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Abstract: Electrowetting displays (EWDs) are one of the most potential electronic papers. However,
they have the problem of oil film splitting, which could lead to a low aperture ratio of EWDs. In this
paper, a driving waveform was proposed to reduce oil film splitting. The driving waveform was
composed of a rising stage and a driving stage. First, the rupture voltage of oil film was analyzed
by testing the voltage characteristic curve of EWDs. Then, a quadratic function waveform with an
initial voltage was applied at the rising stage to suppress oil film splitting. Finally, a square wave was
applied at the driving stage to maintain the aperture ratio of EWDs. The experimental results show
that the luminance was increased by 8.78% and the aperture ratio was increased by 4.47% compared
with an exponential function driving waveform.

Keywords: electrowetting displays (EWDs); driving waveform; oil film splitting; aperture ratio;
quadratic function waveform

1. Introduction

Electronic paper is a new type of reflective display device [1,2], which incorporates
electrowetting displays (EWDs) [3,4] and electrophoretic displays (EPDs) [5,6]. These have
the advantages of low power consumption, flexibility, readability in sunlight, and a wide
viewing angle [7,8]. The power consumption of EPDs is lower than that of EWDs due to
their bistable state, but their response speeds are slow, making it difficult to realize video
playback [9]. On the contrary, EWDs effectively compensate for the limitations of EPDs
in the two major performance areas of color display and video playback [10]. However,
there are still design defects in EWDs which limit development, such as a low aperture
ratio caused by oil film splitting [11]. Driving waveforms are a voltage sequence applied to
EWDs, which can control the movement of oil films [12]. Therefore, the ability to reduce
the oil film splitting in EWDs by optimizing driving waveforms is a significant one.

The aperture ratio of EWDs can reflect the degree of oil film contraction, which is
related to driving voltages [13], pixel structure [14,15], and pixel materials [16]. Among
them, the driving voltage plays a key role in the oil film contraction, and the value of the
driving voltage depends on the design of the driving waveform. A driving waveform
can be divided into a rising stage and a driving stage [17]. The design of the rising stage
plays an important role in the suppression of oil film splitting. However, the rising stage
was not designed in traditional driving waveforms, such as a pulse width modulation
(PWM) driving waveform [18], which would cause serious oil film splitting in EWDs. An
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exponential function driving waveform was proposed to suppress the oil film splitting [19],
because it can form a stable grayscale display by using this method. However, its initial
voltage during the rising stage was lower than the rupture voltage of oil film, which
prolonged the response time of EWDs. In order to solve this problem, an optimized
voltage slope waveform was proposed, and additionally, a threshold voltage was added
to the rising stage [20], so that the response time of EWDs could be effectively shortened.
Furthermore, the driving stage was used to maintain the aperture ratio of EWDs, since the
design of the driving stage plays an important role in achieving a high aperture ratio of
EWDs. An amplitude–frequency mixed modulation driving method was proposed as the
driving stage [21]; a high voltage was applied to achieve a target luminance, and the oil
film was maintained by using a low voltage. However, the change of voltage amplitude
could cause oil film oscillation, and the oil film could consequently be split [22]. So, the
oil film oscillation was a problem which needed to be considered in the driving stage. To
solve the oil film oscillation, an optimized alternating current (AC) driving waveform was
proposed [23]. The characteristics of oil film stability were analyzed, and a stable aperture
ratio could be achieved by using this method. The power consumption of EWDs was also
a focus of the driving stage design; a sawtooth wave was proposed as the driving stage
for ultra-low power consumption [24]. In addition, the model and theory of EWDs could
provide a theoretical guidance for the design of driving waveforms, such as a dynamic
electrowetting model [25,26], an oil film dynamic contraction model [27], charge trapping
theory [28], and an oil film rupture model [29].

In this paper, a driving waveform, which was based on the principle of EWDs and oil
film splitting theory, was proposed to reduce the oil film splitting. The driving waveform
was composed of a rising stage and a driving stage. The rising stage was designed by
analyzing the rupture process of oil film, and the driving stage was designed by the theory
of power consumption calculation.

2. Principles and Methods
2.1. Principle of EWDs

Pixels of EWDs are fabricated using microtechnology. A pixel of EWDs is mainly com-
posed of transparent glass, indium tin oxide (ITO) electrodes, pixel walls, conductive liquid
(NaCl solution), color oil, and a hydrophobic insulating layer (fluoropolymer) [30–32], as
shown in Figure 1. The color oil sticks to the hydrophobic insulating layer and forms a thin
film when no voltage is applied. At this point, the pixel is in an “off” state, and it displays
the color of the oil. Instead, the surface wettability of the hydrophobic insulating layer
can be changed when a certain voltage is applied to the two electrodes. Then, the color oil
contracts to a corner of the pixel. Now, the pixel is in an “on” state, and it displays the color
of a substrate. Therefore, different grayscales can be displayed by controlling driving volt-
ages [33]. In addition, the contact angle value of the oil film follows the Lippmann–Young
equation, as shown in Equation (1) [34].

cosθ = 1 − CV2

2γOW
(1)

where C is the capacitance of the pixel, V is a driving voltage applied to the pixel, and γOW
is the oil-water interfacial tension.

2.2. Oil Film Splitting

Oil film splitting describes a phenomenon in which the oil film splits into several
pieces and cannot be reorganized during the contraction process [20]. The contraction
process can be divided into an oil film rupture process and an oil film wetting process. The
oil film rupture process refers to when the oil film is ruptured when the driving voltage
reaches the rupture threshold voltage of oil film. The wetting process is when the oil film
contracts to corners of the pixel, and its contact angle reaches to the Lippmann equilibrium
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contact angle [35]. The rupture threshold voltage, Vrp, of oil film can be obtained by
Equation (2) [36].

Vrp =

√√√√π2γOW(h + εoild
εFP

)
3

ε0εoil L2 (2)

where h is the thickness of the oil film, ε0 is the dielectric constant in vacuum, and εoil , εFP
are the dielectric constant of the oil film and the hydrophobic insulating layer, respectively.
d is the thickness of the hydrophobic insulating layer, and L is the length of the pixel. It can
be seen that the rupture threshold voltage is related to oil film thickness, dielectric layer
thickness, and pixel size. The degree of oil film splitting mainly depends on the difference
value between the driving voltage and the rupture threshold voltage of oil film. The oil
film can maintain a relatively complete piece when the difference value is low. On the
contrary, the oil film could be split into multiple small oil films when the difference value
is high. Then, these small oil films could contract toward different corners in the wetting
process, which would cause a low aperture ratio.
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Figure 1. The structure of an EWD pixel. It is composed of a top glass, ITO electrodes, pixel walls,
NaCl solution, color oil, a hydrophobic insulating layer (fluoropolymer), and a bottom glass. The
color oil forms a thin film between the NaCl solution and the hydrophobic insulating layer, the pixel
is in an “off” state.

The aperture ratio of EWDs is related to the base area occupied by the oil film in a
single pixel. The value of aperture ratio, AR, can be calculated by Equation (3) [37].

AR = 1 − Soil
S0

= 1 −
sin2θ

(
1 − 3

2 cosθ0 +
1
2 cos3θ0

) 2
3

sin2θ0

(
1 − 3

2 cosθ + 1
2 cos3θ

) 2
3

(3)

where Soil is a base area of oil film in the pixel, and S0 is the area of the pixel. The base
area of split oil films is larger than that of a complete oil film, as shown in Figure 2. SA is
the base of the complete oil film; SB, SC and SD are the base areas of split oil films. In the
wetting process, the heights of the split oil films are lower than that of the complete oil film.
Therefore, the relationship of their base area is SA < SB + SC + SD. It can be concluded that
the value of Soil is increased when oil film splitting occurs, which decreases the aperture
ratio of EWDs.
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Figure 2. The situation of oil film contraction when a driving voltage is applied to a pixel. (a) A
complete oil film contracts to a corner of the pixel without splitting; SA is the base area of the oil film.
(b) The oil film was split into three pieces, and each piece contracts to different corners of the pixel;
SB, SC and SD are the base areas of the three split oil films.

2.3. Design of Driving Waveform

We proposed a new driving waveform to reduce the oil film splitting. The driving
waveform includes a rising stage and a driving stage, as shown in Figure 3. The design
of the rising stage is a quadratic function waveform with an initial voltage, which can be
expressed by Equation (4).

U1(t) =
VH − V0

T2
R

t2 + V0 (4)

where V0 is the initial voltage of the rising stage, VH is the high-level voltage of the driving
stage, TR is the rising time of the rising stage, and t is a time variable. The oil film remains
in an equilibrium state when the driving voltage does not exceed the rupture threshold
voltage of oil film. At this time, the aperture ratio of EWDs can remain unchanged, and the
response time of EWDs is prolonged. Therefore, the initial voltage of the rising stage is set
to solve this problem, which can improve the response speed of EWDs. Then, the driving
voltage is raised from the initial voltage to the high-level voltage of the driving stage in
a quadratic function waveform, because the quadratic function waveform can effectively
prevent the serious oil film splitting caused by the excessive instantaneous electric field
force. The design of the driving stage is a square wave to reduce power consumption of
EWDs. The power consumption of the driving stage can be calculated by Equation (5).

P =
KV2

H + (1 − K)V2
L

R
(5)

where K is the proportion of the high-level voltage, VH , in a cycle of the square wave,
VL is the low-level voltage of the driving stage, and R is the resistance of a single pixel.
The driving stage of traditional driving waveforms is a direct current (DC) voltage, and
its amplitude is assumed to VF. Then, Equation (5) can be used to calculate the power
consumption of traditional driving waveforms when VL = VF, K = 0. The relationship
between high and low-level voltages of the driving stage can be expressed by Equation (6).

VH + VL =
VF
2

(6)
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Figure 3. The proposed driving waveform for reducing oil film splitting. It is composed of a rising
stage and a driving stage. The rising stage is a quadratic function waveform with an initial voltage;
the driving stage is a square wave. V0 is the initial voltage of the rising stage; VL is the low-level
voltage of the driving stage. VH is the high-level voltage of the driving stage; TR is the rising time of
the rising stage. TH is the driving time of the high level voltage, and TL is the driving time of the low
level voltage.

It can be deduced that the power consumption of the proposed driving stage is lower
than that of the traditional driving waveform when K = 1

4 . Therefore, the time ratio of the
high level and low level in the driving stage can be set to TH : TL = 1 : 3. At this time, the
power consumption can be effectively reduced.

3. Experimental Results and Discussion
3.1. Experimental Platform

We developed an experimental platform to verify the effectiveness of the driving
waveform, as shown in Figure 4. The platform was composed of a driving system and a
testing system. The driving system was composed of a computer (H430, Lenovo, Beijing,
China), a function generator (AFG3022C, Tektronix, Beaverton, OR, USA), and a voltage
amplifier (ATA-2022H, Agitek, Xian, China), which was used to generate driving wave-
forms. The testing system was composed of the computer, a colorimeter (Arges-45, Admesy,
Ittervoort, The Netherlands), and a microscope (SZ680, Chongqing Optec Instrument Co.,
Ltd., Chongqing, China), which was used to record the luminance and aperture ratio data
of EWDs.

In this experiment, an EWD was used as the tested object, and the parameters of
the EWD are shown in Table 1. In the testing process, the driving waveform was edited
by Arbexpress waveform editing software (V3.4, Tektronix, Beaverton, OR, USA) in the
computer. Then, an edited driving waveform was imported into the function generator by a
universal serial bus (USB) interface, and was then amplified by the voltage amplifier. Next,
the EWD was driven by power from the voltage amplifier. The luminance and aperture
ratio data of the EWD were collected by the colorimeter and the micrometer, respectively.
Finally, the data were transmitted and recorded by the computer in real time.

3.2. Testing of the Rising Stage

The aperture ratio of the EWD driven by DC voltages was tested to analyze the rupture
threshold voltage of the oil film. The DC voltage was set to 0–30 V, and the experimental
results are shown in Figure 5. When the DC voltage was 0–19 V, the aperture ratio remained
unchanged, because the voltage had not reached the rupture threshold voltage of oil film
at this time. Next, the aperture ratio began to rise when the driving voltage was 20 V, and
then it was increased with the increase in the driving voltage. This phenomenon indicated
that the oil film was ruptured when the driving voltage reached to 20 V, and that the oil
film subsequently contracted to the corner of the pixel. Therefore, the rupture threshold
voltage of the oil film was 20 V.
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Figure 4. An experimental platform for testing the performance of the EWD. It was composed of a
computer, a function generation, a voltage amplifier, a colorimeter, a microscope, and an EWD. The
EWD was used as the tested object. The computer, the function generation, and the voltage amplifier
were used to generate driving waveforms. Then, the colorimeter was used to obtain the luminance of
the EWD, and the microscope was used to obtain the aperture ratio of the EWD.

Table 1. Parameters of the EWD used in the experiment.

Panel Size
(cm2) Oil Color Resolution Pixel Size

(µm2)
Pixel Wall

Height (µm)

Hydrophobic
Insulating
Layer (µm)

10 × 10 Magenta 320 × 240 150 × 150 18 1

In the rising stage, the influence of the initial voltage and the rising time on the oil
film splitting was analyzed. The initial voltage of the rising stage was set to 0–24 V, and
the rising time of the rising stage was set to 10–100 ms. The luminance of different initial
voltages and rising times are shown in Figure 6. It can be seen that the luminance was
below 520 when the rising time was 10–20 ms. At this time, the intensity of the electric
field applied to the EWD was increased rapidly due to the short rising time, which caused
a serious oil film splitting. When the rising time was 30–100 ms, the luminance was first
increased with the increase in the initial voltage, but it had a downward trend when
the initial voltage exceeded 20 V. This phenomenon showed that the speed of oil film
contraction could be increased with the increase in the applied electric field when the initial
voltage was lower than the rupture threshold voltage. On the contrary, the increase in the
initial voltage could lead to the increase in the oil film splitting degree when the initial
voltage exceeded the rupture threshold voltage, which could decrease the luminance of the
EWD. Therefore, the maximum luminance occurred when the initial voltage was 20 V. In
addition, the luminance could be increased with the increase in rising time when the initial
voltage was the same. It could be proven that the oil film can be effectively prevented from
splitting by applying an electric field with a long rising time. However, the response speed
of EWDs could be decreased when the rising time was long. Therefore, the rising time was
set to 100 ms, which could effectively reduce the oil film splitting, and the response time of
oil film cannot be excessively prolonged.
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Figure 6. The luminance driven by different initial voltages and rising times of the rising stage in
the proposed driving waveform. The luminance was below 520 when the rising time was 10–20 ms.
When the rising time was 30–100 ms and the initial voltage was the same, the luminance could be
increased with the increase in rising time. Additionally, the luminance was first increased with the
increase in the initial voltage, but it had a downward trend when the initial voltage exceeded 20 V.

3.3. Testing of the Driving Stage

In the driving stage, the influence of voltage amplitudes on the oil film oscillation was
analyzed. VF was set to 30 V, which was same as traditional driving waveforms. Voltage
amplitudes of the driving stage were set to 2, 4, 6, 8, and 10 V. Luminance curves driven
by different voltage amplitudes are shown in Figure 7. It can be seen that the amplitude
of luminance oscillations could be increased with the increase in the voltage amplitude.
The minimum amplitude of the luminance oscillation was 4.1 when the voltage amplitude
was 2 V, and the maximum amplitude of luminance oscillation was 25.29 when the voltage
amplitude was 10 V. The change of driving voltage could cause oil film oscillation in this
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process. In addition, the increase in voltage amplitude could increase the degree of oil
film oscillation, which could lead to the increase in luminance oscillation. At the same
time, the average luminance could be decreased with the increase in the voltage amplitude.
The maximum average luminance was 598.79 when the voltage amplitude was 2 V, and
the minimum average luminance was 544.63 when the voltage amplitude was 10 V. This
phenomenon showed that the splitting of oil film was greater when the voltage amplitude
was increased. Therefore, the voltage amplitude of the driving stage was set to 2 V to
stabilize the oil film.

Membranes 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 7. Luminance curves driven by different voltage amplitudes of the driving stage in the pro-
posed driving waveform. The amplitude of luminance oscillation could be increased with the in-
crease in voltage amplitudes. The minimum amplitude of luminance oscillation was 4.1 when the 
voltage amplitude was 2 V. In addition, the average luminance could be decreased with the in-
crease in the voltage amplitude. The maximum average luminance was 598.79 when the voltage 
amplitude was 2 V. 

3.4. Performance Comparison 
The exponential function driving waveform [19] and the linear function driving 

waveform [17] compared with the proposed driving waveform, as shown in Figure 8a. 
The luminance driven by different rising times of the exponential function driving wave-
form and the linear function driving waveform is shown in Figure 8b. It can be seen that 
the luminance curves of the exponential function driving waveform and the linear func-
tion driving waveform were positively correlated with the rising time, which had the 
same trend as the proposed driving waveform. The luminance can reach the maximum 
value at 100 ms. Therefore, rising times of the exponential function driving waveform and 
the linear function driving waveform were set to 100 ms, which was the same as the pro-
posed driving waveform. Then, voltage amplitudes of the exponential function driving 
waveform and the linear function driving waveform were both set to 30 V. The initial 
voltage of the rising stage in the proposed driving waveform was set to 20 V; the high-
level voltage and the low-level voltage in the driving stage were set to 31 V and 29 V, 
respectively. Luminance curves of different driving waveforms are shown in Figure 8c. It 
can be seen that the luminance of the proposed driving waveform increased the quickest 
at first, because its oil film ruptured speed was faster than that of other driving wave-
forms. Then, the oil film driven by the exponential function driving waveform was rup-
tured and its luminance was increased. The voltage rising rate of the exponential function 
driving waveform was higher than that of the proposed driving waveform, so the lumi-
nance increasing rate of the exponential function driving waveform can quickly exceed 
that of the proposed driving waveform. On the contrary, the rupture of oil film driven by 
the linear function driving waveform was the slowest, because it needed a long time to 
reach the rupture threshold voltage of oil film. When the luminance reached 500, the re-
sponse time of the proposed driving waveform was 94.64 ms, while the exponential func-
tion driving waveform and the linear function driving waveform were 97.37 ms and 

Figure 7. Luminance curves driven by different voltage amplitudes of the driving stage in the
proposed driving waveform. The amplitude of luminance oscillation could be increased with the
increase in voltage amplitudes. The minimum amplitude of luminance oscillation was 4.1 when the
voltage amplitude was 2 V. In addition, the average luminance could be decreased with the increase
in the voltage amplitude. The maximum average luminance was 598.79 when the voltage amplitude
was 2 V.

3.4. Performance Comparison

The exponential function driving waveform [19] and the linear function driving
waveform [17] compared with the proposed driving waveform, as shown in Figure 8a. The
luminance driven by different rising times of the exponential function driving waveform
and the linear function driving waveform is shown in Figure 8b. It can be seen that the
luminance curves of the exponential function driving waveform and the linear function
driving waveform were positively correlated with the rising time, which had the same
trend as the proposed driving waveform. The luminance can reach the maximum value at
100 ms. Therefore, rising times of the exponential function driving waveform and the linear
function driving waveform were set to 100 ms, which was the same as the proposed driving
waveform. Then, voltage amplitudes of the exponential function driving waveform and
the linear function driving waveform were both set to 30 V. The initial voltage of the rising
stage in the proposed driving waveform was set to 20 V; the high-level voltage and the
low-level voltage in the driving stage were set to 31 V and 29 V, respectively. Luminance
curves of different driving waveforms are shown in Figure 8c. It can be seen that the
luminance of the proposed driving waveform increased the quickest at first, because its oil
film ruptured speed was faster than that of other driving waveforms. Then, the oil film
driven by the exponential function driving waveform was ruptured and its luminance
was increased. The voltage rising rate of the exponential function driving waveform was
higher than that of the proposed driving waveform, so the luminance increasing rate of the
exponential function driving waveform can quickly exceed that of the proposed driving
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waveform. On the contrary, the rupture of oil film driven by the linear function driving
waveform was the slowest, because it needed a long time to reach the rupture threshold
voltage of oil film. When the luminance reached 500, the response time of the proposed
driving waveform was 94.64 ms, while the exponential function driving waveform and the
linear function driving waveform were 97.37 ms and 120.12 ms, respectively. When the
luminance exceeded 500, the luminance of the exponential function driving waveform was
increased slowly. On the contrary, the luminance of the proposed driving waveform and
the linear function driving waveform exceeded that of the exponential function driving
waveform. The luminance of the proposed driving waveform was higher than that of the
linear function driving waveform. This phenomenon showed that the proposed driving
waveform could effectively reduce the oil film splitting, while the exponential function
driving waveform and the linear function driving waveform were affected by the oil
film splitting, limiting the increase in luminance. Finally, the maximum luminance of the
proposed driving waveform was 602.44, while the maximum luminance of the exponential
function driving waveform and the linear function driving waveform were 579.97 and
553.81, respectively.
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Figure 8. (a) Different driving waveforms for performance comparison. The blue line represents the
proposed driving waveform; the red line the linear function driving waveform, and the black line
the exponential function driving waveform. (b) The luminance driven by different rising times of
the exponential function driving waveform and the linear function driving waveform. Luminance
curves of the exponential function driving waveform and the linear function driving waveform were
increased with the increase in rising time. (c) Luminance curves of different driving waveforms. The
maximum luminance of the proposed driving waveform was 602.44, while the maximum luminance
of the exponential function driving waveform and the linear function driving waveform were 579.97
and 553.81, respectively.

The driving process of different driving waveforms in a single EWD pixel was an-
alyzed, as shown in Figure 9. It can be seen that the oil film driven by the exponential
function driving waveform could split into five pieces in the rupture process. Then, the
split oil film contracted to the corner of the pixel in the wetting process, but could not be
recomposed into a complete oil film due to oil film splitting. The aperture ratio achieved
by the exponential function driving waveform was 62.33%, and the oil film driven by the
linear function driving waveform could split into three pieces in the rupture process, which
was lower than that of the exponential function driving waveform. However, there was
still an oil film which could not be recomposed. The aperture ratio achieved by the linear
function driving waveform was 65.47%. On the contrary, the splitting of oil film driven by
the proposed driving waveform was significantly reduced in the rupture process, and the
oil film could recompose into a complete oil film in the wetting process. The aperture ratio
achieved by the proposed driving waveform was 66.8%.
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function driving waveform. (b) Linear function driving waveform. (c) Proposed driving waveform.
The splitting pieces of oil film driven by the proposed driving waveform was minimum; its aperture
ratio was 66.8%. On the contrary, the splitting pieces of oil film driven by the exponential function
driving waveform was maximum; its aperture ratio was 62.33%.

4. Conclusions

In this paper, a driving waveform was proposed to reduce oil film splitting in EWDs.
The rising stage of the driving waveform was a quadratic function waveform, and the
driving stage of the driving waveform was an optimized square wave. First, the rupture
threshold voltage of oil film was obtained by testing the voltage characteristic curve of
an EWD, so oil film splitting was effectively suppressed by optimizing parameters of the
rising stage. Then, the average luminance of the EWD was increased, and the luminance
oscillation of EWDs was decreased by setting an optimal voltage amplitude of the driving
stage. Finally, the splitting pieces of oil film were decreased, and the aperture ratio of
the EWD driven by the proposed driving waveform was increased and compared to the
exponential function waveform and the linear function driving waveform. In summary,
we designed a driving waveform for increasing the aperture ratio of EWDs and reducing
oil film splitting, which provided a certain reference value for the field of EWDs.
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