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Abstract: Nanocomposite anion exchange membranes were synthesized based on poly(sulfone
trimethylammonium) chloride. A hybrid semi-interpenetrating silica network containing a large
amount of quaternary ammonium groups was prepared by two sol–gel routes, in situ with a single
precursor, N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMSP), or ex situ mixing
two precursors, TMSP and 3-(2-aminoethylamino)propyldimethoxy-methylsilane (AEAPS). The
properties of these hybrid composites and their degradation after immersion in 1 M KOH at 60 ◦C
were studied. The degradation is reduced in the composite materials with a lower decrease in the ion
exchange capacity. FTIR spectra showed that a main degradation mechanism with a single precursor
TMSP is the dissolution of the hybrid silica network in KOH, whereas it is stable with the mixture of
TMSP/AEASP. This conclusion is in agreement with the thermogravimetric analysis. The mechanical
properties show a better ductility with a single precursor and higher stiffness and strength, but less
ductility, by the ex situ route. The activation energy was between 0.25 and 0.14 eV for Cl and OH ion
conduction, respectively, consistent with the migration mechanism.

Keywords: polysulfone; sol–gel; ionomers; hybrid materials

1. Introduction

Anion exchange membranes (AEM) are extensively investigated for their well-known
advantages when used in electrochemical devices, including the absence of noble metal
catalysts for the oxygen reduction reaction in fuel cells [1–6]. However, the drawbacks of
these ionomeric materials limit their extensive use and the replacement of proton exchange
membranes in commercial devices [7,8]. The main AEM weaknesses are the degradation of
the ionomeric groups, essentially ammonium moieties, and the scission of the backbone
induced by the polarization of the matrix [9–13].

One of the most promising approaches to improve the properties of ion exchange
polymers is the formation of organic-inorganic composite membranes [14–19]. These hy-
brid materials show a consistent stabilization due to the interactions between the polymer
backbone and the inorganic component, including van der Waals forces and ionic interac-
tions, e.g., between quaternary ammonium groups in the polymer or in the organosilica
part with sulfone groups or ether oxygens. An extensive inorganic–organic network, pos-
sessing a structural flexibility, offers many possibilities to interact with the hydrophilic and
hydrophobic part of the matrix, making it possible to change the membrane properties,
especially in terms of stability [20–22].

Membranes 2021, 11, 260. https://doi.org/10.3390/membranes11040260 https://www.mdpi.com/journal/membranes

https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0003-4756-9205
https://orcid.org/0000-0002-9053-0587
https://orcid.org/0000-0002-4110-2973
https://orcid.org/0000-0001-6335-3194
https://doi.org/10.3390/membranes11040260
https://doi.org/10.3390/membranes11040260
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/membranes11040260
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/2077-0375/11/4/260?type=check_update&version=1


Membranes 2021, 11, 260 2 of 13

However, composite ionomers suffer from a reduced conductivity due to the presence
of a non-conducting second phase; this obstacle can be overcome using an intrinsically ion
conducting inorganic–organic network [15,23]. Inhomogeneities that arise from the low
affinity between the two phases also affect the performances of the material, leading to
mechanical degradation.

The sol–gel method is a versatile technique to produce hybrid materials and appears
to be the technique of choice for the synthesis of composite membranes [24–27]. One of the
strong points of the sol–gel method is its flexibility that allows the use of a large range of
precursors, such as inorganic molecules (alkoxides) or hybrid molecules (ormosils). The
latter can be functionalized in various ways, for example, with ionic groups. Furthermore,
the second phase preparation via the sol–gel method can be modulated with the aim of
obtaining materials with different morphologies, for example, by applying the sol–gel
technique in-situ to prepare the silica network in the presence of the polymer or ex-situ to
introduce a preformed network in the matrix.

In this study, we choose polysulfone (PSU) functionalized with trimethylamine (TMA)
as an ionomer considering its very good miscibility properties and its ability to form
well-defined hydrophilic and hydrophobic domains [28]. As a second phase, we selected
a hybrid silica network bearing ionic groups realized with a single precursor, such as N-
trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMSP) or by mixing two pre-
cursors such as TMSP and 3-(2-aminoethylamino)propyldimethoxy-methylsilane (AEAPS).
Two sol–gel approaches were used: in situ and ex situ. The novelty of this synthetic
approach is the formation of an organosilica network with an elongated or globular shape
and containing ionic groups that can contribute to the ionic conductivity. The nanocompos-
ites were analysed in terms of hydration, thermal stability, mechanical properties, ionic
conductivity and degradation in alkaline conditions.

2. Experimental
2.1. Materials

Polysulfone (PSU, MW = 55,500 g/mol) was purchased from Solvay , Brussels, Bel-
gium, and N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride from Gelest
Frankfurt, Germany (50% in methanol, TMSP). 3-(2-aminoethylamino)propyldimethoxy-
methylsilane (≥95%, AEAPS), trimethylamine (TMA, 4.2 M in ethanol) and all other
chemicals were used as received from Sigma Aldrich St. Louis, MO, USA.

2.2. Synthesis of PSU-TMA

PSU-TMA was synthesized by quaternization of chloromethylated PSU (CMPSU) as
described in Refs. [29,30].

1H NMR (CDCl3: PSU-CH2-Cl): δ = 1.7 (CH3-PSU, 6H), δ = 4.5 (PSU-CH2Cl, 2H),
δ = 7.0–8.2 (PSU aromatic region). At δ = 7.9, hydrogens in ortho to the sulfone group
were observed (4H). The degree of chloromethylation (DCM) was obtained by the ratio
between the areas of hydrogens at 7.9 ppm, unchanged during the reaction, and hydrogens
at 4.5 ppm.

Briefly, CMPSU with degree of chloromethylation (DCM) = 0.8 was converted into a
trimethylammonium salt via Menshutkin reaction using a ratio CMPSU:TMA of 1:2. The
DMSO solution was stirred for 3 days at 70 ◦C and then heated under vacuum for 3 h at
85 ◦C to eliminate the excess of TMA. The final solution of PSU-TMA in DMSO (0.05 M)
was directly used for the other reactions. A small amount was dried and analyzed by 1H
NMR using DMSO-d6 as solvent. The ion exchange capacity (IEC) was measured by Mohr
titration [31] and confirmed by NMR: IEC = 1.19 meq/g.

1H NMR (DMSO-d6: PSU-CH2-N(CH3)3
+Cl-): δ = 1.6 (CH3-PSU, 6H), δ = 3.1 (N(CH3)3,

9H), δ = 4.6 (PSU-CH2-N(CH3)3
+, 2H), δ = 6.75–8.25 (PSU aromatic region). The de-

gree of amination (DAM) was measured by comparison between of the area of PSU-
CH2-NR3

+ groups and PSU methyl groups and was DAM = 0.58, corresponding to an
IEC = 1.19 meq/g [32].
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The DAM indicates an incomplete amination reaction with about 75% conversion rate,
possibly due to second-order kinetics [5].

2.3. Composite Membranes
2.3.1. Route 1. In Situ Sol–Gel (Synthesis of PSU-TMA/TMSP)

The sol–gel reaction was carried out in acid media, carefully adding, under stirring,
0.8 mL of 2 M HCl (1.6 × 10−3 mol) to 8 mL of PSU-TMA solution (0.05 M in DMSO,
4.0 × 10−4 mol) at 50–60 ◦C. Then, TMSP was added (0.13 mL, 2.4 × 10−4 mol) and
the solution stirred for 1h at 50 ◦C. No precipitation was observed. The solution was
transferred into a Petri dish and heated at 90 ◦C for 12 h in an oven. The molar ratio
PSU-TMA:HCl:TMSP was 1:4:0.6.

2.3.2. Route 2. Ex Situ Sol–Gel (Synthesis of PSU-TMA/TMSP-AEAPS)

Formation of the silica network. AEAPS (0.14 mL, 6.0 × 10−4 mol) was added to
TMSP (1 mL, 1.8 × 10−3 mol) at RT and the solution was stirred for about 20 min. The ratio
TMSP:AEAPS was 3:1. A total of 1.35 mL of 2 M HCl (2.7 × 10−3 mol) was then added
and the pale-yellow solution heated at reflux for 24 h. After this time, the solvent was
evaporated and the solid dissolved in 3.5 mL of DMSO.

Formation of the composite membrane. A quantity of 0.12 mL of the previous solution,
containing 6.0 × 10−5 mol of TMSP and 2.0 × 10−5 mol of AEAPS was added to 8 mL of
PSU-TMA solution (0.05 M in DMSO, 4.0 × 10−4 mol) and heated at 60 ◦C for 30 min. The
transparent and uniform solution was transferred into a Petri dish and heated at 90 ◦C for
12 h in an oven. The molar ratio PSU-TMA:TMSP:AEAPS was 1:0.15:0.05.

2.4. Characterization
2.4.1. Ion Exchange Capacity (IEC)

After the membrane formation, the samples were intensively washed in water at 40 ◦C
to remove possibly unreacted TMSP. The IEC was measured by Mohr titration as described
in [32]. For the Mohr titration, membranes in chloride form were obtained by ion exchange
in 1 M NaCl solution during 24 h. The membranes were then washed carefully with water
to remove any excess NaCl. The dry membrane (after 48 h over P2O5) was then weighed
and the Cl− ions contained in the membranes were exchanged with SO4

2− by immersion
in 1 M Na2SO4 solution during 24 h.

2.4.2. NMR and FTIR Spectroscopies
1H NMR spectra were collected with a Bruker Avance 400 spectrometer (Billerica,

Massachusetts, US) operating at 400.13 MHz using DMSO-d6 or CDCl3 as deuterated
solvents. Chemical shifts (ppm) were referenced to tetramethylsilane (TMS).

FTIR spectra were recorded between 4000 and 450 cm−1 using a Perkin Elmer Spec-
trum 2 IR spectrometer (Waltham, Massachusetts, United States) equipped with an ATR
crystal diamond module. The membrane in Cl form was directly analysed by squeezing it
on the diamond window at room temperature and humidity.

2.4.3. Thermogravimetric Analysis (TGA)

High-resolution TGA was performed using a TA Q500 apparatus with Pt sample
holders. The experiments were made under air flux between 30 and 700 ◦C. The maximum
heating rate was 3 K/min.

2.4.4. Tensile Stress–Strain Measurements

The mechanical analysis was made on Cl form samples in an Adamel Lhomargy
TESTOMETRIC M250-2.5CT testing machine (Testometric, Rochdale, UK) at room temper-
ature and ambient humidity ((50 ± 10)% RH). The constant traction rate was 5 mm/min.
Two samples of 5 mm width and 25 mm length were cut in central parts of the membranes
in order to remove inhomogeneities or defects at the edges.
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2.4.5. Ion Conductivity

The membranes in Cl form or in OH form were obtained by treatment in 2 M NaCl
or 2 M NaOH solution during 24 h at room temperature, then washed for 24 h in distilled
water under nitrogen in order to limit, as much as possible, the formation of HCO3

− ions
by reaction with atmospheric CO2. [33] The instrument employed was a VSP-300 (Biologic
science instruments, Biologic, Seyssinet-Pariset, FRANCE) in PEIS mode (Potentiostatic
Electrochemical Impedance Spectroscopy). The analysis was performed between 1 Hz and
6 MHz with a signal amplitude of 20 mV inside a hermetically closed Swagelok cell with
stainless steel electrodes. The resistance of the membranes at 25, 45, 60 and 80 ◦C was
obtained from a Nyquist plot by non-linear least-square fitting using a Randles equivalent
circuit consisting of a series arrangement of a resistance and a resistance-constant phase
element in parallel. The ionic conductivity was calculated using the resistance R, the
membrane thickness d, typically 50–70 µm, and the electrode area A = 0.264 cm2:

σ =
d

A × R
(1)

2.4.6. Water Uptake

Before the measurement, the samples were intensively washed in water at 40 ◦C
to remove possibly unreacted TMSP. The membranes in Cl- form were dried over P2O5
during 48 h and the mass of the dry samples was measured (mdry). The samples were then
hydrated in deionized water during 48 h and the mass of fully humidified membranes was
obtained (mwet). The water uptake (in %) was calculated from the equation:

WU = 100 ×
mwet − mdry

mdry
(2)

2.4.7. Stability Tests

Membrane samples were immersed under nitrogen in 1 M KOH solution at 60 ◦C.
After 24 or 48 h, they were washed many times with ultrapure water to remove the excess
KOH. The membranes were then treated with 1M NaCl for 24 h to measure the IEC by Mohr
titration and the ionic conductivity. FTIR spectra and TGA analysis were also recorded
after the degradation.

3. Results and Discussion

Figure 1 shows the preparation routes for the two composites. Both sol–gel syntheses
were performed in acidic conditions, where the hydrolysis reaction is favoured, to obtain
chain-like structures [34]. Indeed, the introduction of TSMP alone gives more extended
structures, whereas a globular morphology is experienced after the addition of AEASP.

In the in-situ route, only a part of TMSP reacted, as observed by titration (see below).
A full reaction could not be achieved. The reactivity of organically modified alkoxides is
related to the steric hindrance of the organic substituent groups; the bulky propylammo-
nium moiety most likely decreases the rate of hydrolysis. Furthermore, the permanent
positive charge of TMSP can interact with the oxygens of the alkoxide groups stabilizing
the precursor. For these reasons, the amount of inorganic network former was significantly
reduced in the ex situ route and AEAPS was used to facilitate the network formation.

The IEC were: PSU-TMA 1.19 meq/g; PSU-TMA/TMSP 1.35 meq/g; PSU-TMA/TMSP
+AEAPS 1.42 meq/g. The following calculations are based on the equivalent mass of pris-
tine PSU-TMA and the molar mass of TMSP. Given the fact that TMSP contains one
ammonium group per molecule, the IEC measured for PSU-TMA/TMSP is consistent
with a molar ratio of extra-ammonium groups deriving from TMSP of 0.2, less than the
initial ratio of 0.6, indicating a low reactivity and a loss of TMSP during washing. For PSU-
TMA/TMSP + AEASP, the IEC is consistent with the initial ratio of reactants, indicating
that the reaction is complete. The water uptake is much higher for the hybrid network
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made from TMSP alone (WU (25 ◦C) = 48%, WU (60 ◦C) = 77%) than for TMSP + AEASP
(WU (25 ◦C) = 9%, WU (60 ◦C) = 18%), showing a much higher hydrophilicity of the former.
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Figure 1. Synthesis routes for hybrid membranes by (a) in-situ and (b) ex-situ sol–gel technique.

Figure 2 shows the dependence of the IEC on the time of alkaline treatment. The IEC
decreases due to the loss of some quaternary ammonium groups. The Hofmann elimination
reaction is not observed here, due to the absence of a hydrogen atom in β-position to the
quaternary ammonium group. The remaining IEC after 48 h of alkaline degradation is 69%
of the initial value for PSU-TMA/TMSP. The membrane containing AEAPS might present
a slightly enhanced alkaline stability. The titration of PSU-TMA becomes impossible after
48 h due to brittleness of the membrane showing a strong degradation of the polymer. The
increased brittleness indicates a backbone degradation, as expected for polymers containing
aromatic ether bonds. The most important function of the hybrid network seems to prevent
the brittleness by reduction of chain scissions. This improvement might be attributed either
to preferential interactions and/or the reaction of OH− with the hybrid network, which
itself contains ammonium groups, or to interactions between the organosilica part and the
polymer.
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Figure 3 shows typical tensile stress–strain curves recorded for membranes with TMSP
and with TMSP and AEASP. The corresponding mechanical properties are reported in
Table 1.
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Table 1. Mechanical properties of membranes in Cl form at ambient humidity and temperature.

Membrane Young’s Modulus
(MPa)

Tensile Strength
(MPa)

Elongation at Break
(%)

PSU-TMA 1440 ± 10 44 ± 1 8 ± 1

PSU-TMA/TMSPa 1045 ± 13 29.5 ± 0.3 28 ± 17 *
PSU-

TMA/TMSP+AEAPSb 1562 ± 32 45 ± 3 4.8 ± 0.4

* in the case of the dotted black curve, the sample broke slowly from one side.

The PSU-TMA/TMSP membrane presents a good combination of relatively high
stiffness (Young modulus > 1 GPa) and strength (~30 MPa) and some ductility (elongation
at break > 15%). Stiffness and strength are below pristine PSU-TMA, but the ductility is
much improved, corresponding to a higher water uptake that reduces the Van der Waals
interactions between chains [30]. One can immediately observe, in Figure 3, the strong
variation of the mechanical behaviour after the addition of AEAPS: the membrane becomes
distinctly stiffer (Young modulus > 1.5 GPa) and stronger (~45 MPa), but the ionomer is
more brittle with an elongation at break below 10%. One can attribute these changes to
the particular morphology of the hybrid silica part (Figure 1): schematically, the elongated
nature of TMSP probably allows gliding of the macromolecular chains, reducing stiffness
and enhancing ductility, whereas the globular nature of TMSP + AEASP impedes chain
movements, enhancing stiffness but reducing ductility.

The thermogravimetric curves of the membranes are quite similar (Figure 4). The
initial mass loss below 100 ◦C is due to the removal of water. In the case of PSU-TMA/TMSP,
the water loss is much lower after the alkaline treatment, in accordance with a loss of
hydrophilic ammonium groups. After the addition of AEAPS, the water loss is smaller,
because the hydrophilicity of the membrane decreases significantly, in accordance with
the water uptake data, but the alkaline degradation does not reduce the water loss to a
considerable extent, indicating a better stability of the hydrophilic ammonium groups.
The double peak around 200 ◦C is attributable to the quaternary ammonium groups of
PSU-TMA and the supplementary ammonium and amine groups of TMSP and AEAPS.
After alkaline degradation, the second peak in the derivative curve is much smaller or
nearly disappears for PSU-TMA/TMSP. It can, therefore, be attributed to the ammonium
groups of the TMSP part, because the residue at 700 ◦C, related to SiO2, is nearly zero after
the alkaline treatment (see below). This finding is in accordance with a dissolution of the
hybrid network. With TMSP + AEASP, the SiO2 residue remains stable after the alkaline
treatment, indicating that AEASP is able to impede the dissolution of the hybrid silica
network.

A small shoulder at around 400 ◦C before the main peak can be attributed to the loss
of structural methyl groups of PSU and some remaining non-reacted chloromethyl groups.
After the alkaline degradation, this peak is enhanced and shifted to 380 ◦C; this evolution
might be attributed to the formation of hydroxymethyl groups.

The main decomposition peak slightly below 450 ◦C is related to the PSU main chain
decomposition [35]. This temperature of decomposition is consistent with previous reports
on PSU-based ionomers, but the addition of TMSP slightly increases the thermal stability
(445 ◦C). A slightly lower decomposition temperature is observed after the addition of
AEAPS (440 ◦C). After the alkaline treatment, the decomposition temperature is lower for
both membranes, 430 ◦C for PSU-TMA/TMSP and 435 ◦C with AEAPS. This reduction
can be attributed to the hydrolysis of ether linkages in the PSU backbone that reduces
the average macromolecular chain length and the related thermal stability. One might
conclude that the addition of AEAPS reduces the alkaline cleavage of ether bonds in PSU.
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The remaining mass at the end of the experiment, at 700 ◦C, can be attributed to
thermally formed silicon dioxide. For PSU-TMA/TMSP, the amount (about 7.5 mass %)
is in good agreement with the equivalent mass of the ionomer (M = 740 g/eq) and the
molar mass of SiO2, taking the nominal ratio into account. After the alkaline treatment,
this amount is nearly zero, indicating that the hybrid network has been dissolved in the
alkaline solution. In the case of PSU-TMA/TMSP+AEAPS, the amount of SiO2 is lower
(about 3 mass %), in good agreement with the effective ratio, but is nearly stable after the
alkaline treatment, indicating that AEAPS stabilizes the hybrid network.

Figure 5a,b show the FTIR spectra before (black curves) and after the alkaline treatment
(red curves). The main PSU-TMA absorptions remain unchanged before and after the aging.
The peak at 2970 cm−1 can be attributed to the CH3 groups of quaternary ammonium, the
PSU backbone and the hybrid silica network. Bands around 1580 and 1490 cm−1 are due
to the skeletal vibration of aromatic hydrocarbons. The characteristic absorption bands at
1325 and 1150 cm−1 are due to the asymmetric and symmetric stretching vibration of S-O
bonds of PSU and the peak at 1240 cm−1 is assigned to the antisymmetric vibration of the
ether linkage. Absorptions of the silica network occur mainly in the 1250–700 cm−1 region,
where peaks at high frequency at 1200–1000 cm−1 are related to asymmetric transversal
and longitudinal stretching of Si-O-Si bonds, while signals at 1000–950 cm−1 are ascribed
to the Si-O in-plane stretching vibrations of Si-OH groups. Bands around 830 and 800 cm−1

are due to the Si-C stretching and to the symmetric mode of Si-O-Si, respectively.
In both samples, one can notice a reduction in the peak related to hydroxide groups

around 3400 cm−1, suggesting a decrease in the hydrophilicity due to the loss of some
ammonium groups, especially in the case of PSU-TMA/TMSP (Figure 5a). For this sample,
one notices an intensity reduction after alkaline treatment of peaks below 1290 cm−1, related
to the hybrid silica network, including Si-bonded alkyl group C-H bending at 1290 cm−1,
Si-O-Si asymmetric vibration at 1095 cm−1, Si-OH at 1010 cm−1, Si-O at 910 cm−1, Si-C
stretching at 835 cm−1, Si-O-Si symmetric stretching at 690 cm−1, and Si-O rocking mode
or Si-O stretching of network defects at 550 cm−1 [36]. This intensity reduction is consistent
with the absence of SiO2 at the end of the TGA experiment at 700 ◦C, indicating that the
sol–gel part was dissolved in KOH. In the sample with TMSP + AEASP, the intensity
reduction is not observed, which is in agreement with TGA experiments.
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The higher conductivity of the OH form is consistent with the higher mobility of
hydroxide ions (Table 2). The relation between ionic conductivity and ion mobility in
polymers was studied by us [28] and others [37]. However, the relatively low conductivity
of the OH form after 24 h washing in water might be attributed to carbonatation, although
the solution was kept under nitrogen. In fact, after a short wash in water, the conductivity
is higher, although an effect of some remaining KOH cannot be excluded. One can notice
that the reported thicknesses reflect the different water uptake of the various membranes,
especially the higher hydration of OH form membranes and the reduced hydration after the
degradation treatment, due to loss of hydrophilic groups. The activation energy determined
from the temperature dependence of the ionic conductivity amounts to 0.14 eV for the
OH form, and an average of 0.18 eV for the Cl form of PSU-TMA/TMSP and 0.25 eV
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for PSU-TMA/TMSP+AEAPS. The slightly lower value for the OH form is related to the
Grotthuss mechanism that is possible for hydroxide ion migration. The higher value for
PSU-TMA/TMSP+AEAPS is attributable to the more condensed hybrid silica phase.

Table 2. Ionic conductivity of membranes.

Conductivity
mS/cm

PSU-TMA/TMSP PSU-TMA/TMSP+AEAPS

T/◦C OH− form
d = 63 µm

OH− form *
d = 66 µm

Cl− form
d = 58 µm

Cl− form
(after 24 h in KOH at 60 ◦C)

d = 56 µm
Cl− form
d = 56 µm

Cl− form
(after 24 h in KOH at 60 ◦C)

d = 50 µm

25 2.4 6.1 1.3 0.6 0.8 0.6

45 3.1 8.4 1.9 1.0 1.4 1.0

60 4.0 12.5 2.8 1.5 2.4 1.7

80 5.8 17.9 3.9 1.6 3.4 -

* after short wash in water.

4. Conclusions

Anion exchange membranes with a semi-interpenetrating network were made from
poly(sulfone trimethylammonium) chloride with a hybrid silica network synthesised from
precursors containing quaternary ammonium groups. The in situ sol–gel route used a single
precursor, N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMSP), whereas,
in the ex situ route, two precursors, (TMSP) and 3-(2-aminoethylamino)propyldimethoxy-
methylsilane (AEAPS), were mixed.

The in-situ prepared nanocomposite showed a better ductility, probably due a superior
homogeneity, whereas the ex-situ samples have a high stiffness and strength. The ionic
conductivity of the in-situ nanocomposite was higher than that of the ex-situ sample; the
activation energy of ion conduction was in agreement with the migration mechanism of Cl
and OH ions.

The degradation in alkaline solution, studied by various experimental methods, in-
cluding IEC and conductivity measurements, thermogravimetry and FTIR spectroscopy,
showed the dissolution of the hybrid silica network when only one precursor was used,
whereas the TMSP + AEASP samples present a stable network. Both nanocomposites have
an improved alkaline stability in comparison with PSU-TMA.
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