, evenly
distributed pores and a porous, spongy structure, which could be used in MD to recover
water from hydrolyzed human urine. The PTFE particles used in previous reports were
usually relatively large at the micrometer level (average particle size of around 1–5 µm).
It was also found that the agglomeration of these particles inevitably occurred in the
membrane casting solution, which also affected the uniformity of the formed membrane’s
structure [26,27]. There has also been a lack of information on how to improve the sur-
face and internal structure of PVDF membranes by blending them with PTFE particles to
enhance the anticorrosion performance.

In this study, we examined the modification of PVDF membranes by blending PTFE
nanoparticles. PTFE nanoparticles with an average size of around 220 nm were dispersed
in a liquid emulsion. The PTFE nanoemulsion was added to the PVDF/NMP dope system
in certain specific ratios to obtain a uniform casting solution. Then, PVDF/PTFE composite
membranes were prepared by the traditional and low-cost common NIPS method instead
of the higher-cost thermal preparation method. Compared with previous studies that
used PTFE microparticles (powder), the aggregation of PTFE nanoparticles was greatly
suppressed, and PTFE nanoparticles were dispersed more uniformly in the PVDF matrix.
The morphology, mechanical properties, water flux, and rejection performance of the
PVDF/PTFE composite membranes were investigated before and after their immersion in
corrosive solutions, including strong acidic or alkaline solutions, for varied time periods of
up to 6 months. Our objective was to examine the modification of PVDF membranes by
blending PTFE nanoparticles in a nanoemulsion form, prepared with the conventional non-
solvent-induced phase inversion method, and investigate a possible enhancement in the
anticorrosion performance of the obtained PVDF/PTFE composite membranes. Our aim
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was to expand the application of PVDF membranes into the treatment of more challenging
industrial wastewaters with strong acidity or alkalinity.

2. Experimental Section
2.1. Materials

PVDF powder and PTFE nanoemulsion containing 62 wt% PTFE nanoparticles with
an average size of 220 nm, dispersed in water with a nonionic surfactant as a stabilizer,
were obtained from Shanghai 3F New Material Technology Co. Ltd., Shanghai, China
N-methyl pyrrolidone (NMP) was provided by Tianjin Zhiyuan Chemical Reagent Co.,
Ltd., Tianjin, China. Sulfuric acid (H2SO4), nitric acid (HNO3), hydrochloric acid (HCl),
anhydrous sodium dihydrogen phosphate (NaH2PO4), and anhydrous disodium hydrogen
phosphate (Na2HPO4) were supplied by Macklin. Sodium hydroxide (NaOH) and bovine
serum albumin (BSA) were purchased from Aladdin, and n-butanol and sodium dodecyl
sulfate (SDS) were purchased from Titan Technology Co. Ltd., Shanghai, China.

2.2. Preparation of PVDF/PTFE Composite Membrane

The PVDF powder was first dried overnight at 60 ◦C and then cooled to room tem-
perature naturally. A specific amount of dried PVDF powder was added to NMP at 70 ◦C
with stirring to obtain a uniform and transparent PVDF casting solution. Then, a different
amount of the PTFE nanoemulsion was added dropwise as needed to the PVDF casting so-
lution, and the mixture was stirred continuously for another 2 h at the same temperature for
homogenization. Finally, the obtained PVDF/PTFE solution was allowed to stand at 70 ◦C
for 24 h for the removal of any air bubbles that were possibly entrapped in the solution.
The degassed PVDF/PTFE solution was then carefully distributed on a glass plate and
stretched into a uniform membrane by a membrane scraper (Elcometer 4340, Elcometer) at
25 ◦C. The PVDF/PTFE composite membrane was formed by the common NIPS method,
with the film on the glass plate being left in the air for 30 s and then subsequently immersed
into a coagulated bath with deionized water at 45 ◦C for 2 h. The formed membrane film
was then transferred to another deionized water bath at room temperature for another
3 days, during which the water was replaced by fresh water on a daily basis. Finally, the
obtained membrane was taken out and naturally dried on a shelf before being stored for
characterization analysis or other tests. Several PVDF/PTFE composite membranes with
different PVDF:PTFE ratios were prepared, and their basic information is given in Table 1.

Table 1. Information on the different PVDF/PTFE composite membranes prepared in this study.

Composition or Physical Feature
Membrane Type

M0 M10 M20 M30

Weight of NMP/g 84 84 84 84
Weight of PVDF/g 16 16 16 16

Weight of 62% PTFE nanoemulsion/g 0 2.87 6.45 11.06
PTFE content relative to PVDF and PTFE/wt% 0 10 20 30

Total solid content in the casting solution/% 16 17.3 18.8 20.6
Breaking strength/MPa 4.16 3.74 3.25 2.97
Breaking elongation/% 246.8 217.2 175.2 131.0

WCA/◦ 78.6 81.2 83.8 88.5
Oil contact angle in water/◦ 100.3 106.1 114.7 125.0

Porosity/% 73.9 78.2 78.9 80.3
Water flux/L·m−2·h−1 7.8 9.5 12.0 15.9

2.3. Chemical Stability Test Conducted on the Prepared Membranes

A series of H2SO4, HCl, and HNO3 solutions with an H+ concentration of up to
5 mol·L−1 (pH << 0) and a NaOH solution with an OH− concentration of 0.1 mol·L−1

(pH = 13) were prepared. The chemical stability of the prepared membranes was tested by
immersing the membrane samples into the abovementioned acidic or alkaline solutions
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for a varied amount of time of up to 180 days (6 months). At different durations, the
membrane samples were taken out and repeatedly washed with deionized water to remove
the acid or alkaline solution on the membrane surface. Then, the membrane was immersed
in a deionized water bath for at least 1 day, and the water was replaced by freshwater
regularly until its pH was neutral. Finally, the sample was dried at room temperature. The
samples were subsequently analyzed to determine their characteristics or performance
features, including examination of the surface structure, mechanical strength, and water
flux. For simplicity, we used the letters “S”, “Cl”, “N”, and “Na” as subscripts to represent
membranes immersed in H2SO4, HCl, HNO3, and NaOH solutions, respectively. The
number following these subscript letters was used to indicate the duration of immersion in
the corresponding solution (in months). For example, M0 immersed in H2SO4 solution for
1 month (30 days) is denoted as M0S1.

2.4. Characterization of Membranes
2.4.1. Microimage Analysis

The surface and cross-sectional morphologies of the various prepared membranes
were examined through scanning electron microscopy (SEM, Quanta FEG250, FEI Com-
pany). Prior to the analysis, samples were dried under vacuum and coated with a gold
layer according to the specific requirements of the equipment operation. To maintain an
intact cross-section of the sample for analysis, a strip of the membrane sample to be scanned
was frozen and fractured in liquid nitrogen immediately prior to sample preparation for
the SEM scan.

The surface morphology or roughness of the various membranes before and after the
corrosion test was also examined with an atomic force microscope (AFM, Multiomode 8,
Bruker). The Nanoscope Version 1.9 software and the AFM were used for image acquisition.
The AFM images were captured as a 3D model, and the measurement area had dimensions
of 5 µm × 5 µm.

2.4.2. Mechanical Properties

The mechanical properties of the prepared membranes were estimated before and
after the corrosion treatment by measuring the tensile strength and elongation at break
using Instron equipment (Model 5944 tensile analyzer). A 7 cm × 1 cm strip of a membrane
sample was prepared, and then the 2 ends were attached to the 2 fixtures of the instrument
with a separation distance of 5 cm. The 2 fixtures moved away slowly at a velocity of
10 mm·min−1 until the membrane fractured, and the tensile strength and elongation at
break were recorded automatically by the instrument. A total of 6 measurements were
made for each membrane sample, and the average results were reported.

2.4.3. Water Contact Angle Measurements

WCA measurements were performed to evaluate the effect of blending the PTFE na-
noemulsion with PVDF on the surface hydrophilicity/hydrophobicity of the PVDF/PTFE
composite membranes. The measurements were performed with the sessile drop method
using a Rame-hart goniometer (Ramé-hart 500). A dried 1 cm × 3 cm membrane sample
was attached to the sample slide of the goniometer. Then, 3 µL of deionized water was
dropped onto the surface of the membrane sample using a microsyringe. The instrument
was set to immediately record an image of the water droplet and its changes and then
determine the contact angle between the membrane surface and the water droplet/air
interface automatically. All measurements were carried out at room temperature (25 ◦C).
The measurements were made at 15 randomly selected locations on the membrane sur-
faces, and the average WCA from these measurements was calculated and reported as the
representative WCA for the measured membrane sample.
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2.4.4. Membrane Porosity

The porosity of the prepared membranes was estimated by the liquid wetting method,
as reported in the literature [28]. A membrane sample with a measured area and thickness
that was vacuum-dried at 60 ◦C was first immersed completely in 500 mL of n-butanol
for 12 h at 25 ◦C to allow the membrane sample to be completely wetted. Then, the
wetted membrane was taken out and the n-butanol was wiped off the surface. The wetted
membrane sample was immediately weighed, and the weight was determined in m2 (g)
with an electrical analytical balance. The wet membrane sample was then vacuum-dried
at 60 ◦C (VD115, Binder) to a constant weight. Its weight was recorded in m1 (g). The
approximate porosity of the measured membrane sample was estimated using Equation (1)
as follows:

P =
m2 − m1

ρ · A · h
× 100% (1)

where “P” is the porosity of the membrane (%), “ρ” is the density of n-butanol (g·cm−3),
“A” is the area of the measured membrane sample (cm2), and “h” is the thickness of the
membrane sample (cm) determined from the SEM analysis.

2.4.5. Membrane Permeation Test

A filtration cell made of a pressure controller, a clear water reservoir, and cell stirred
with a magnetic stirrer (MSC050, Shanghai Mosu Science Equipment Co. Ltd., Shanghai,
China) was used in the laboratory to evaluate the water permeation properties of the
obtained membranes before and after their immersion in a corrosive solution. A circular
slice of the membrane with an effective area of 10.17 cm2 was installed in the stirred cell.
Initially, the membrane slice was pre-compacted for 0.5 h at 0.15 MPa with deionized water.
Then, the membrane cell was fed with deionized water at 0.1 MPa, and the water flux
through the membrane was measured and calculated using Equation (2):

J =
∆V

S · ∆t
(2)

where J denotes the pure water flux (L·m−2·h−1), ∆V is the amount of permeate (L) collected
through the membrane within the filtration period ∆t (h), and S is the effective filtration
area of the membrane (m2), respectively. For each membrane, the measurement was
repeated thrice, with the average result being reported in this study.

An identical device was used to filter the H2SO4 solution with an H+ concentration of
0.01 mol·L−1 for as long as 336 h (14 days), and the fluxes were monitored at various time
intervals. The fluxes were also calculated using Equation (2).

3. Results and Discussion
3.1. Membrane Morphologies and PTFE Dispersion

The morphologies of the surface and cross-section of the prepared PVDF/PTFE mem-
branes measured in the SEM analyses are presented in Figure 1. The blending of PTFE
did not appear to have a very noticeable effect on the surface and cross-section structures
of the membranes, although it did greatly impact the thickness of the membranes. All
membranes had a dense skin layer supported by a more porous sublayer with finger-like
voids. However, as the amount of PTFE nanoparticles blended in PVDF increased, the
porosity of the prepared membranes increased greatly from 73.9% for membrane M0 to
80.3% for membrane M30 (see Table 1). The higher porosity of the membranes with PTFE
nanoparticles was probably caused by two factors: (1) The liquid in the PTFE nanoemul-
sion, which was added with the PTFE nanoparticles into the PVDF/PTFE composite, and
may have behaved as a porogen and increased the pore voids, contributing to a greater
porosity in the obtained composite membrane; and (2) the compatibility between PVDF
and PTFE nanoparticles was lower in PVDF/PTFE composite membranes (i.e., M10–M30),
which may have led to a greater amount of liquid being retained in the membrane structure,
leading to the final membrane having greater porosity than the PVDF in the solo PVDF
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membrane (M0). The cross-sectional images of the PVDF/PTFE composite membranes
show larger solid particles or aggregates, especially for membranes with a higher amount
of PTFE (e.g., M30), indicating the possibility of some extent of aggregation in the added
PTFE nanoparticles. This situation was, however, less evident for the M10 membrane,
suggesting that adequate blending of PTFE nanoparticles with PVDF was achieved at a
lower ratio of 10%. It is interesting to note that the PTFE nanoparticles appeared to be
more concentrated at the membrane surface, rather than being distributed more uniformly
to the entire structure of the PVDF/PTFE composite membranes, as occurs under the
current NIPS preparation method. This phenomenon could improve the anticorrosion
performance of the prepared membranes because more PTFE particles appear on the sur-
face, and they have much greater corrosive resistance than PVDF. Another implication of
this phenomenon was that, by changing the composition of the nonsolvent used in the
NIPS method, it may be possible to control how the PTFE nanoparticles are distributed
within the structure of the prepared membranes and thus control the surface property of
the membranes being prepared.

Figure 1. Top surface (up) and cross-sectional (down) SEM images of the prepared membranes.

To compare the aggregation phenomenon that has been reported to occur when blend-
ing PTFE nanoparticles with PTFE microparticles in some earlier studies, we also prepared
a PVDF/PTFE composite membrane named Mmicro by blending 10% PTFE microparticles
with an average size of 5 µm in the same way as was conducted for the M10 membrane. As
shown in Figure 2A, the SEM images indicated that the PTFE microparticles formed larger
agglomerates in the size range of around 7–10 µm to those formed in the NIPS process,
and the aggregates were observed to be randomly distributed inside the membrane’s cross-
sectional structure. On the contrary, the blended PTFE nanoparticles seemed to be more
uniformly dispersed in the membrane’s structure, and although agglomeration occurred,
the agglomerates formed had a much smaller size of <5 µm.

To explore the possibility of further improving the dispersion of PTFE nanoparticles
in the PVDF/PTFE composite solution, we tested the addition of different amounts of SDS
surfactant to the PVDF/PTFE casting solution. This anionic surfactant was expected to
change the surface tension of the PTFE nanoparticles and, thus, improve their stability
and avoid their aggregation during the NIPS process [29]. Although the addition of SDS
surfactant may be expected to reduce the aggregation of PTFE nanoparticles, experiments
indicated that the content of SDS surfactant needed to be controlled at a maximum solubility
of no greater than 10% to achieve an adequate solution. In Figure 2, we present SEM images
of the cross-sections of PVDF/PTFE composite membranes prepared with 0%, 4%, and 8%
SDS, respectively, that were added to the cast solution. It was found that the addition of
SDS indeed improved the dispersion of the PTFE nanoparticles and greatly reduced the
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aggregation phenomenon, with the largest agglomerate measured as being around 1.35 µm
for the membrane with 8% SDS. In addition, with an increase in the SDS content, the
cross-sectional structure of the membranes changed significantly to have fewer macropores
and a considerable increase in the sponge layer thickness. The finger-like voids almost
disappeared completely for the PVDF/PTFE membranes with 8% SDS (see Figure 2D). The
lower agglomeration and more uniform structure of the PVDF/PTFE composite membranes
indicated better dispersion of the PTFE nanoparticles and perhaps better anticorrosion
performance for the PVDF/PTFE composite membranes.

Figure 2. Agglomeration phenomenon of micro-PTFE particles and nano PTFE particles in the
PVDF/PTFE composite membrane (PTFE was about 10% of PVDF in mass). (A): the Mmicro mem-
brane blended with 5 µm PTFE micro particles; (B–D): the membrane blended with PTFE nanoemul-
sion with 0%, 4%, and 8% SDS added, respectively.
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3.2. Membrane Strength and Surface Properties

The measured mechanical properties of the prepared membranes are also given in
Table 1. In terms of the tensile strength, the solo PVDF membrane, M0, showed the highest
value of 4.16 MPa. With the addition of PTFE nanoemulsion, the tensile strength of the
PVDF/PTFE composite membranes appeared to reduce: 3.74 MPa for M10, 3.25 MPa for
M20, and 2.97 MPa for M30, respectively. The breaking elongation also decreased as the
PTFE nanoemulsion content increased: 246.8% for M0, 217.2% for M10, 175.2% for M20,
and 131.0% for M30, respectively. The results indicate that the lower compatibility between
PVDF and PTFE decreased the strength of the PVDF/PTFE composite membranes to a
certain extent as compared with the solo PVDF membrane. Nevertheless, as intended for
MF or UF membranes, the tensile strength of the PVDF/PTFE composite membranes was
generally acceptable [30], especially for the PVDF/PTFE composite membrane M10, whose
strength was very close to that of M0.

PTFE material is extremely hydrophobic, with literature reported WCA values exceed-
ing 150◦ [24]. The addition of PTFE nanoparticles to PVDF was indeed found to increase the
WCA of the prepared PVDF/PTFE composite membranes, with 78.6◦ for M0 in comparison
with 81.2◦, 83.8◦, and 88.5◦ for M10, M20, and M30, respectively, although the impact on
the membranes’ hydrophilicity was not significant. The oil contact angle of the membranes
in water was also measured by the captive bubble method [31]. As also given in Table 1,
the underwater oil contact angles were as follows: 100.3◦ for M0, 106.1◦ for M10, 114.7◦

for M20, and 125.0◦ for M30. The composite membranes were able to achieve significantly
higher oil contact angles in water compared with the pure PVDF membrane (M0) as the
concentration of blended PTFE nanoparticles increased. A higher oil contact angle indicates
greater membrane anti-fouling performance, allowing the membrane to resist foulants
such as organic pollutants, protein, and oil. The enhanced oleophobic performance of the
PVDF/PTFE composite membranes can be attributed to the oleophobic component of the
PTFE nanoparticles on the surface and cross-section of the prepared membranes.

3.3. Anticorrosion Stability of PVDF/PTFE Composite Membranes

The performance of the prepared membranes was monitored for 180 days to determine
their durability by immersing them in H2SO4, HNO3, or HCl acid solutions with a [H+]
concentration of 5 mol·L−1 and in a NaOH solution with an [OH−] concentration of
0.1 mol·L−1. At different immersion times, the membrane samples were taken out for the
analysis of various characteristics, including mechanical strength, surface roughness, and
water permeability, to evaluate the stability of the membranes.

Figure 3 and Table 2 present the variation in the tensile strength of the different types
of membranes in the corrosion experiments. While the strength gradually weakened for all
membranes as the immersion time increased from 30 to 180 days, the breaking strength
retention rate of the M0 membrane immersed in the H2SO4 solution for 6 months was
reduced to only 56%, whereas those for M10, M20, and M30 were reduced to 60%, 64%,
and 70%, respectively. This indicates that the composite membranes containing PTFE
nanoparticles were much more resistant to corrosion by the H2SO4 solution, having a
lower reduction in the breaking strength. The results obtained for the HCl and HNO3
solutions were better than those obtained for the H2SO4 solution, and, at the same H+

concentration, the HCl solution was the least corrosive for the membranes. The breaking
strength retention rate of membrane M0 immersed in the HCl and HNO3 solutions for 6
months was 70.4% and 61.8%, respectively, while for M30, it was 74.1% and 71.4%. It is
evident that after blending PTFE nanoparticles with PVDF at a content of 10% to 30%, the
prepared composite membranes were indeed more resistant to corrosion by typical acids
than the PVDF membrane.
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Figure 3. Rate of retention in tensile strength over time for prepared membranes immersed in acid or
alkaline solutions.

Table 2. Relative tensile strength and rate of retention in tensile strength for prepared membranes
immersed in different acid or alkaline solutions.

Breaking Strength/MPa Breaking Strength
Retention Rate/%

Immersion Solution 0 30 60 90 180 30 60 90 180

H2SO4

M0 4.16 3.51 3.06 2.80 2.32 84.3 73.6 67.3 55.8
M10 3.74 3.24 2.89 2.62 2.23 86.6 77.3 70.1 59.6
M20 3.25 2.85 2.52 2.33 2.08 87.7 77.5 71.7 64.0
M30 2.97 2.68 2.41 2.26 2.07 90.2 81.1 76.1 69.7

HCl

M0 4.16 3.65 3.31 3.13 2.93 87.7 79.6 75.2 70.4
M10 3.74 3.31 3.02 2.86 2.72 88.5 80.7 76.5 72.7
M20 3.25 2.9 2.66 2.52 2.37 89.2 81.8 77.5 72.9
M30 2.97 2.69 2.50 2.38 2.20 90.6 84.2 80.1 74.1

HNO3

M0 4.16 3.62 3.21 2.95 2.57 87.0 77.2 70.9 61.8
M10 3.74 3.29 2.92 2.71 2.41 88.0 78.1 72.5 64.4
M20 3.25 2.85 2.56 2.45 2.20 87.7 78.8 75.4 67.7
M30 2.97 2.68 2.41 2.20 2.12 90.2 81.1 74.1 71.4

NaOH

M0 4.16 3.34 2.73 2.49 2.15 80.3 65.6 59.9 51.7
M10 3.74 3.06 2.54 2.34 2.07 81.8 67.9 62.6 55.3
M20 3.25 2.70 2.34 2.12 1.88 83.1 72.0 65.2 57.8
M30 2.97 2.58 2.22 2.09 1.88 86.9 74.7 70.4 63.3

Both PVDF membranes and the PTFE/PVDF composite membranes showed slightly
poorer anti-alkali corrosion properties when exposed to the 0.1 mol·L−1 NaOH solution.
The breaking strength retention rate for the M0, M10, M20, and M30 membranes was 51.7%,
55.3%, 57.8%, and 63.3%, respectively, after corrosion in 0.1 mol·L−1 NaOH solution for
180 days (tested time was lower than those used for the acidic solutions). However, the
PVDF/PTFE composite membranes (M10 to M30) again showed better resistance than the
PVDF membrane (M0) to the alkaline solution tested.
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The results presented in Figure 3 and Table 2 confirm that, compared with the pure
PVDF membrane, the PVDF/PTFE composite membranes were more resistant to acidic
and alkaline solutions. The greater the blending ratio of the PTFE nanoemulsion, the
better the acid and alkali resistance of the prepared composite membranes. However, in
consideration of the effect on the initial breaking strength of the composite membranes,
different blending ratios of PTFE nanoparticles with PVDF may be chosen depending on
the specific practical engineering applications.

Figure 4 and Table 3 present the measured water flux changes for the different types of
membranes before and after the immersion corrosion experiments. All membranes showed
an increase in water flux after the corrosion tests, which indicates that the membrane pores
or membrane hydrophilicity may have changed due to the acidic or alkaline treatment.
The flux through the modified membranes appeared to be stable for a longer period of time
under conditions of acidic corrosion, and its rate of increase was slower. For example, the
flux change rate of the M30 membrane immersed in the acid solution for 6 months showed
a similar change rate to the M0 membrane immersed for only 3 months in the same acidic
solution. The flux of the pure PVDF membrane, M0, immersed in the H2SO4 solution for
3 months increased by 107.7% and continued to increase to 150.0% of the original value
after 6 months. The membranes blended with PTFE nanoparticles, i.e., M10, M20, and M30,
only had increases in water flux of 124.2%, 120.8%, and 113.2%, respectively, after being
corroded in the same H2SO4 solution for 6 months.

Figure 4. Schematic diagram of the change in water flux of the membrane before and after acid-
base corrosion.
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Table 3. Water flux of membranes after immersion in corrosive solutions for different periods of time.

Flux/L/m2h Increase in Flux/%

Immersion
Immersion Time/Days 0 30 60 90 180 30 60 90 180

H2SO4

M0 7.8 11.3 13.3 16.2 19.5 44.9 70.59 107.7 150.0
M10 9.5 13.8 16.8 18.6 21.3 45.3 76.8 95.8 124.2
M20 12.0 16.6 21.2 22.1 26.5 38.3 76.7 84.2 120.8
M30 15.9 21.4 25.6 28.1 33.9 34.6 61.0 76.7 113.2

HCl

M0 7.8 9.9 11.8 13.1 14.6 26.9 51.3 67.9 87.2
M10 9.5 14.2 14.8 16.1 18.3 49.5 55.8 69.5 92.65
M20 12.0 15.4 17.9 21.2 21.3 28.3 49.2 76.7 77.5
M30 15.9 20.1 23.2 25.0 28.1 26.4 45.9 57.2 76.7

HNO3

M0 7.8 10.3 12.2 13.3 14.2 32.1 56.4 70.5 82.1
M10 9.5 13.2 15.4 17.0 19.5 38.9 62.1 78.9 105.3
M20 12.0 15.8 17.5 20.1 22.8 31.7 45.8 67.5 90.0
M30 15.9 21.1 24.9 27.1 29.6 32.7 56.6 70.4 86.2

NaOH

M0 7.8 9.5 11.1 11.5 12.8 21.8 42.3 47.4 64.1
M10 9.5 12.0 13.7 14.7 16.6 26.3 44.2 54.7 74.7
M20 12.0 14.5 16.4 17.5 17.6 20.8 36.7 45.8 46.7
M30 15.9 19.2 21.7 23.3 25.2 20.8 36.5 46.5 58.5

The lower increase in flux after immersion in the NaOH solution as compared with
the acidic solutions was mainly due to the lower molar concentration of the NaOH solution.
The flux of M0 increased by 64% after immersion in the NaOH solution with an OH−

concentration of 0.1 mol·L−1 for six months. The increase in flux of the M10 membranes
appeared to be greater, but that of M30 was reduced by about 58%. It seems that the
membranes obtained by blending PTFE nanoparticles with PVDF may be more sensitive
to alkaline solutions. Defluorination of PVDF polymers may occur in alkaline solutions,
causing collapse or blockage of some membrane pores, causing the increase in flux to
be minimal.

The variation in the surface morphology of the prepared membranes before and after
the corrosion tests provides information on the stability of the various membranes against
acidic or alkaline conditions. SEM images of the surface morphologies of the prepared
membranes after immersion in the H2SO4 solution for 6 months were obtained and are
shown in Figure 5. The membrane surface was found to contain smaller pores than those
that were present on the initial membranes (Figure 1). This may be mainly attributed to the
hydrolysis caused by the catalytic oxidation of acid by the PVDF polymer and through the
permeation and diffusion of polymer materials by corrosive media [32,33]. The number
of pores, however, decreased obviously as the content of PTFE nanoparticles increased,
as almost no obvious pores were observed on the surface of M30, which supports the
hypothesis that the addition of PTFE nanoparticles to PVDF can improve or inhibit the
corrosion of the composite membrane by acidic solutions.

AFM was utilized to investigate the surface roughness of the membranes to provide
evidence of the corrosion effect. Many studies have reported an increase in the roughness
of used membranes after corrosion treatment [34,35]. In Figure 6 and Table 4, we present
the AFM images and the measured average roughness of membrane M30 (as a represen-
tative), before and after corrosion in 5 mol·L−1 H2SO4, HCl, and HNO3 solutions and in
0.1 mol·L−1 NaOH solution for 6 months. The average roughness of PVDF membrane M0
was initially 15.7 nm, and that of the PVDF/PTFE composite membrane M30 was about
17.6 nm. The PTFE nanoparticles that migrated to the surface may have contributed to the
slightly greater roughness of the M30 membrane. The average roughness of membrane
M0 increased by 43%, from 15.7 to 22.5 nm, after immersion in the H2SO4 solution for
6 months. In comparison, the surface corrosion resistance of the prepared PVDF/PTFE
composite membranes improved significantly with the addition of the PTFE nanoparti-
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cles. After immersion in H2SO4 solution (of the same concentration) for 6 months, the
average roughness of membrane M30 only increased by 19%, from 17.6 nm to 21.0 nm.
Compared with the H2SO4 and HNO3 solutions, which had similar corrosive effects on the
membranes, the corrosion of the membranes by the HCl solution was obviously weaker.
The average roughness of M30 increased from 17.6 to 18.5 nm after corrosion by the HCl
solution for 6 months. While the composite PVDF/PTFE membranes showed greater
resistance to a nonoxidizing acid (HCl), the membranes indeed suffered some oxidative
degradation by strong oxidizing acids such as HNO3 and H2SO4. On the other hand, the
membranes seemed to have poorer alkali resistance. The average roughness of membrane
M30 increased by 25% and reached 22.0 nm after immersion in the NaOH solution for six
months. This was higher than the roughness produced following immersion in the acidic
solutions. PVDF is known to defluorinate when attacked by alkaline solution. Therefore, an
alkaline solution can have a greater influence on the surface morphology and performance
of PVDF-based membranes.

Figure 5. Surface SEM images of the prepared membranes after corrosion in the H2SO4 solution for 6 months.

Table 4. Average surface roughness of the prepared membranes. R.

M0 M0S6 M30 M30S6 M30N6 M30Cl6 M30Na6

Ra (nm) 15.7 22.5 17.6 21.0 21.2 18.5 22.0
Rq (nm) 19.8 28.0 22.9 26.9 30.3 25.9 30.1

Ra: Arithmetic average of the surface roughness; Rq: Root-mean-square average of the surface roughness.
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Figure 6. Three−dimensional AFM morphologies of the prepared membranes.

The change of water contact angle (WCA) may partly reflect the effect of membrane
surface corrosion. The WCA values of the membranes before and after corrosion in
5 mol·L−1 H2SO4, HCl, and HNO3 solutions and 0.1 mol·L−1 NaOH solution for 6 months
are presented in Figure 7 and Table 5. In general, the WCA of the membranes dropped
to different degrees due to corrosion of the acidic or alkaline solution, becoming more
hydrophilic. The water contact angle of membrane M0 decreased by 9.3%, 4.7%, or 6.4%,
from an initial angle of 78.6◦ to 71.3◦, 74.9◦, and 73.5◦, respectively, after immersion in
H2SO4, HCl, or HNO3 solution for 6 months. Consistent with the previous analysis, a
lower drop in the water contact angle occurred with the HCl solution as compared with
stronger oxidizing acids such as HNO3 and H2SO4. The influence of 0.1 mol·L−1 NaOH
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on the WCA was much greater than with other solutions, and the WCA of membrane M0
decreased by 15.3%, from 78.6o to 66.6o. The decrease in the WCA after corrosion by NaOH
solution was apparently smaller: 14.5%, 13.7%, and 12.9%, respectively, for membranes
M10, M20, and M30.

Figure 7. Rate of decrease in the water contact angle of the prepared membranes after corrosion in
5 mol·L−1 acid solutions and an 0.1 mol·L−1 alkaline solution for 6 months.

Table 5. The WCAs of the prepared membranes before and after immersion in different acidic and
alkaline solutions for 180 days.

Initial WCA/◦
WCA after Immersion in Different Corrosive Solutions for

180 Days/◦

H2SO4 HCl HNO3 NaOH

M0 78.6 71.3 74.9 73.5 66.6
M10 81.2 73.1 76.5 75.7 69.4
M20 83.8 76.7 79.7 78.7 72.3
M30 88.5 81.4 84.2 83.7 77.1

3.4. Dynamic Filtration Results

The initial results of the static immersion test conducted in corrosive solutions may
only partially reflect the resistance performance of the prepared membranes. For example,
in the actual filtration process, the membranes will be subjected to liquid flowing through
their pore structures under pressure. The modified membrane was, therefore, subject to a
continuous filtration test with H2SO4 solution at an H+ concentration of 0.01 mol·L−1 for
as long as 336 h (14 days) and a transmembrane pressure of 0.1 MPa. The membrane water
fluxes were measured at various times, and the corresponding rate of change in the water
flux (relative to the initial water flux) was calculated, as shown in Figure 8. It was found that,
generally, the rate of decrease in membrane flux increased as the filtration time increased
for the first 168 h, and then it tended to gradually decrease, the latter of which may be due
to the corrosion of the membrane by acid, leading to swelling of the PVDF polymer and
reduction of the membrane pores. As can be observed in Figure 8, the modified membrane
M30 showed the lowest rate of decrease in the membrane flux, which indicates that it has
much better anticorrosion resistance than the pure PVDF membrane, M0.
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Figure 8. The rate of decrease in the membrane flux for the prepared membranes when subjected
to dynamic continuous filtration with H2SO4 solution at an H+ concentration of 0.01 mol·L−1

(transmembrane pressure: 0.1 MPa).

4. Conclusions

PVDF/PTFE composite membranes with enhanced anticorrosion performance were
obtained by a simple method involving the blending of PTFE nanoparticles with PVDF
polymer and the fabrication of membranes through the common non-solvent-induced
phase separation process. In contrast to the PTFE microparticles used in previous studies,
the present study used PTFE nanoparticles. This greatly decreased the level of aggregation
and resulted in a uniform dispersion in the membrane structures, factors that contributed
to an improvement in the membrane’s anticorrosion property.

The prepared membranes were immersed in a few typical corrosive solutions, includ-
ing H2SO4, HNO3, and HCl solutions with a high H+ concentration of 5 mol·L−1 (pH << 0)
and NaOH solution with the 0.1 mol·L−1 OH− (pH = 13), to investigate their anticorrosion
performance. Although the breaking strength of all prepared membranes weakened as the
immersion time increased from 1 to 6 months, the composite membranes with blended
PTFE nanoparticles showed improved resistance to corrosion from these solutions, having a
lower reduction in breaking strength than the pure PVDF membrane. After corrosion by the
acidic solutions, the water flux of the membrane increased as the immersion time increased.
While the M10, M20, and M30 membranes showed changes of 124.2%, 120.8%, and 113.2%,
respectively, after being corroded in mol·L−1 H2SO4 solution for 6 months, the pure PVDF
membrane, M0, showed a change of 107.7% after 3 months and then an increase to 150.0%
after 6 months in the same H2SO4 solution. The surface roughness of the membranes can
also be affected by corrosion by acidic or alkaline solutions. The effect on the average
roughness was lowest with the HCl solution and greatest with the H2SO4 and HNO3
solutions. Since defluorination of the PVDF polymer may occur in alkaline solutions, the
results of this study showed that the alkaline solution had a greater effect on the stability of
the prepared membranes than the acidic solutions. However, the membranes blended with
PTFE nanoparticles indeed had better corrosion resistance. During continuous filtration
of the H2SO4 solution with an H+ concentration of 0.01 mol·L−1 for 336 h (14 days), the
PVDF/PTFE composite membranes also demonstrated much better resistance and stability
than the solo PVDF membrane. Hence, the simple method for preparing PVDF/PTFE
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composite membranes with a greatly enhanced anticorrosion performance presented in
this study has great potential to expand the application of PVDF membranes for use in
corrosive industrial effluent treatment.
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