
membranes

Communication

Effect of Initial Water Flux on the Performance of Anaerobic
Membrane Bioreactor: Constant Flux Mode versus Varying
Flux Mode

Xiawen Yi, Meng Zhang, Weilong Song and Xinhua Wang *

����������
�������

Citation: Yi, X.; Zhang, M.; Song, W.;

Wang, X. Effect of Initial Water Flux

on the Performance of Anaerobic

Membrane Bioreactor: Constant Flux

Mode versus Varying Flux Mode.

Membranes 2021, 11, 203. https://

doi.org/10.3390/membranes11030203

Academic Editor: Anja Drews

Received: 3 February 2021

Accepted: 9 March 2021

Published: 13 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan
University, Wuxi 214122, China; yixiawen_jndx@163.com (X.Y.); AmandaZhangmeng@163.com (M.Z.);
swl@jiangnan.edu.cn (W.S.)
* Correspondence: xhwang@jiangnan.edu.cn

Abstract: Anaerobic membrane bioreactors (AnMBRs) have aroused growing interest in wastewater
treatment and energy recovery. However, serious membrane fouling remains a critical hindrance to
AnMBRs. Here, a novel membrane fouling mitigation via optimizing initial water flux is proposed,
and its feasibility was evaluated by comparing the membrane performance in AnMBRs between
constant flux and varying flux modes. Results indicated that, compared with the constant flux mode,
varying flux mode significantly prolonged the membrane operating time by mitigating membrane
fouling. Through the analyses of fouled membranes under two operating modes, the mechanism
of membrane fouling mitigation was revealed as follows: A low water flux was applied in stage 1
which slowed down the interaction between foulants and membrane surface, especially reduced
the deposition of proteins on the membrane surface and formed a thin and loose fouling layer.
Correspondingly, the interaction between foulants was weakened in the following stage 2 with a high
water flux and, subsequently, the foulants absorbed on the membrane surface was further reduced.
In addition, flux operating mode had no impact on the contaminant removal in an AnMBR. This
study provides a new way of improving membrane performance in AnMBRs via a varying flux
operating mode.

Keywords: anaerobic membrane bioreactor; initial flux; constant flux; varying flux; membrane
fouling; wastewater treatment

1. Introduction

Anaerobic membrane bioreactors (AnMBRs) combining anaerobic treatment processes
and membrane technology have aroused growing interests in wastewater treatment due
to their high contaminant removal, low energy demand, energy recovery, and small foot-
print [1–7]. AnMBRs have been successfully developed for treating both high and low
strength wastewaters from industries and municipalities, respectively. However, serious
membrane fouling remains a critical hindrance to AnMBRs, which results in a decline of
water flux, a rise of transmembrane pressure (TMP), an increased cleaning frequency, and
a shortened membrane life [8–16].

Previous studies have devoted much effort to pursue effective membrane fouling
control in AnMBRs. During the last decade, emerging fouling control methods, such as
in situ chemical cleaning [17], mechanically assisted aeration scouring [18], electrically
assisted fouling mitigation [19], enzymatic and biological degradation of foulants [20], and
membrane modifications [21] have been successfully developed in AnMBRs. However,
aeration normally consumes much more energy to achieve efficient membrane fouling
control; chemical cleaning effect highly depends on the chemicals-foulants interaction;
moreover, chemical reagent might accelerate membrane aging and cause microorganism
inactivation in bioreactors, and there are still many limits and unknown mechanisms in
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biological control methods. Fouling mitigation via electric fields has shown great potential
for improving membrane permeability very recently while it is still not practically feasible
by so far, mainly due to the complex assembly process and consumption of electrodes [22].
Given the above, there is still an urgent need to develop effective methods for membrane
fouling control in AnMBRs.

Membrane fouling in AnMBRs can be attributed to cake layer deposition, which
is usually the predominant fouling component, and membrane pore clogging [23]. In
another words, membrane fouling consists of the undesirable accumulation and deposition
of solutes, colloids and microorganisms, and cell debris within and on membranes [24].
Currently, a three-stage fouling process at the constant flux operating mode has been widely
recognized including an initial short-term rapid rise in TMP (stage 1), a long-term slight
rise in TMP (stage 2), and a TMP jump (stage 3) [25]. The membrane fouling in stage 1 can
be attributed to the foulants-membrane surface interaction, while the foulants-foulants
interaction has great effects on membrane fouling formation in stage 2, lastly sludge
cake layer maturation and compression took place on membrane in stage 3. It has been
demonstrated that the initial interaction between foulants and membrane in stage 1 has the
greatest impact on the entire membrane fouling process [26]. In other words, weakening
the interaction between foulants and membrane, i.e., reducing the membrane fouling in
stage 1 may have a positive effect on the entire membrane fouling process. However, a
high initial flux could intensify the interaction between foulants and membrane and further
aggravated membrane fouling in stage 1 [27]. Therefore, reducing the initial water flux
during the operation of AnMBR might be an effective method to control membrane fouling.

In view of above, two flux operating modes, constant initial flux mode with a high
initial flux and varying initial flux mode with a low initial flux, were applied in AnMBR to
investigate the effect of initial flux on membrane fouling development in this study. As of
our best knowledge, study on controlling fouling by optimizing initial water flux has never
been addressed before. Overall, the major objective of this study is to evaluate the impact
of varying initial water flux on membrane fouling in AnMBR and to explore the feasibility
of applying a method of optimizing initial water flux for membrane fouling control. The
results shown in current study would be good for better understanding the relationship
between initial flux variation and membrane fouling in AnMBR and further developing
effective fouling control strategy for AnMBR.

2. Materials and Methods
2.1. Experimental Setup

The AnMBR used in this study had an effective volume of 7.6 L, which is shown
in Figure 1. A flat-sheet microfiltration (MF) membrane module (provided by Tongqin
Inc., Shanghai, China) was submerged in the AnMBR, which was made of polyvinylidene
fluoride (PVDF) and had an effective area of 0.035 m2. Two identical AnMBRs were
operated in parallel at the same operating conditions except for the initial water flux for
evaluating the impacts of flux variations on the MF membrane performance. The MF
membrane flux value was controlled at 6.00 ± 0.36 LMH in the control reactor (named
as the constant flux mode), while the other one was controlled at 2.15 ± 0.16 LMH in
the first five days (d) of the operation, and then increasing the MF membrane flux value
to 6.20 ± 0.31 LMH (named as the varying flux mode). The TMP of the MF membrane
was measured via a mercury pressure gauge. The aeration via recirculating part of the
produced biogas was applied for strengthening the mixing of the anaerobic biomass in the
AnMBR, and the aeration rate was 2 L/min.
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Figure 1. Schematic diagram of the anaerobic membrane bioreactor (AnMBR) system.

The synthetic alcohol wastewater was continuously pumped into both AnMBRs. Its
concentrations of ammonia nitrogen (NH4

+-N), chemical oxygen demand (COD), and total
phosphorus (TP) were 89.21 ± 5.10, 3284 ± 130, and 18.00 ± 1.49 mg/L, respectively. The
seed sludge collecting from Wuxi Xincheng Wastewater Treatment Plant was added into
both AnMBRs after cultivating in two fermentation flasks for approximately 50 days at
the temperature of 35 ± 1 ◦C. The initial sludge concentrations were 6.15 and 4.95 g/L for
the mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids
(MLVSS), respectively, in both AnMBRs. Throughout the operation, the two reactors were
operated at the temperature of 35 ± 1◦C. The SRT was set as 100 days for both reactors.

2.2. Analytical Methods

Measurements of NH4
+-N, COD, and TP were determined in the influent, effluent

and sludge supernatant according to the Standard method [28]. A field emission scan-
ning electron microscope (FESEM, S4800, Hitachi, Japan) and an energy diffusive X-ray
(EDX, Quantax, Bruker, Germany) were applied for characterizing the morphology and
element compositions of the MF membranes, respectively. The distributions of biofoulants,
including microorganisms, proteins, α-D-glucopyranose and β-D-glucopyranose polysac-
charides on the MF membrane were analyzed via a confocal laser scanning microscope
(CLSM, LSM 710, Carl Zeiss, Germany). Before observing by the CLSM, these biofoulants
were firstly stained by SYTOTM 63, Fluorescein isothiocyanate (FITC), Concanavalin A
(ConA) and Calcofluor white (CW), respectively. The specific information on the CLSM
analyses can be found in previous literature [29]. The ZEN software was used to obtain
the three-dimensional CLSM images, and the Auto PHLIP-ML software (version 1.0) was
applied for calculating the biovolume of the biofoulants.

3. Results and Discussion
3.1. Performances at Different Operating Modes

The treatment performances under two operating modes were shown in Table 1.
Regardless of the initial water flux, both AnMBRs had a high COD removal efficiency of
about 94.0% for both operating modes. The high COD removal rate was mainly owing to
the rejection of MF membrane and the bio-degradation of microorganisms. Specifically, the
bio-degradation process made the predominant contribution to COD removal (indicated
by the large reduction of COD in supernatant to that in the influent). However, the
removals of NH4

+-N and TP were not as good as COD in both operating modes. It might
be owing to the anaerobic condition and low membrane retention effect in the AnMBR.
In addition, the similar COD and NH4

+-N treatment performance were achieved under
two operating modes. However, the TP concentration in the effluent of the varying flux
operating mode was higher than that of the constant flux operating mode. This may be
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due to the accumulation of phosphorus in the reactor and the gradual decrease in the use
of phosphorus by microorganisms during long-term operation.

Table 1. COD, TP, and NH4
+-N concentrations in MF permeates and the removal performances at

different operating modes.

Items Performance Constant Flux Mode Varying Flux Mode

COD
MF permeate concentration (mg/L) 193.55 ± 19.35 196.64 ± 16.26

Removal rate (%) 94.05 ± 0.95 94.06 ± 2.66

NH4
+-N

MF permeate concentration (mg/L) 67.35 ± 1.53 62.10 ± 4.58
Removal rate (%) 25.62 ± 6.70 29.77 ± 3.81

TP
MF permeate concentration (mg/L) 6.25 ± 1.48 14.18 ± 1.78

Removal rate (%) 4.38 ± 1.93 18.36 ± 1.13

3.2. The Development of TMP and Cumulative Water Production at Different Operating Modes

Variation of TMP and the cumulate production capacity in both AnMBRs are illus-
trated in Figure 2. As shown in Figure 2a, the variation of TMP in the AnMBR with the
constant flux mode consisted of three main stages, which was consistent with the three
stages fouling theory. In the first stage (days 1–2), an initial short-term rapid rise in TMP
from 1.00 kPa to 3.25 kPa was observed. After that, the TMP proceeded to a long-term
slow rise (days 3–24) from 3.25 kPa to 11.18 kPa. The last stage (days 25–31) had a dramatic
TMP jump. Based on previous reports [23,30], the initial TMP rise in stage 1 was attributed
to the deposition of foulants on the MF membrane surface, which was dominated by the
interaction between foulants and the MF membrane surface; after that, the TMP rise slows
down in stage 2 because the governing force has turned to the interaction between foulants
and foulants when a fouling layer was formed on the membrane surface; in stage 3, the
TMP jump was mainly owing to the formation of a compacted cake layer on the membrane
surface. However, the variation of TMP in the AnMBR under the varying flux mode only
presented the last two stages, i.e., a long-term slow rise stage and a sudden jump stage
(shown in Figure 2b). According to the three stages fouling theory, this phenomenon might
be due to the lower initial water flux of MF membrane which might reduce the deposition
of foulants on the membrane surface in stage 1 and, thus, alleviating membrane fouling.
Additionally, it was calculated that the average TMP increasing rates of constant flux mode
and varying flux mode were 0.88 and 0.34 kPa/d, respectively, which means that the
operation time under the varying flux mode was much longer than that of the constant
flux mode. Therefore, there was much more cumulative water permeating volume in the
varying flux mode in spite of the low initial membrane flux. Thus, it can be speculated that
reducing the initial flux was a feasible way to improve the performance of AnMBRs.
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3.3. Fouling Characteristics at Different Operating Modes

At the end of experiments, the fouled MF membranes from both AnMBRs under
different operating modes were collected for fouling characteristics analyses. As shown
in Figure 3a,b, all fouled MF membranes were covered with a fouling layer. Moreover,
crystals were also observed on the surface of fouled MF membranes. It can be observed
from Figure 3c,d, there was no significant differences between the fouled MF membranes
in term of element composition. The presence of C, N, Ca, Mg, and P indicated that there
were both biofouling and inorganic scaling on the fouled MF membranes. In addition, the
signal of C and N peak was much larger than those of the inorganic elements, such as
Ca, Mg, and P, implying that biofouling had a dominant role in membrane fouling of the
AnMBR. And the higher C peak of constant flux operating mode might be due to the fact
that there were more biofoulants on the membrane surface of constant flux operating mode
than varying flux operating mode.

Based on the major contribution of biofouling to the membrane fouling in the AnMBR,
the biofoulants consisting of microorganisms, polysaccharides and proteins on the MF
membranes under different operating modes were further analyzed by the CLSM cou-
pled with multiple fluorescence labeling. The distributions of biofoulants are shown in
Figure 4 and the color of red, green, cyan and blue indicated microorganisms, proteins,
α-D-glucopyranose, and β-D-glucopyranose polysaccharides, respectively. As shown in
Figure 4, the thickness of fouling layers formed on the membrane surface at the constant
flux and varying flux modes was 94 and 42 µm, respectively, and the area of biofoulants
was much darker at constant flux mode than that at varying flux mode. The reduced
thickness of fouling layer and the much lighter fouling area indicated that the biofouling
was mitigated in the AnMBR under the varying flux operating mode. In addition, the
biovolume of biofoulants was calculated for analyzing their constituents and contents on
the MF membrane surfaces. As shown in Table 2, compared to the constant flux mode,
there were less proteins, polysaccharides and microorganisms discovered on the surface of
membrane under the varying flux mode, especially the content of proteins which reduced
from 8.2 to 2.37 µm3/µm2. It implied that the reduction of proteins might be the main
reason for the alleviation of membrane fouling [31,32] because proteins were the most
typical foulants causing irreversible membrane fouling [33,34]. Therefore, owing to the
reduction of the deposited biofoulants and the fouling layer thickness by lowering initial
flux, MF membrane fouling in the AnMBR was effectively alleviated under the varying
flux mode and its operating time was prolonged as well.
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Table 2. Biovolume of the biofoulants on the fouled MF membranes at different operating modes
calculated by PHLIP.

Operating
Mode

Total Cells
(µm3/µm2)

Proteins
(µm3/µm2)

α-D-glucopyranose
(µm3/µm2)

β-D-glucopyranose
(µm3/µm2)

Constant flux 7.71 ± 0.40 8.20 ± 0.25 8.29 ± 0.38 7.72 ± 0.49
Varying flux 6.64 ± 0.36 2.37 ± 0.29 5.60 ± 0.28 4.26 ± 0.20
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3.4. Implications

In view of above results, the high initial water flux enhanced the deposition of foulants
on the membrane surface in Stage 1 because of the stronger driving force. Based on this
fact, we proposed that the operating performance of MF membrane can be improved via
reducing the filtration driving force in stage 1. This idea can be achieved by changing the
operating mode of the membrane flux. Specifically, the MF membrane was controlled at a
low initial flux in stage 1, subsequently restored the flux to a normal level in stage 2.

To sum up, applying the varying flux operation mode was a feasible method to
improve the operating performance of MF membrane in the AnMBR. It was owing to
a low driving force in stage 1, which reduced the interaction between pollutants and
MF membrane and, thus, mitigating the deposition of foulants on the membrane surface.
Consequently, the foulant-foulant interaction and fouling development in stage 2 were
further mitigated due to the thin and loose fouling layer formed in stage 1. As a result,
longer operating time of MF membrane and the consequent higher cumulative permeate
production can be achieved under varying flux mode.

4. Conclusions

In this study, the performances of the constant and varying flux operating mode were
investigated. Compared with the constant flux operating mode, the running time of the
varying flux operating mode was much longer. And the cumulative water production
of the varying flux operating mode was more than 300 L in 75 d, which was more than
twice of constant flux operating mode. Additionally, there were less foulants, especially
proteins, depositing on the membrane surface under the varying flux mode and the total
biovolume of the biofoulants was 19.44 ± 0.80 µm3/µm2. In summary, applying varying
flux operating mode was a feasible way to improve the operating performance of MF
membrane in AnMBR.
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