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Abstract: The prediction of membrane failure in full-scale water purification plants is an impor-
tant but difficult task. Although previous studies employed accelerated laboratory-scale tests of
membrane failure, it is not possible to reproduce the complex operational conditions of full-scale
plants. Therefore, we aimed to develop prediction models of membrane failure using actual mem-
brane failure data. Because membrane filtration systems are repairable systems, nonhomogeneous
Poisson process (NHPP) models, i.e., power law and log-linear models, were employed; the model
parameters were estimated using the membrane failure data from a full-scale plant operated for
13 years. Both models were able to predict cumulative failures for forthcoming years; nonetheless,
the power law model showed higher stability and narrower confidence intervals than the log-linear
model. By integrating two membrane replacement criteria, namely deterioration of filtrate water
quality and reduction of membrane permeability, it was possible to predict the time to replace all the
membranes on a water purification plant. Finally, the NHPP models coupled with a nonparametric
bootstrap method provided a method to select membrane modules for earlier replacement than
others. Although the criteria for membrane replacement may vary among membrane filtration
plants, the NHPP models presented in this study could be applied to any other plant with membrane
failure data.

Keywords: membrane filtration; membrane failure; nonhomogeneous Poisson process; bootstrap;
module replacement

1. Introduction

Membrane filtration systems have been widely applied to water purification, includ-
ing household-level systems and wastewater reuse [1,2]. Among the various types of
membranes, hollow fiber membranes are widely used for water purification because of
larger surface areas and high filtration performances. However, the integrity loss associated
with membrane failure is of considerable concern [3,4] because it compromises the safety of
the filtrate due to contamination by pathogenic microorganisms in unfiltered bypass-flow
water [5,6].

To ensure treated water safety in membrane filtration plants, integrity testing of
membrane modules is conducted on- or offline [5,7]. There are two types of integrity
testing: direct integrity testing based on detecting the fiber failure by offline pressure-
based tests [8,9], and indirect integrity testing based on monitoring the change in filtrate
quality during operation [10,11]. Although direct integrity testing has higher sensitivity in
detecting membrane integrity loss than indirect integrity testing [5], filtration operation
must be suspended to perform direct integrity testing. Thus, there is a delay in detecting
membrane failure from the time when it actually happened, which results in the leakage of
raw water into the filtrate [12].
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Once the integrity loss is detected in a membrane module, a failed hollow fiber is
repaired by plugging with a stainless-steel pin or epoxy adhesive [5,13]. To avoid the risks
of filtrate water quality deterioration, a membrane module is replaced with a new one
when the frequency of membrane failure increases [13]. The cost of membrane replacement
is reported to be several to twenty percent of the total production costs [14,15]. Thus, it
is necessary for waterworks to predict membrane failures to ensure water safety and to
formulate their management plans [13,16], including operation and maintenance costs [17].

To estimate the time and number of membrane failures, lifetime prediction methods
based on accelerated laboratory tests are commonly applied [18–20]. Generally, accelerated
tests of membranes are performed by soaking membranes in high chemical concentrations
and/or for a longer chemical contact time than actual conditions to simulate membrane
degradation [21–23]. However, factors other than contact with cleaning chemicals also
influence the membrane lifetime, such as fouling conditions, the number of backwashings
applied, and their combination [21,24]. Thus, accelerated tests cannot predict membrane
failure with high accuracy. Another limitation of accelerated tests is that the service
time of the membrane module is not determined by the average lifetime of hollow fiber
membranes; it is commonly determined by the filtration performance examined by integrity
testing [5,13], which is influenced by a small number of membranes prone to failure. Thus,
the service time of membrane modules could be more accurately predicted by actual data
obtained from membrane filtration plants rather than by accelerated testing in a laboratory.

The failure data of actual systems are used to predict the lifetimes of systems in other
engineering fields, such as the occurrence rate of failures or the interval time between
failures [25,26]. As a system is subject to complex deterioration mechanisms, the lifetime of
a system using the inspection data is usually predicted with a statistical model that reflects
the stochastic nature of deterioration and various uncertainties [26]. Several classes of
statistical lifetime models exist, such as Weibull distribution models [27], Poisson process
models [28], log-normal distribution [29], gamma distribution [30], or combinations of
these models [31,32]. Among these models, homogeneous or nonhomogeneous Poisson
processes (HPP or NHPP, respectively) are robust and have the advantage of being able to
deal with discrete data, such as the number of membrane failures or the rate of occurrence
of membrane failures; thus, they are most frequently applied to the failure or lifetime
analysis of systems [28,33].

In membrane filtration systems, once a membrane failure is found, the failed mem-
brane fiber is plugged to reinstate the membrane module to the operational state similar
to one without membrane failure [5]. Thus, although a failed membrane fiber is not re-
pairable, a membrane module and a membrane filtration system are repairable, which
are commonly modeled by HPP or NHPP [34]. The degradation process of a membrane
fiber is a time-dependent phenomenon, impacted by the environmental conditions and
the system state, which usually change over time [26,35]. Therefore, NHPP is suitable for
lifetime prediction of membrane filtration systems, as the intensity of NHPP is described
as a function of time. NHPP is a model of HPP generalized by incorporating the change
in the intensity as a function of time [34], and commonly applied to describe the lifetime
modeling of engineering systems [26].

The rate of membrane degradation may also be influenced by the variation in mem-
brane diameter and strength caused in manufacturing processes [36]. This indicates that the
failure rates of hollow fiber membranes in membrane modules that comprise a membrane
filtration plant vary due to two reasons: manufacturing variation and statistical deviation.
Several NHPP models incorporate the heterogeneity of multiple systems. In the study
of pipeline failure modeled using power law NHPP [37], the pipeline length factor was
added to the intensity function of the model as a known scaling factor. As another example
of failure studies on wind turbines or electrical equipment in a manufacturing plant, a
trend function with additional covariates was introduced into the intensity function of
NHPP models to identify the cause of heterogeneity in the failure trend [38,39]. However,
these extensions of NHPP models cannot be applied to membrane failure processes, as the
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individual variation among membrane modules is unknown and there may be no proper
covariate for membrane systems due to the identical environmental factors and operational
and maintenance conditions.

Therefore, the application of these models to the prediction of membrane failure
in a membrane filtration plant is limited, although there are a couple of studies on the
lifetime modeling of the membrane by combining the accelerated test and a Weibull
distribution model [18] or combining the bootstrapping method and the experimental
polymer ageing model [19]. One of the reasons for this lack of studies on the prediction
of membrane failure is that most of the membrane-based water purification systems have
been installed relatively recently; thus, membrane failure data in actual plants have not yet
been systematically collected and analyzed. Thus, it would provide useful information to
verify the applicability of statistical models to the lifetime prediction of membrane modules
and membrane filtration systems.

In this study, we aimed to construct a novel method to predict membrane failures
using NHPP models. In this study, two NHPP models with different intensity functions,
namely a power law model and a log-linear model, were employed to predict membrane
failures in a water purification plant and in each membrane module. To reach a decision
on membrane module replacement, a novel strategy based on two criteria, namely the
membrane failure rate and the performance reduction due to both membrane fouling
and fiber failure, was developed. The individual property variation of modules was
incorporated into the performance reduction criterion by combining NHPP models and a
bootstrapping method.

2. Materials and Methods
2.1. Membrane Filtration Plant and Membrane Failure Detection

The membrane failure data were obtained from a small-scale membrane filtration plant
in Japan (Table 1). The plant uses a polyacrylonitrile (PAN) ultrafiltration hollow fiber mem-
brane with the molecular weight cut-off (MWCO) of 1,500,000 (Table 2). The membrane
facility comprised a total of fifteen membrane modules (five modules/train × three trains).
A train refers to a group of membrane modules that are operated in a unit; thus, they
experience the same conditions over time. The raw water was taken from a river and fed to
the system without coagulation. Physical cleaning such as air scrubbing and backwashing
was conducted every forty-five minutes. Chemical cleaning with acid and hypochlorite
was conducted every six to nine months.

Table 1. Overview of the membrane filtration plant.

Operational Parameter

Raw water Stream water
Process flow Intake→ Receiving pond→Membrane filtration→ Distribution pond

System 3 trains (5 module/train)
Capacity 350 m3/day

Filtration flux 1.28 m3/m2/day
Membrane cleaning Backwash: Once in 45 min (air 30 s + water 30 s)

Operating time Chemical cleaning: every 6 to 9 months (acid, hypochlorite)

Table 2. Specifications of the hollow fiber membrane.

Specification

Molecular weight cut off (MWCO) 150,000
Material Polyacrylonitrile (PAN)

Filtration mode Dead end mode (outside-in)
Length ca. 1900 mm

Inner/outer diameter 0.9 mm/1.25 mm
Number of membranes per module ca. 5000 fibers
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The operational age of the membranes was 12.7 years at the time the operational data
were obtained. Pressure-based integrity testing was implemented once or twice a year
when the offline chemical cleaning was conducted. Once a membrane failure was detected,
the damaged hollow fiber membranes were repaired by plugging with a stainless-steel pin.
During the course of membrane filtration operation, no membrane module was replaced.

2.2. Statistical Inference of Membrane Failure Process
2.2.1. Membrane Failure Data

The number of failed hollow fiber membranes in each module was obtained when
direct integrity testing was conducted in association with the offline chemical cleaning.
Thus, the exact date of membrane failure of each module could not be identified, but
recorded as failure events between two dates of integrity tests. Then, the yearly membrane
failure was calculated by dividing the number of failed membranes by the duration of the
two integrity tests in terms of years.

2.2.2. Statistical Models for the Membrane Failure Process

Hollow fiber membranes are subjected to physical and chemical stress (e.g., chemical
substances in raw water and repeated chemical cleaning) throughout their operation, and
the rate of membrane failure may increase due to the progress of membrane degradation.
Therefore, membrane failure models need to assume the instantaneous failure rate as a
function of time, ν(t) [40]. In NHPP, the expected number of failures in the time interval
(t , t + ∆t] is denoted by

∫ t+∆t
t ν(x)dx, which is the probability that a failure will occur in

the interval following a Poisson distribution with an intensity of
∫ t+∆t

t ν(x)dx.
The expected number of failures by the time t for NHPP is described as:

E(N(t)) =
∫ t

0
ν(x)dx (1)

If the exact failure times are unknown and only the number of failures within a time in-
terval are recorded, e.g., the number of membrane failures ni within a time interval (ti−1 , ti]
between the successive integrity tests, the grouped data approach is used for estimation
of parameters [39]. The number of failures in a unit interval (ti−1 , ti], i ∈ {1, · · · , k}
follows a Poisson distribution with an intensity of

∫ ti
ti−1

ν(s)ds. The joint probability of ni

failures in interval (ti−1 , ti], i ∈ {1, · · · , k} is equal to the product of the probabilities in
each interval:

P(N(t1)− N(t0) = I, . . . , N(tk)− N(tk−1) = nk)

=
k

∏
i=1

P(N(ti)− N(ti−1) = ni)

=
k

∏
i=1

(∫ ti
ti−1

ν(s)ds
)ni ·exp

(
−
∫ ti

ti−1
ν(s)ds

)
ni!

(2)

The last equation in Equation (2) is the likelihood function.
In this study, two NHPP models, i.e., the power law model and the log-linear model,

were investigated.

• Power law model

In the power law model, the expected number of cumulative failures is expressed as:

E(N(t)) = λtβ

(0 < λ, β , and 0 < t)
(3)

where λ is the scale parameter, β is the growth parameter determining improvement or
deterioration over time, and t is the system operation time.
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The cumulative failure rate vc and the cumulative mean time between failure (MTBFc)
are respectively described by:

vc =
E(N(t))

t
= λtβ−1 (4)

MTBFc =
1
λ

t1−β (5)

The instantaneous failure rate at time t, or intensity function νpp(t), is described by:

νpp(t) = λβtβ−1 (6)

For 1 < β, the failure rate increases. For β < 1, the failure rate decreases. For β = 1,
the failure rate is constant, which reverts NHPP to HPP.

For estimation of parameters λ and β, the maximum likelihood estimation method
was applied with the likelihood function:

L =
k

∏
i=1

(
λti

β − λti−1
β
)ni · exp

(
−
(
λti

β − λti−1
β
))

ni!
(7)

log L = −λTk
β +

k

∑
i=1

[
ni log

(
λti

β − λti−1
β
)
− log(ni!)

]
(8)

where Tk is the failure time for the k-h failure event.
Maximum likelihood estimators (MLEs) of λ and β were computed from Equation (8)

via a quasi-Newton method algorithm with the R package ‘bbmle’ [41]. The Duane model
(Equation (9) [42]) was used to obtain the starting values for the quasi-Newton method:

log(MTBFc) = − log λ + (1− β) log t (9)

• Log-linear model

In the log-linear model, the intensity function νll(t) is described as:

E(N(t)) =
e(γ0+γ1t)

γ1
(10)

νll(t) = exp(γ0 + γ1t) (11)

where νll(t) is the instantaneous failure rate, γ0 is the scale parameter, γ1 is the growth
parameter determining improvement or deterioration over time, and t is the system
operation time.

The likelihood function for the log-linear model is described as:

L =
k

∏
i=1

{(
1

ni!

)(
eγ0+γ1ti − eγ0+γ1ti−1

γ1

)ni

· exp
(
−
(

eγ0+γ1ti − eγ0+γ1ti−1

γ1

))}
(12)

log L =
k

∑
i=1

[
− log(ni!) + ni

{
log
(

eγ0+γ1ti − eγ0+γ1ti−1

γ1

)}
−
(

eγ0+γ1ti − eγ0+γ1ti−1

γ1

)]
(13)

Parameters γ0 and γ1 were estimated by the maximum likelihood estimation method
via a quasi-Newton method algorithm with the R function ‘optim’ for general-
purpose optimization.
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The confidence interval ((1− α)× 100%) for cumulative number of failures N(t) for
power law model or log-linear model is expressed as:

N(t) = N̂(t)exp

±zα

√
Var

(
N̂(t)

)
N̂(t)

 (14)

where N̂, λ̂, β̂, γ̂0, and γ̂1 represent the estimated values of N, λ, β, γ0, and γ1, respectively.

(for the power law model)
N̂(t) = λ̂tβ̂

Var
(

N̂(t)
)
=
(

∂N̂(t)
∂β

)2
Var

(
β̂
)
+
(

∂N̂(t)
∂λ

)2
Var

(
λ̂
)
+ 2
(

∂N̂(t)
∂β

)(
∂N̂(t)

∂λ

)
Cov

(
β̂, λ̂

)
(for the log -linear model)

N̂(t) = e(γ̂0+γ̂1t)

γ̂1

Var
(

N̂(t)
)
=
(

∂N̂(t)
∂γ0

)2
Var(γ̂0) +

(
∂N̂(t)

∂γ1

)2
Var(γ̂1) + 2

(
∂N̂(t)

∂γ0

)(
∂N̂(t)

∂γ1

)
Cov(γ̂0, γ̂1)

2.2.3. Estimation of Model Parameter Distribution by the Bootstrap Method

A nonparametric bootstrap method was applied for the statistical inference of the
parameters of each NHPP model per module. From the original data set of model parameter
X = {xi, i = 1, 2, . . . , N}, a bootstrap sample set Bj =

{
B1,j, B2,j, . . . BN,j

}
was generated

by random sampling with replacement from X. Here, j is the total number of iterations of
sampling. With the generated bootstrap sample set Bj, the set of sample median Bmd

j was

obtained. The mean and the variance of Bmd
j are given by:

Bmd
N,j =

1
N

N

∑
i=1

Bmd
i,j (15)

Var
(

Bmd
N,j

)
=

1
N − 1

N

∑
i=1

(
Bmd

i,j − Bmd
N,j

)2
(16)

The bootstrap method was applied to the estimated model parameters per module, λi,
βi, γ0,i, and γ1,i (where i is the module number). The mean and the variance of bootstrapped
samples for each parameter were obtained by Equations (15) and (16), respectively. The
covariance of λi and βi, or γ0,i, and γ1,i is given by:

cov
(

Bmd
N,j

)
=

1
N − 1

N

∑
i=1

(
Bmd

i,j − Bmd
N,j

)2
(17)

The confidence interval ((1− α)× 100%) for each NHPP model with bootstrapped
parameters was obtained from Equation (14).

2.3. Requirement for Membrane Filtration Performance

It is expected that, in membrane filtration processes, the removal rates of suspended
solids, bacteria, and protozoa meet certain criteria [13]. In this study, the required removal
rate for microfiltration membranes was set by the logarithmic reduction value (LRV) based
on the USEPA’s LT2ESWTR [43]. The LT2ESWTR requires a Cryptosporidium removal of at
least 4-log for the entire water purification process, and a minimum removal of 2-log for
the filtration process [43]. Thus, we adapted a 2-log removal as a minimum requirement
for the membrane filtration process even if some of the hollow fiber membranes failed.
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The LRV of a failed membrane module was calculated from Equation (18) based
on Liu [5]:

LRV = log10

q f

(
n− n f

)
+ qbn f

qbn f
(18)

where q f is the flow rate through an intact hollow fiber membrane
(
m3 s−1), qb is the

bypass flow rate through a failed hollow fiber membrane
[
m3 s−1], n is the total number

of hollow fiber membranes in a module, and n f is the number of failed hollow fibers.
The flow rate through an intact hollow fiber membrane q f was calculated from

Equation (19):

q f =
J × A
86400

=
J × dout × π × L

86400
(19)

where J is the average filtration flux of the system
(

0.85 m3 m−2 d−1
)

, A is the surface

area of an intact hollow fiber membrane (m3), dout is the outer diameter of hollow fiber(
1.4× 10−3 m

)
, and L is the effective length of the intact fiber (1.9 m).

A bypass flow rate was calculated as follows: the equation for a bypass flow rate was
determined by the flow regime in a hollow fiber, which can be identified by Reynold’s
number Re:

Re =
ρdinv

µ
=

ρdin
3∆P

32µ2l
(20)

where ρ is the density of water (kg m−3), din is the inner diameter of a hollow fiber
(0.8× 10−3 m, v is the average flow rate in a hollow fiber lumen (m s−1), µ is the viscosity
of water (0.00101 Pa s at 20 ◦C), ∆P is the transmembrane pressure (103 Pa), and l is the
effective length of the broken fiber (m).

When Re < 2000, the flow regime is laminar flow, which can be assumed to be
the case that the fiber breakage occurred on the opposite side of the filtrate outlet of the
membrane module being operated by the outside-to-inside operation mode of the hollow
fiber membrane. Then, the bypass flow rate qb follows the Hagen–Poiseuille flow:

qb =
πdin

4∆P
128µl

(21)

When Re > 3000, the flow regime is turbulent flow, which occurs when the fiber breakage
occurs near the filtrate outlet of the membrane module. Then, qb is described by the
following equation [5]:

qb = 0.718π

(
∆P

l

)0.571 D2.714

ρ0.429µ0.143 (22)

The maximum number of failed fibers per year to meet LRV 2 is calculated to be 22
fibers per module or 330 fibers per plant from Equation (18).

When a membrane failure is found by the integrity test, the failed fiber is plugged
and not used for the rest of operation; thus, the number of intact hollow fiber mem-
branes and membrane surface area for filtration decrease. Furthermore, the permeability
of the membrane reduces due to the chemically irreversible membrane fouling as the
filtration operation proceeds. Reductions in the effective surface area and the permeabil-
ity require a higher transmembrane pressure, which may necessitate replacement of the
membrane module.

The reduced water production by module at the operation time t (years), W(t), is
expressed as the ratio against the initial filtration performance W(0):

W(t)
W(0)

=

(
Jt

Jt−1

)t
×

n− n f

n
∴ n f = n

{
1−

(
1

0.965

)t
× W(t)

W(0)

}
(23)
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where Jt is the average flux of the membrane module at a designated pressure measured
after (t (year)/ fc(year/time)) th times of chemical cleaning, and fc is the chemical cleaning
interval. In this study, Jt/Jt−1 was calculated to be 0.965 from the reported permeability
data, indicating about a 30% reduction after ten years. The numbers of failed fibers, n f , for
W(t)/W(0) of 0.5, 0.6, and 0.7 were calculated from Equation (23).

3. Results
3.1. Membrane Fiber Failure in the Water Purification Plant

The failure rate, i.e., the number of membrane failure per year, is shown in Figure 1a.
The first membrane failure was observed in the seventh year of the operation, and then
the failure rate increased thereafter. The increasing trend in the membrane failure rate
is reflected by the increasing curve of cumulative membrane failure shown in Figure 1b.
These results indicate that membrane failure is a nonhomogeneous process, which requires
nonhomogeneous models such as NHPP.
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Figure 1. (a) Failure rate per year and (b) cumulative fiber failure of the plant.

Although there was a decrease in the failure rate in the 11th year from the 10th year, it
increased again in the 12th year (Figure 1a). This kind of failure rate variation could be due
to the variability in the failure rate for each membrane module, as observed in Figure A1.
Although most of the membrane failure was detected in the eighth year, the increasing
trend in the failure rate for each module significantly differed. For instance, a low failure
rate was observed in Module E, but sharp increases in the failure rate were observed for
Modules L and M. However, even with the large variability in the increasing trend, the
failure rate of each module increased yearly due to membrane ageing [18]. These data
indicate that, for predicting membrane failure, it is important to consider the variability in
failure rate for each module.

3.2. Application of Nonhomogeneous Poisson Process Models to Membrane Failure

The power law model and the log-linear model of NHPP were applied to fit the
membrane failure data.

3.2.1. Membrane Failure Rates in the Water Purification Plant

• Power law model

The membrane failure rate curves for the whole plant estimated by the power law
model using the failure data are shown in Figure 2a. Each line shows the failure rate
estimated from the failure rate data until the operation year denoted in the figure. For
example, the failure rate curve of the ninth year (9yr) was estimated from the failure data
up to the ninth year of operation. The trends of these curves are influenced by the number
of failure data obtained for each operation year. The rate curve drawn for the nine-year
operation data in Figure 2a is the lowest, whereas the failure rate curves estimated from 10,
11, 12, and 13 years of operation gradually shift upward and then converge after the 11th
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year. The variation among them is less than 100 failures per year (about 30%) in the 16th
year of operation.
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Figure 2. Membrane failure rates in the plant estimated by the power law model (a) and by the log-linear model (b). Dotted
horizontal lines show the permissible failure rates: 330 (black) fibers per year.

The predicted failure rates using the data up to the 10th year (10 yr) of operation
exceeded the permissible failure rate (330 failures per year) after the 20th year of operation.
The failure rates predicted from the data up to the 11th (11 yr), 12th (12 yr), and 13th
(13 yr) years exceeded 330 after the 18th year of operation. Thus, the power law model
predicts that the plant could be operated up to the 17th year without violating the criterion
(LRV ≥ 2). As shown in this case, the power law model can predict the years of operation
without violating the criterion with a small margin of error when it is applied for the
membrane failure rate analysis of the whole plant.

• Log-linear model

The membrane failure rate curves for the whole plant estimated by the log-linear
model are plotted in Figure 2b, which show abrupt increases compared to those by the
power law model (Figure 2a). The failure rate curves by the log-linear model overestimated
the permissible failure rate of 330 fibers per year at least up to the 11th year of operation,
as shown by the wide gaps between the predicted and actual numbers of failure. This
tendency of overestimation by the log-liner model may be due to the intensity function
described by an exponential function.

3.2.2. Cumulative Membrane Failure in the Water Purification Plant

• Power law model

The predicted cumulative failure curves using data up to the 9th to 13th years of
operation are shown in Figure 3a–e. These predicted curves are similar within a small
range except for the curve estimated using data only up to the ninth year (Figure 3, red
lines). The 95% confidence intervals of the cumulative fiber failure predicted by the power
law model are also shown in Figure 3 (red shaded area). All predicted curves fit the actual
failures well (Figure 3a–d), and their root mean square errors (RMSEs) are within a small
range (22.0–26.9, Table 3). As the number of failure data used for the prediction increases,
the confidence intervals narrow. This suggests that the failure prediction performance is
improved by adding more membrane failure data up to the 13th year of operation, which
is indicative of the NHPP. This result is also in agreement with the Akaike’s information
criterion (AIC) values, which decrease as the years of the failure data acquisition increase
(Table 3).
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Figure 3. Predicted cumulative fiber failure by power law model (red) and log-linear model (blue). (a) predicted using data
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Table 3. Estimated parameters for power law model and log-linear model intensity functions.

Years of Operation

Power Law Model Log-Linear Model

λ β AIC
RMSE

γ0 γ1 AIC
RMSE

Failure
Rate

Cumulative
Failure

Failure
Rate

Cumulative
Failure

~9 7.57 2.35 −546 12.2 26.9 1.89 0.66 −271 259.2 284.9
~10 6.58 2.51 −1400 21.4 22.0 2.09 0.54 −571 117.5 123.9
~11 5.68 2.64 −2970 28.0 25.1 2.25 0.46 −1038 69.3 66.8
~12 5.59 2.66 −5248 28.4 25.5 2.58 0.33 −1446 24.5 15.6
~13 5.57 2.66 −8427 28.5 25.5 2.75 0.27 −1977 13.4 11.2

The dotted lines in Figure 3 show the percentage reduction in the filtration perfor-
mance associated with both membrane fouling and reduction in the membrane surface
areas. From the crossing point between the reduction lines of the filtration performance
and the predicted cumulative failure curve using 13 years of failure data, the membrane
modules could be used until the 14th year if a 40% reduction in the filtration performance
is assumed to be permissible. Moreover, if a 50% performance reduction is permissible, the
membrane modules could be used until the 18th year.

• Log-linear model

The cumulative failure curves predicted by the log-linear model are shown by the
blue lines in Figure 3a–e. The cumulative fiber failure curves predicted using the data up to
the 9th, 10th, or 11th years (Figure 3a–c, respectively) show significant discrepancies from
the actual numbers of failures. However, the predicted curves using the data up to the 12th
or 13th years are closer to those predicted by the power law model. The 95% confidence
intervals became narrower as the years of failure data used for the prediction increased.
The AIC values for log-linear model decrease with the increase in the data acquisition
period for prediction (Table 3). However, they are larger than those for power law model
for all cases, which indicates the better prediction performance of the power law model
than the log-linear model. The RMSE values of the log-linear models predicted from the
data up to 12th and 13th year are smaller than those of the power law models (Table 3),
which indicates that log-linear model better fits the observed data than the power law
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model when the number of data increases. These findings suggest that, for the prediction
by the log-linear model, the data acquisition period should be long enough for improving
the prediction accuracy.

3.3. Failure Trends by Modules
3.3.1. Failure Rate and NHPP Model Fitting to Modules

The first year and the following trends in membrane failure varied significantly among
the modules (Figure A1 in Appendix A). Modules A, B, H, K, N, and O showed a gradual
increase in the failure rate, even though some of them showed fluctuation. On the contrary,
Modules F, G, I, J, L, and M showed rapidly increasing trends. Others showed very small
or almost no increase in the failure rate (Modules C, D, E). This substantial variation
among the failure rates of the modules was probably due to the variation in the hollow
fibers’ properties in their manufacturing process. Therefore, the fitting and prediction of
failure rates with the NHPP models were unsuccessful for each of the modules, while
the variations among the modules were averaged for the whole plant, making it possible
to apply the NHPP models to them (Figure 3). Consequently, a significant deviation in
the fitted model parameters of each module was derived, as shown in Table 4. Module
L showed noticeably higher failure rates that were close to the permissible failure rate of
22 membranes/year, which corresponds to LRV 2. Such a high failure rate suggested the
necessity of module replacement to maintain the filtration performance of the system.

Table 4. Estimated parameters for each module.

Module
Power Law Model Log-Linear Model

λ β AIC γ0 γ1 AIC

A 0.36 2.53 −37.9 −1.07 0.46 11.5
B 0.64 2.28 −42.1 −0.13 0.18 11.4
C 0.85 2.12 −38.6 −0.13 0.18 14.2
D 1.74 1.96 −20.3 0.22 0.30 8.5
E 0.74 1.19 − −62.9 −32.2 85.5
F 1.36 2.47 −496.4 1.39 0.07 −38.4
G 4.64 1.97 −716.1 1.83 0.01 −67.8
H 0.78 2.34 −56.9 0.15 0.23 5.5
I 0.33 2.97 −44.9 −0.46 0.55 −1.7
J 0.95 2.55 −163.8 0.53 0.30 −21.7
K 1.90 1.62 −8.2 −0.21 0.37 9.4
L 6.38 2.24 −964.1 2.00 0.27 −202.9
M 0.85 2.61 −313.6 0.31 0.36 −34.0
N 3.36 1.73 −33.7 0.57 0.45 1.5
O 1.01 2.41 −88.0 0.48 0.24 5.0

Average 1.73 2.20 −3.83 −1.88

Median 0.95 2.28 0.22 0.27

Bootstrapped median
(2.5%, 97.5%)

0.95
(0.78, 1.90)

2.28
(1.97, 2.47) - 0.26

(−0.21, 0.57)
0.20

(0.18, 0.36) -

The actual cumulative fiber failure trends also varied significantly by module (Figure A2),
leading to the different trends in the cumulative failure curves predicted by the power law
and log-linear models. In Module G, in which the cumulative fiber failure showed an ap-
proximately linear increasing trend, the power law model (red line) hardly fitted the actual
data, while the log linear model (blue line) fit well. This difference is due to the model struc-
tures of cumulative fiber failure N(t) of these two NHPP models (Equations (3) and (10)).
The power law model follows the power of the operation time t and shows the exponential
growth of cumulative failure numbers, resulting in lower fitting and prediction perfor-
mance. Furthermore, the cumulative failure curves predicted by the power law model (red
lines) are above those by the log-linear model (blue lines) in Modules B, C, and F, while the
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predicted curves by power law model are below those by the log-linear model in Modules
A, I, K, and N.

The 95% confidence intervals for the log-linear model are always wider than those
for the power law model, suggesting the larger variability in the failure predicted by the
log-linear model than the power law model, which is in agreement with the AIC values
shown in Table 4. This indicates that, if the degree of model fitting of both NHPP models is
similar, the power law model can provide more accurate prediction performance. Thus, in
the failure prediction of individual modules, both NHPP models should be compared in
terms of the degree of fitting and the confidence intervals of the prediction.

3.3.2. Bootstrap Estimation of Model Parameters

The model parameters of both NHPP models for each module were significantly
varied, as shown in the previous section (Table 4). In some modules, the trends in the pre-
dicted cumulative failure curves by the power law and log-linear models were significantly
different (Figure A2). These variations pose difficulties in predicting the failure trends of
and determining when and which module should be replaced. To improve the prediction
accuracy of cumulative membrane failure per module, a bootstrap method was applied
to the model parameters for both the power law and the log-linear models. Due to the
wide range of variations for the in fitted model parameters (Table 4, Figure A3), the median
value for each parameter was used to estimate the distributions of parameters.

The bootstrapped distribution of median of each model parameter (10,000 iterations)
as well as the model parameter for each module are shown in Figure 4. The widely
distributed power law model parameters, λ and β, for each module indicate the significant
difference in the failure trend due to the variations in the properties of the membranes, as
mentioned in the previous section. Distributions of bootstrapped parameters, λmd and βmd,
and their 95% confidence intervals show the range of medians of these model parameters,
which represent the overall trends (Figure 4, Table 4). The bootstrapped median value for
λ was 0.95, which is significantly different from the average of the estimated value for each
module, 1.73 for λ (Table 4); this is attributed to the extreme parameter values of Modules
G and L. The failure trend of Module G was linearly increasing, which could not be fitted
by the power law model, and Module L showed a rapidly increasing trend of cumulative
failure (Figure A2). Although these failure trends are different, they probably led to larger
λ values by the power law model. Conversely, the bootstrapped median value and the
average value for β were 2.28 and 2.20, respectively, which are within a similar range.

The distributions of log-liner model parameters, γ0 and γ1, contained the extreme
values (Figure 4c,d, Table 4), which significantly influenced the arithmetic means of those
parameters. Thus, the averages of the estimated values of −3.83 and −1.88 for γ0 and γ1,
respectively, are significantly different from the bootstrapped median values of 0.26 and
0.20 for γ0,md and γ1,md, respectively (Table 4). This difference is apparently due to the
significantly smaller parameter values for Module E, in which only one membrane failure
was observed during the operation. This indicates that the log-linear model produced an
extreme response to the very small number of failures due to its exponential form of the
intensity function (Equation (11)). By taking the bootstrapped median, the influence of the
extreme values can be eliminated, while the variations in the properties of the modules
were incorporated.

The cumulative failure curves predicted using the bootstrapped parameters (hereafter,
the bootstrapped cumulative failure curves) for both the power law and log-linear models
and their 95% confidence intervals are shown in Figure 5, along with the curves predicted
for each module by the power law and log-linear models. The bootstrapped cumulative
failure curve of power law model (dashed red line) and that of the log-linear model (dashed
blue line) show similar trends, as indicated by the cumulative failure curves predicted
using the 13-year data (Figure 3e). The advantage of the bootstrapped cumulative failure
curves is that they can estimate the confidence intervals of the cumulative failure curve of
each module.
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Figure 5. Cumulative failure for each membrane module. Train 1: (A–E), Train 2: (F–J), and Train 3: (K–O). Solid lines
indicate curves fit by the power law NHPP model (red) and the log-linear NHPP model (blue), and dashed lines indicate
the curves predicted from bootstrapped parameters.

4. Discussion
4.1. Criteria for Membrane Replacement

We proposed two criteria for membrane module replacement: the membrane failure
rate and the reduction in membrane performance. Although these two criteria used to
be reported independently, to the best of our knowledge, we are the first to show how to
combine these two criteria.

4.1.1. Replacement of the Membrane Module by Failure Rate

A criterion of 330 membrane fiber failures per year for a whole plant, which cor-
responds to LRV 2, was proposed for module replacement (Figure 6a). If the number
of failures of the whole plant exceeds this criterion, all modules in the plant should be
replaced. Practically, the prediction of the failure rate in the forthcoming one or two years
is important for waterworks to know the likelihood of module replacement, as one or two
years is required to allocate budget. This criterion is subject to the raw water quality and
the expected treatment efficiency of membrane filtration systems, and, thus, it should be
determined individually for each membrane filtration plant.
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4.1.2. Replacement of the Membrane Module by Filtration Performance

The reduction in filtration performance is estimated from two factors: the observed
flux reduction due to membrane fouling and the reduction in membrane surface area
caused by the plugging of failed membrane fibers (Figure 6b). The predicted cumulative
failure curves by power law and log-linear models, as well as performance reduction levels,
are shown in Figure 3.

The cumulative failure curve predicted from the data up to the 13th year by the power
law model crosses the performance level curve of 60% in the 14th year of operation. This
indicates that all modules should be replaced in the 14th year if the performance level
below 60% of the initial level is not permissible. If the permissible performance level is set
to 50%, the predicted curve crosses the performance level curve of 50% in the 18th year,
which indicates a longer service life of the membrane modules. However, the predicted
failure rate curve exceeds the permissible level in the 17th year, as explained in the previous
section. Thus, in this case, the failure rate criterion should be preferred.

In the case of log-linear model curves from the data up to the 13th year of operation, a
similar decision would be made as with the power law model. However, careful attention
should be paid to the prediction from the log-linear model curves using a smaller number
of data up to the 9th, 10th, or 11th years, as they might lead to the overestimation of
cumulative failures.

4.2. Comparison between the Power Law and Log-Linear Models

The difference between the cumulative failure curves predicted by the power law
model and those by the log-linear model are quite large up to the 11th year of operation,
and the predicted cumulative failure from the log-linear model is significantly greater than
that predicted by the power law model (Figure 3). As mentioned in Section 3.2.2, the AIC
values of the power law model that are smaller than those of the log-linear mode indicate
that the power law model is superior for failure prediction than the log-linear model in this
study. However, the RMSE values of the log-linear model after 12 years are smaller than
those of the power law model, which indicates a better fit of the log-linear model than the
power law model to the membrane failure data. However, in a study on the application
of the power law and the log-linear models for prediction of a water main failure rate,
the log-linear model was selected based on log-likelihood comparison [44]. Thus, it is
recommended to apply both NHPP models to the data obtained in different membrane
filtration plants, and compare their performance of membrane failure prediction to select
the most suitable model with superior performance.
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4.3. Membrane Module Replacement Strategy

In a large-scale membrane filtration plant, it may be necessary to replace some of
the membrane modules earlier than others because all modules cannot be replaced at
one time [16]. Thus, it is important to predict both the failure rate and cumulative failure
number for each membrane module to select the membrane modules for earlier replacement
than others.

This paper proposed a new strategy for determining when and which module should
be replaced. In this strategy, the year of membrane module replacement is determined
by comparing the actual failure data and the predicted cumulative failure curves with
their confidence interval by the bootstrap method. As described in Section 3.3.2, the
bootstrapped cumulative failure curve with its confidence interval showed the overall
cumulative failure trend together with variations among the modules due to the property
variations of membrane fibers. Thus, the bootstrapped curve could be helpful for the
selection of modules to be replaced earlier than others.

The proposed procedure (Figure 6c) is as follows:

(1) Estimate the NHPP model parameters for each module from the actual failure data,
and draw the predicted cumulative failure curve from the estimated parameters of
the NHPP models.

(2) Obtain the bootstrapped median and its 95% confidence interval of model param-
eter for each module, and draw the bootstrapped cumulative failure curve with a
confidence interval.

(3) Compare the predicted cumulative failure curve and the bootstrapped cumulative
failure curve, and select the modules to be replaced when the predicted curve is above
the upper boundary of the confidence interval of the bootstrapped curve.

If the trend of the actual cumulative failure and/or the predicted failure curve of
a certain membrane module is above the upper boundary of the confidence interval of
the bootstrapped cumulative failure curve, the module is assumed to have a significantly
greater number of failed fibers than others. Modules F, G, L, and M could be categorized
as such modules because the failure curves predicted by the power law model or by the
log-linear model are above the bootstrapped cumulative failure curves and the upper
boundary of the confidence interval (Figure 5). Among them, Modules F, G, and M will
be subject to replacement to maintain the safety of the system, although their failure rates
were below the permissible limit (LRV 2) in the 13th year of operation (Figure A1). For
Module L, the replacement would be determined according to either of its high cumulative
failure trend or its high failure rate, which were close to the permissible level, as explained
in Section 3.3.1. Careful attention to Modules I, J, and N is needed because at least one of
the failure curves predicted by the NHPP models will exceed the upper boundary of the
confidence interval of the bootstrapped cumulative failure curve in the near future. Other
modules with lower cumulative failure numbers could be continuously used for a period
longer than 13 years. The predicted membrane failure trends shown in Figure 5 should be
updated every year to reliably predict membrane failures. Distribution of model parameter
medians was depicted in Figure A4.

The membrane failure data used in this study are specific to the membrane modules
used in the membrane filtration plant of this study. Thus, the membrane failure rates and
trends might be different in other plants with membrane modules different from those in
this study. However, the proposed approach could be applied to the failure prediction of
different membrane filtration plants using different membrane modules, as it requires only
the membrane failure data. Accordingly, the proposed approach could be also applied to
the failure prediction of other membrane filtration plants of wastewater treatment, water
reuse, or gas/oil treatment systems in which the membrane replacement is determined in
a similar manner with a water purification system [44,45].
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5. Conclusions

Because of ageing, the probability of membrane failure changes with membrane
filtration plant operation over time. Therefore, we proposed two nonhomogeneous Poisson
process (NHPP) models, namely, the power law model and the log-linear model, to predict
the number of membrane failures in an actual membrane filtration plant. The methods to
apply these NHPP models to the membrane failure data obtained from a full-scale plant
were delineated.

The power law model showed lower AIC values than the log-linear model in pre-
dicting the membrane failures of the plant. In addition, the log-linear model showed
overestimating tendency and wider 95% confidence ranges, especially with short opera-
tional periods to acquire failure data, suggesting its lower prediction accuracy compared to
the power law model. Although the failure trends predicted by both models converged
within a small range when the operational period of failure data acquisition extended, the
power low model was found to be the preferred model for predicting the membrane failure
trend of the whole plant.

To estimate the year of membrane replacement in a water purification plant, two
criteria, i.e., the membrane failure rate and the membrane performance reduction, were
proposed, and their use was verified using the actual membrane failure data. The mem-
brane failure rate was set based on the microbial safety of more than a 2-log reduction. The
reduction levels of membrane permeability were set to between 50% and 70% of the initial
flux. Combining these two criteria, it is possible to integrate membrane replacement strate-
gies based on filtered water quality and the filtration performance. Using the membrane
failure data obtained in this study, it was demonstrated that membrane service life before
replacement is 14 to 17 years depending on the selection of the performance level.

The trends in the failure rates per module, as well as the cumulative failure numbers,
varied significantly due to the variations in the properties of the modules, probably re-
sulting from material variations during membrane production. Thus, it might be better to
replace those membrane modules with higher failure rates than others in order to save the
cost of membrane replacement. Thus, a bootstrap method was employed to consider the
property variation in the membrane modules in the NHPP models for failure prediction,
which successfully simulated the overall cumulative failure trend of a module using boot-
strapped median parameters and their 95% confidence intervals. It is suggested to replace
a membrane module if the predicted failure trend is higher than the upper confidence
boundary of bootstrapped failure curve. In the case of the membrane modules examined
in this study, 4 out of 15 modules were selected to be replaced earlier than others.

Until now, the determination of module replacement has been dependent on the expe-
rience and knowledge of seasoned waterworks staff. However, the strategy for membrane
module replacement proposed in this study provides a systematic framework for mem-
brane replacement based only on the failure data observed in each membrane filtration
plant, which provides support to the plant operators and waterworks staff.
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indicate fitted curves and highlighted areas show 95% confidence intervals for the power law NHPP model (red) and log-
linear NHPP model (blue). 
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