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Abstract: Diffusion dialysis (DD) using anion exchange membranes (AEM) is an effective process
for acid recovery and requires the preparation of suitable materials for AEMs, characterized by
unique ions transport properties. In this work, novel AEMs composed of quaternized diaminobutane
(QDAB) and poly(vinyl alcohol) (PVA) were cross-linked by tetraethoxysilane (TEOS) via the sol–gel
process. The prepared AEMs were systematically characterized by Fourier-transform infrared (FTIR)
spectroscopy, ion-exchange capacity (IEC) analysis, thermo gravimetric analysis (TGA), water uptake,
linear expansion ratio (LER), and mechanical strength determination, scanning electron microscopy
(SEM), and DD performance analysis for acid recovery using a hydrochloric acid/iron chloride
(HCl/FeCl2) aqueous mixture and varying the QDAB content. The prepared AEMs exhibited IEC
values between 0.86 and 1.46 mmol/g, water uptake values within 71.3 and 47.8%, moderate thermal
stability, tensile strength values in the range of 26.1 to 41.7 MPa, and elongation from 68.2 to 204.6%.
The dialysis coefficient values were between 0.0186 and 0.0295 m/h, whereas the separation factors
range was 24.7–44.1 at 25 ◦C. The prepared membranes have great potential for acid recovery via
diffusion dialysis.

Keywords: diffusion dialysis; PVA; TEOS cross-linked; acid recovery; anion exchange membrane

1. Introduction

Wastewater is produced in various contexts including hydrometallurgy, metal refining,
steel processing, aluminum etching, electroplating, and resin regeneration. It contains
inorganic acids and metal ions [1,2]. The direct disposal of these acid effluents in the
environment without treatment not only wastes useful acids but also is a great threat
to human health and the environment [3–5]. The traditional methods that have been
applied to treat acidic waste comprise extraction [6], ion exchange [7], electrodialysis [8],
alkali neutralization [9], and pyrohydrolysis [10]. In comparison with all separation-
based methods, anion exchange membrane (AEM)-based diffusion dialysis (DD) is highly
preferable to treat acid wastes due to its energy efficiency, as electric power is only required
for pumping the liquid streams into the dialyzer system and it is of easy installation, that
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does not require complex equipment, environment-friendly, because of no extra chemical
agents are required, and cost-effective [3,11].

In the DD process, due to the difference in concentration gradient and the positive
charge of the AEM itself, the anions pass through the AEM preferentially from the side with
higher concentration to that with lower concentration [12,13]. The transport of counter-
ions through the membrane is facilitated by the attractive force from fixed group in the
membrane. Meanwhile, due to electrical neutrality, some co-ions with small hydration
radius and low charge can always have high mobility and cross the membrane, which
makes the DD process successful [14,15]. Till now, DD has been widely used in the recovery
of inorganic acids including hydrochloric acid (HCl) [16], sulfuric acid (H2SO4) [17], nitric
acid (HNO3) [18], and mixed inorganic acids [19].

The AEMs used to recover acid from wastes through diffusion dialysis contain
predominantly cationic groups such as –NH3

+, –NRH2
+, –NR2H+, and –NR3

+ [20–23].
Several anion exchange membranes have been prepared for acid recovery from various
polymeric materials. Polymer-containing hydrophobic matrices include poly(vinyl chlo-
ride), poly(2,6-dimethyl-1,4-phenyleneoxide), poly(vinylidene fluoride), poly(sulfone),
poly(styrene) [24–26], and hydrophilic PVA [27,28]. The major critical issue with hydropho-
bic membranes is their hydrophobicity, which restricts proton permeability during the DD
process [29]. PVA has high hydrophilicity, is chemically and thermally stable, has excellent
mechanical strength, excellent film forming ability, and a relatively low cost [30,31]. Along
with these advantages, the presence of −OH groups with high hydrophilicity can enhance
the mobility of hydrogen ions through hydrogen bonds in diffusion dialysis [32]. The avail-
able large amount of −OH groups in PVA, which allow for extraordinary reactions with
small alkoxy silanes like tetraethoxysilane (TEOS) through the sol–gel process, enhances
the mechanical and thermal properties, resulting in a dense, homogeneous, and compact
membrane structure [33]. In order for a PVA matrix to act as an anion exchanger, cationic
groups must be introduced into the membrane structure. The introduction of an anion
exchange precursor into the structure followed by cross-linking is an efficient method to
enhance the anion exchange capacity of membranes [34].

In many previously published works, various PVA-based AEMs membranes were
synthesized for acid recovery, evaluating membranes performance via DD [7,35,36]. Em-
manuel et al. published a series of doubly quaternized siloxane-cross-linked PVA hybrid
AEMs prepared through the sol–gel technique for the recovery of acids by DD. The re-
sulting membranes demonstrated high values of performance parameters such as dialysis
coefficient, which varied between 0.030 and 0.0449 m/h, and separation factor of 20.9 to
32.3 at 25 ◦C [37]. Congliang et al. prepared glycidyltrimethylammonium chloride-cross-
linked PVA-based membranes and investigated the effect of glycidyltrimethylammonium
chloride on the recovery of the acid through DD. The dialysis coefficient value was in
the range of 0.011–0.018 m/h, and the separation factor increased up to 21 [38]. Yonghui
et al. studied the performance of PVA–silica hybrid anion exchange membranes and found
that the separation factor was in the range of 15.9–21, and the acid recovery values were
higher than those of the commercially available DF-120 membrane [32]. In similar studies,
PVA-based AEMs showed better acid recovery performance and separation factor com-
pared to the DF-120 membrane [23,39]. Hence, PVA-based hybrid membranes have been
developed with different cross-linking agents and anion exchange groups to enhance their
DD performance for acid recovery.

In this work, anion exchange hybrid membranes based on PVA and quaternized
diaminobutane (QDAB) cross-linked with TEOS were synthesized through the sol–gel
process and evaluated for DD performance in acid recovery. Glycidyltrimethylammonium
chloride (GTMAC) has been widely used as an anion exchange material for acid recovery
membranes. The compound 1,4-diaminobutane (DAB) was used as a junction between
GTMAC and an anion exchange precursor (QDAB) mixed with PVA along with the TEOS
cross-linker, then AEMs were fabricated. The innovation of this work is the dispersion of
QDAB in PVA cross-linked membranes, which, according to the best of our knowledge,
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has never been reported for acid recovery via DD. QDAB possesses two ionic sites serving
as fast charge carriers and can enhance the ionic diffusivity during DD. The cross-linking
agent TEOS ensured the thermal and mechanical stability of the membrane by changing
its morphological properties and hydrophilicity [40]. Moreover, Fourier-transform in-
frared spectroscopy (FTIR), IEC, water uptake, and swelling degree determination, thermo
gravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical strength
analysis of the prepared membranes were carried out. The membranes were finally tested
for acid recovery and separation performance by conducting diffusion dialysis experiments
using an HCl/FeCl2 aqueous mixture.

2. Experimental Details
2.1. Materials

PVA with average molecular weight of 72,000 g/mol and degree of hydrolyzation ≥ 98%,
ferrous chloride (FeCl2·4H2O), sodium chloride (NaCl), hydrochloric acid (HCl), potassium
permanganate (KMnO4) and sodium carbonate (Na2CO3) were purchased from Merck, Ger-
many. The compounds 1,4-diaminobutane (DAB, 99%), glycidyltrimethylammonium chloride
(GTMAC, ≥90%), and dimethyl sulfoxide (DMSO, 99%) were obtained from Sigma Aldrich,
St. Louis, MO, USA. Tetraethoxysilane (TEOS, 98.5%) was purchased from Daejung chemical
and metals Co. Ltd., Shiheung, Gyeonggi-do, South Korea. Other chemicals were of analytical
grade and used without any additional purification.

2.2. Synthesis of Quaternized Diaminobutane (QDAB)

QDAB was prepared by the reaction of 1,4-diaminobutane and GTMAC in DMSO, as
shown in reaction Scheme 1. Firstly, 1 g of 1,4-diaminobutane (0.01134 mol) and 12 mL of
DMSO as solvent were mixed in a 50 mL round-bottom flask with continuous magnetic
stirring at 85 ◦C for 30 min. In this transparent reaction mixture, a calculated amount
of GTMAC (3.44 g, 0.02269 mol) was added. Stirring was continued at 85 ◦C for 12 h
to complete the reaction. A viscous and homogeneous solution of QDAB was obtained,
cooled down to room temperature, and kept in a sealed bottle for further use.
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Scheme 1. Reaction scheme for the preparation of quaternized diaminobutane.

2.3. Preparation of QDAB/PVA Membranes

The QDAB/PVA AEMs were prepared using the standard sol–gel process, as shown
in the proposed reaction Scheme 2. First, 1 g of PVA was dissolved in 19 g DMSO with
continuous stirring for 4 h at 85 ◦C. A clear homogeneous solution of PVA (5 wt. %) was
obtained and cooled down to 60 ◦C. A suitable amount of QDAB with respect to PVA in
DMSO solution were separately stirred for 30 min at ambient conditions, and the QDAB
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solution was added to the prepared PVA solution. Then, 0.2 g of TEOS (20 wt. % to PVA)
cross-linker along with a small quantity of 0.1 M HCl solution (as a catalyst) was carefully
added in the reaction mixture. The reaction mixture was stirred at 60 ◦C for 24 h on a hot
plate to complete the sol–gel reaction by the hydrolysis of silane. The resulting gel mixture
was cast on a Petri dish and dried in a preheated oven at 60 ◦C for 24 h. The obtained
membrane was carefully peeled off the Petri dish with the help of a knife blade. Finally for
thermal cross-linking by heat treatment, the AEMs were heated from 70 ◦C to 130 ◦C at the
heating rate of 10 ◦C/h and kept at 130 ◦C for 4 h to ensure a complete conversion into
hybrid membranes. The thickness of the membrane was maintained around 165 to 190 µm.
Five different membranes, mentioned in Table 1, were prepared by varying the amount
of QDAB from 30 wt. % to 70 wt. % of PVA and were coded as QDAB-30, QDAB-40,
QDAB-50, QDAB-60, and QDAB-70, respectively.
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Table 1. Composition, ion exchange capacity, water uptake, and linear expansion ratio values of
QDAB/PVA cross-linked membranes.

Membrane
Code

QDAB of
PVA (wt. %)

TEOS of
PVA (wt. %)

IEC
(mmol/g)

Water
Uptake (%) LER (%)

QDAB-30 30 20 0.86 ± 0.02 71.3 28.7
QDAB-40 40 20 1.07 ± 0.03 84.6 32.4
QDAB-50 50 20 1.19 ± 0.03 109.1 34.2
QDAB-60 60 20 1.38 ± 0.04 131.4 37.8
QDAB-70 70 20 1.46 ± 0.05 143.8 39.5

2.4. Membrane Characterizations
2.4.1. Fourier-Transform Infrared (FTIR) Spectroscopy

FTIR spectroscopic analysis of the PVA hybrid membrane was evaluated with an IR
Shimadzu, Prestige-21 (Japan) spectrometer attenuated with a Horizontal Attenuated Total
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Reflectance (HATR) equipment. The spectral range of the experiment was 4000–400 cm−1,
and 100 scans were collected per spectrum at a resolution of 4 cm−1. The experiment was
performed with air as its background.

2.4.2. Ion-Exchange Capacity (IEC)

The IEC of the prepared membranes was determined to investigate the content of
interchangeable ionic groups in the membranes using the Mohr method. A dried membrane
sample was weighed and soaked in a 1.0 M NaCl solution for 24 h at room temperature
to convert the ion-exchange groups into Cl−. After this, the sample was washed with
deionized water to remove excessive NaCl and immersed in 50 mL of a 0.05 mol/L Na2SO4
aqueous solution for 48 h to replace the Cl− ions by SO4

2− ions. The concentration of
the released Cl− ions in solution was determined by titration using a 0.05 mol/L AgNO3
solution, and K2CrO4 was used as an indicator [41]. The IEC (mmol/g) of the membrane
was determined with Equation (1):

IEC =
CAgNO3

VAgNO3

Wdry
(1)

where, CAgNO3
, VAgNO3

, and Wdry represent the molar concentration (mol/L) of the AgNO3
solution, the volume (mL) of the AgNO3 solution consumed, and the dry weight (g) of the
membrane, respectively.

2.4.3. Water Uptake and Linear Expansion Ratio

Water uptake was measured to investigate the hydrophilicity of the membrane. Small
pieces of the membranes were dried in a vacuum oven at 65 ◦C for 24 h. The dried pieces
of the membranes were weighed and then soaked in deionized water at room temperature
for 24 h. The wet membrane pieces were weighed after wiping out the extra water from
the membrane surface with a blotting paper. The water uptake (%) was determined [42]
using Equation (2):

water uptake (%) =
Wwet − Wdry

Wdry
× 100 (2)

where Wwet and Wdry represent the weight of wet and dry membranes, respectively.
The linear expansion ratio (LER) was calculated to determine membrane stability. The

dry membrane samples (3 cm × 1 cm) were immersed in deionized water for 24 h. LER (%)
was measured using the following Equation (3) [43]:

LER (%) =
LWet − Ldry

Ldry
× 100 (3)

where Ldry and Lwet represent the length of dry and wet membranes, respectively.

2.4.4. Thermal Stability

The thermal properties were characterized by thermo gravimetric analysis (TGA)
using a TGA Mettler Toledo analyzer at 10 ◦C/min heating rate; the temperature program
used for TGA involved a temperature increase from room temperature to 800 ◦C. Nitrogen
gas with a flow rate of 15 mL/min was used to obtain an inert atmosphere.

2.4.5. Mechanical Properties

Mechanical stability of QDAB hybrid membranes was determined with the help of the
U-CAN Dynatex tensile tester (UT-2080, Taiwan) having crosshead speed of 100 mm/min.
The dumbbell-shaped sample had a length of 25 mm between the jaws and a width of 5 mm.
The experiment was performed at a relative humidity of 25 ± 2% and at a temperature of
25 ◦C.
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2.4.6. Scanning Electron Microscopy

The morphology of the prepared membranes was examines through SEM using Jeol
(JSM-6490A). The surface images of the membranes were collected under low vacuum, at a
voltage of 5 KV.

2.4.7. Acid Recovery Experiment

The DD experiment was performed using a cell with two compartments, which were
divided by the membrane, with an effective area of about 6.2 cm2. The membranes were
dipped in the feed solution for 2 h before the test. One compartment of the dialysis cell
was filled with 100 mL of feed solution consisting of a HCl/FeCl2 aqueous mixture (1 M
HCl/0.25 M FeCl2), and the other compartment was filled with 100 mL of deionized water
as the dialysate. Both compartments of the dialysis cell were stirred continuously with
the help of magnetic stirrer at an equal speed to avoid concentration polarization. The
experiment was performed at 25 ◦C for 1 h, and then from both compartments of the cell,
feed and permeate solutions were removed. The concentration of H+ and Fe2+ ions in
feed and permeate were measured by titration using standard solutions of Na2CO3, with
methyl orange and KMnO4 as indicators, respectively.

The dialysis coefficient (U) was calculated using the following Equation (4) [38]:

U =
M

At∆C
(4)

where M indicates the amount of component transported in moles, A is the effective area of
the membrane (m2), t stands for time in h, and ∆C is the logarithm average concentration
(mol/m3) between the two compartments, which is given by Equation (5) [36,38]:

∆C =
C0

f −
(
Ct

f − Ct
d
)

ln
[
C0

f /
(
Ct

f − Ct
d
)] (5)

where C0
f and Ct

f are the concentrations of the feed solution at time 0 and t, respectively,
whereas the concentration of the dialysate at t time is Ct

d.
The separation factor (S) was determined by the ratio of (two dialysis coefficients) the

acid dialysis coefficient (UH) and the dialysis coefficient of ferrous ion (UFe) in the solution.
The S value was determined using Equation (6):

S =
UH

UFe
(6)

3. Results and Discussion
3.1. FTIR Spectra Analysis

The FTIR spectra of pristine PVA, QDAB, TEOS, and cross-linked QDAB/PVA AEMs
are shown in Figure 1. In the spectra of QDAB, the peaks at 1925 and 1645 cm−1 correspond
to the stretching of –CH2 and –CH, and the peak at 1469 cm−1 is due to the stretching
of C−N from the ammonium groups. These peaks are also observed in the spectra of
the prepared membranes. The band in the 3100–3550 cm−1 region in QDAB and PVA
corresponds to the stretching vibration of −OH groups [38]. In cross-linked QDAB/PVA
AEMs, the absorption band in the region 1255–1350 cm−1 represents the secondary C−N
stretching vibration of QDAB [44]. The strong and broad band in the 3100–3550 cm−1

region is assigned to the stretching vibration of −OH groups [39]. The band of the −CH
stretching vibration of alkyl groups is observed around 2925 cm−1 [45]. The characteristics
band of the quaternary ammonium [–N+(CH3)3] group is observed at 1469 cm−1 [13,38].
The stretching bands of Si−O−C and Si−O−Si linkages are observed in the region from
1052 to 1150 cm−1 [46,47], while a small peak at 945 cm−1 is attributed to the stretching
vibration of the silanol (Si−OH) group [48]. The intensity of the stretching vibration of
the –OH band increased with the increase in the QDAB content, as shown in Figure 1.
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The Si−O−C groups were produced from the sol–gel reaction between the hydrolyzed
silanol (Si−OH) of TEOS. The Si−OH groups reacted with the −OH groups of QDAB or
PVA through a cross-linking reaction, forming the Si−O−C group. Hence, the presence of
Si−O−C and Si−O−Si linkages confirmed the condensation and cross-linking reaction
between TEOS, PVA, and QDAB, which led to the development of a cross-linking network
between the inorganic and organic components
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3.2. Ion-Exchange Capacity

The IEC value was measured using Mohr’s titration method to confirm the charged
nature of the AEMs. The influence of QDAB content on the IEC value is depicted in Figure 2
and reported in Table 1. The IEC represents the charged nature of the membrane and is
directly proportional to functional groups fixed in the membrane matrix. The IEC was
mainly contributed by the −N+(CH3)3Cl− functional groups present inside the membrane
matrix. The IEC values of the QDAB membranes increased from 0.86 to 1.46 mmol/g with
the increase in the content of QDAB. These IEC values are comparable to or higher than
those reported for different AEMs [23,32,49,50].

The IEC values of QDAB AEMs increased with the increase in the amount of QDAB,
resulting in greater charge density. These results indicated the successful cross-linking
of QDAB with the PVA chain; the uncross-linked QDAB was washed out during the
membrane fabrication process and showed a constant IEC value.

3.3. Water Uptake and Linear Expansion Ratio

The water uptake and linear expansion ratio of the prepared AEMs are presented
in Table 1 and Figure 3. The water uptake values of QDAB AEMs were in the range of
71.3–147.8%. Moreover, the results showed that the water uptake values increased by
increasing the content of quaternary ammonium groups in hybrid PVA blend membranes.
The water uptake of QDAB membranes showed an increasing trend similar to that of
the IEC values, and QDAB-70 exhibited the highest water uptake values. The higher
hydrophilic nature of the AEMs assisted the transport of ions [13], and more ions were
transported inside membrane matrices with high water uptake.
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The linear expansion ratio (LER) is used to estimate the dimensional stability of AEMs
during the DD process. As shown in Figure 3, as the QDAB loading (30 wt. % to 70 wt. %)
increased in the PVA matrix, LER increased from 28.7 to 39.5%. These results indicate
the flexibility of the AEMs, which means that the membranes are not brittle and showed
swelling resistance. TEOS reacted with −OH group of PVA via the sol–gel reaction, with the
formation of Si−O−Si and Si−O−C linkages which can significantly improve membrane
stability [15]. Hence, these bonds supplied strength to resist linear expansion. It was found
that the membrane with the highest water uptake showed the higher LER. TEOS was used
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as a cross-linker, and the amount of TEOS was the same for all prepared membranes; the
QDAB content increased, which produced a decrease in the degree of cross-linking in the
membrane. Therefore, the cross-linking degree decreased in membranes with a higher
QDAB amount and led to an increase in LER.

3.4. Thermal Stability of QDAB AEMs

The thermal stability of the QDAB members was evaluated using TGA, and the results
are presented in Figure 4. Each thermogram shoes mainly four weight loss steps. The first
step was associated with the removal of bound and unbound water from the membrane
matrix, dequaternization occurred in the second step, the next step involved the removal
of hydroxyl groups from PVA, and finally the degradation of the membrane matrix was
completed. The first step of weight loss in the temperature range of 25–200 ◦C is attributed
to dehydration, i.e., the removal of bounded or unbounded water molecules and water
produced from the condensation reaction during the sol–gel process from the membrane
matrix [28]. With the increase in the amount of QDAB in the PVA matrix, the hydrophilicity
of the membrane increased; therefore, in this step, the QDAB-70 membrane showed the
largest weight loss in comparison with the other QDAB membranes. The weight loss in
the second step from 200 to 330 ◦C is associated with the decomposition of quaternary
ammonium groups and the rupture of the PVA chain. Here, QDAB-70 exhibited a higher
weight loss as compared to the other prepared AEMs. This was due to the increase in
the amount of −N+(CH3)3 functional groups which started to degrade at a relatively
low temperature [51]. The next step from 330 to 490 ◦C is attributed to the elimination
of hydroxyl groups from PVA [52]. In this step, increasing the content of QDAB in the
membrane matrix improved the thermal stability of AEMs. The final degradation stage
from 490 ◦C onwards is the carbonization of the main backbone of polymer chains to ash
residue [53]. The incorporation of QDAB functionality in PVA enhanced the membranes’
thermal stability in this step.
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The TGA thermograms also demonstrated that QDAB has a vital role in thermal
stability, and the prepared QDAB AEMs are thermally stable in nature. Initially, the
QDAB-70 membrane demonstrated higher weight loss compared to the other membranes.
as shown in Table 2. Afterward, the QDAB-70 membrane became thermally stable and
showed less weight loss compared to QDAB-60 in the degradation stage. Similarly, QDAB-
50 and QDAB-40 AEMs underwent a more limited weight loss compared to the QDAB-30
membrane. For example, a 40% weight loss was observed at 381, 376, 371, 365, and 358 ◦C
for the QDAB-70, QDAB-60, QDAB-50, QDAB-40, and QDAB-30 membranes, respectively.
Similarly, 60% weight loss was observed at 441, 438, 421, 411, and 396 ◦C for the QDAB-70,
QDAB-60, QDAB-50, QDAB-40, and QDAB-30 membranes, respectively.

Table 2. Thermal stability of QDAB/PVA-cross-linked AEMs.

Membrane Type T10% (◦C) T40% (◦C) T60% (◦C)

QDAB-30 301 358 396

QDAB-40 296 365 411

QDAB-50 291 371 421

QDAB-60 277 376 438

QDAB-70 268 381 441

3.5. Mechanical Strength of QDAB Membranes

The influence of QDAB content on the mechanical properties of the membranes is
shown in Figure 5. The TS values of the prepared AEMs were in the range of 26.1–41.7 MPa,
whereas the Eb values varied from 68.2% to 204.6%. These values are much higher than
those of hybrid PVA/SiO2 anion exchange membranes with multi-silicon copolymer (TS:
7–12 MPa, Eb: 42–97%) [49], which indicates the superior mechanical strength of our QDAB
hybrid membranes compared to other membrane described in the literature.
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It has been found that an increase in the content of QDAB resulted in a decrease of
TS and an improvement of Eb values. The QDAB-70 membrane had high flexibility and
showed a maximum Eb value as well as a low TS value. The enhancement of the Eb values
with the maximum dosage of QDAB is attributed to soft hydrophilic sites in the QDAB
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compound, which acts as a diluent that reduces the interaction between the long chains
of PVA. Thus, it reduces the tensile strength and enhances the mobility of the PVA chains,
leading to the maximum Eb value of the QDAB-70 membrane [54]. Similar results have
been reported for hybrid membranes and attributed to the miscibility and cross-linking of
organic and inorganic moieties inside a hybrid polymeric membrane [55].

3.6. Morphological Analysis

The influence of QDAB content on membrane morphology was studied by SEM and
arise presented in Figure 6. SEM images suggested that the membrane surface was compact
and dense, without any holes or cracks. Figure 6e shows some aggregates on the surface
of the QDAB-70 membrane due to the accelerated hydrolysis of TEOS with the increase
in QDAB content. It was observed that QDAB was uniformly distributed promoting a
homogeneous structure without any evidence of phase separation. The homogeneity of the
AEMs indicated the compatibility between the QDAB anion exchange precursor and the
PVA matrix. The QDAB anion precursor is effectively cross-linked between PVA and TEOS
with covalent and hydrogen bonds through the sol–gel reaction [34,36]. The aggregations
of particles increased in the AEMs with the increase in the amount of QDAB, as compared
other QDAB AEMs. In the QDAB-70 membrane, a slight phase separation was observed
because of the high anionic content [32]. Therefore, a larger aggregation of silica-rich
particles may occur in the QDAB-70 membrane.

3.7. Acid Recovery Performance of QDAB AEMs via Diffusion Dialysis (DD)

Acidic waste solutions mostly contain metal ions and inorganic acid, which is usually
generated during different industrial processes such as metal electrolysis and metallurgical
and acid cleaning processes [10]. Therefore, to analyze the DD performance properties for
acid recovery, QDAB AEMs were employed to separate a HCl/FeCl2 aqueous solution
(1 M HCl/0.25 M FeCl2) used as a model aqueous waste feed to assess their potential for
application in acid recovery. The DD results of AEMs with different wt. % of QDAB in the
PVA matrix in terms of acid dialysis coefficients (UH), separation factor (S,) and dialysis
coefficient ferrous ion (UFe) at 25 ◦C are shown in Figure 7.

As shown in Figure 7, the acid dialysis coefficients (UH) values of QDAB AEMs
increased rapidly by increasing the content of QDAB, which was attributed to −N+(CH3)3
functional groups that enhanced the interaction between the membrane matrix and ions.
The obtained UH values were in the range of 0.0186–0.0295 m/h and were relatively
higher than those of PVA/QUDAP AEMs (0.008–0.0222 m/h at 25 ◦C) [27]. It was found
that the QDAB-70 membrane with 70 wt. % of QDAB content exhibited the highest UH
value of 0.0295 m/h. The UH value of QDAB-70 AEM was higher than the UH values
of a multi-silicon/BPPO-based membrane (0.025 m/h) [22], a PVA-based hybrid AEM
(0.018 m/h) [38], and a commercial DF-120 membrane (0.009 m/h) [34].

The mechanism of ion transport from the membrane matrix can be depicted by consid-
ering the action of diffusion dialysis, the hydrophilicity, hydrogen bonding, ion exchange
of functional groups, and structure of the membrane matrix [36,49]. The Si−OH group
from TEOS and −OH groups of PVA transport the H+ ions from the membrane matrix
through hydrogen bonds. The existence of hydrogen bonds is beneficial and accelerate
the migration of H+ ions through the membrane [36]. QDAB hybrid membranes possess
−N+(CH3)3 functional groups that act as ion exchange sites to facilitate the migration
of Cl− ions. Therefore, an increase in the content of −N+(CH3)3 group in the polymeric
PVA matrix accelerates the transport of ions. The −N+(CH3)3 groups are beneficial for
anion transport, allowing Cl− ion diffusion in the membrane. Therefore, the available
H+ and Fe2+ cations also cross the membrane from feed side to dialysate side in order to
meet the electrically neutral requirements. H+ ions are transported much more extensively
compared to Fe2+ ion due to their small size and lower valence state [56,57].
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It has been observed that the UFe values increased from the membrane QDAB-30
to the QDAB-70. This was due to the higher water uptake and IEC value of the QDAB-
70 membrane. A high water uptake of QDAB membranes is also beneficial for the free
movement of ions through the membrane matrix that results in the transport of more Fe2+

ions. A higher IEC facilitates the transport of counter anions through the ion exchange
sites [58]. Hence, the increasing trend of UH and UFe from QDAB-30 to QDAB-70 agrees
well with the increase of IEC and of the water uptake values.
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ferrous ion (UFe) in m/h of QDAB/PVP cross-linked AEMs.

The separation factor is the ratio between UH and UFe, which indicates the difference
in transport rates between H+ and Fe2+ ions. The obtained separation factor values were
in the range of 24.7–41.4 and were greater than the reported value of hybrid PVA–SiO2
membranes (15.9–21) at 25 ◦C [32] and of commercial DF-120 AEMs having an S value
of 18.5 [34]. The higher separation factor values are credited to the amplified selective
interaction between the H+ ions and AEMs.

The S values decreased gradually from the membrane QDAB-30 to the QDAB-70. This
decrease was mainly due to the increase of IEC and water uptake in the presence of a higher
QDAB content, resulting in the freel passing of H+ and Fe2+ ions through the membrane
without much resistance by Cl−. This unrestricted transport of Fe2+ ions is not favorable
for membrane selectivity [7]. There is usually a trade-off between UH and selectivity. For
example, QDAB-30 AEM showed the highest S value of 41.4, while it exhibited the lowest
UH of 0.0186 m/h, while QDAB-70 showed the lowest selectivity (S = 24.7) and the highest
UH value (0.0295 m/h).
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In Table 3, we compared our results about acid recovery with those reported in the
literature for AEMs. From the comparison, it can be easily seen that the prepared QDAB
AEMs perform better than or comparably to many other reported membranes and have
potential for acid recovery applications in the industry.

Table 3. Comparison of the DD performance of the membranes described in this work with that of
membranes published in the literature using the HCl/FeCl2 system at 25 ◦C.

Membrane Type UH (m/h) S Ref.

PVA based hybrid 0.011–0.018 18.5–21 [38]

Quaternized aromatic amine/PVA 0.0172–0.0252 14–21 [13]

PVA-SiO2 hybrid 0.0079–0.01 15.9–21 [32]

Porous BPPO based hybrid 0.020–0.025 28.6–45.5 [22]

QPPO/PVA hybrid 0.021–0.049 26–39 [23]

Commercial DF-120 0.009 18.5 [34]

QDAB/PVA hybrid 0.0186–0.0295 24.7–44.1 This Work

4. Conclusions

In this work, novel hybrid AEMs were successfully synthesized with PVA, TEOS,
and varying quantities of QDAB, from 30 to 70 wt. %, by the sol–gel reaction. The FTIR
spectra confirmed the successful cross-linking of QDAB with PVA. IEC increased from
0.86 to 1.46 mmol/g, water uptake increased from 71.3–147.8%, and linear expansion
ratio augmented from 28.7 to 39.5% with the increase of QDAB content in the membrane
matrix. TGA analysis indicated that the membranes have good thermal stability. The
tensile strength was 26.1–41.7 MPa, and flexibility values varied from 68.2% to 204.6%.
SEM analysis showed that the membrane surface was compact and dense. The UOH values
increased from 0.0186 to 0.0295 m/h, while the S values decreased from 41.4 to 24.7 with
the increase of the content of QDAB. QDAB/PVA hybrid AEMs showed high proton
permeability and selectivity compared to the commercial DF-120 AEM. The prepared AEMs
have great potential for application in DD for acid recovery from industrial wastewater.
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