## Supplementary Materials: The Influence of the Mixed DPC:SDS Micelle on the Structure and Oligomerization Process of the Human Cystatin C

Przemyslaw Jurczak <sup>1,\*</sup><sup>(b)</sup>, Emilia Sikorska <sup>1</sup><sup>(b)</sup>, Paulina Czaplewska <sup>2</sup><sup>(b)</sup>, Sylwia Rodziewicz-Motowidlo <sup>1</sup><sup>(b)</sup>, Igor Zhukov <sup>3,4,\*</sup><sup>(b)</sup> and Aneta Szymanska <sup>1,\*</sup><sup>(b)</sup>

## **Supporting information**

Table S1: The values of critical micelle concentrations in PBS buffer, at  $22^{\circ}$ C and  $37^{\circ}$ C, for the surfactants used in this study<sup>1</sup>

| surfactant                   | СМС                                          |
|------------------------------|----------------------------------------------|
| dodecylphosphocholine (DPC)  | 1.36 mM (22ºC)<br>1.39 mM (37ºC)             |
| sodium dodecyl sulfate (SDS) | 1.1 mM (22°C)<br>1.27 mM (37°C)              |
| DPC:SDS 5:1                  | 0.65 mM and 1.18 mM (22°C)<br>0.74 mM (37°C) |

<sup>1</sup>Sikorska, E. et al. Thermodynamics, size, and dynamics of zwitterionic dodecylphosphocholine and anionic sodium dodecyl sulfate mixed micelles *J. Therm. Anal. Calorim.* **2016**, *123*, 511–523.



**Figure S1.** Chromatograms visualizing the separation of (a) *h*CC WT monomer, (b) WT dimer , and (c) V57P using the gel filtration chromatography after incubation for 24 h in the DPC solution at  $22^{\circ}$ C and (d) hCC WT monomer after incubation for 24 h in the DPC solution at  $37^{\circ}$ C (b); dimer retention time - ca. 13.5 min (yellow box), monomer retention time – ca. 16 min (blue box).



**Figure S2.** Chromatograms visualizing the separation of (a) hCC WT monomer, (b) hCC WT dimer and (c) hCC V57P using the gel filtration chromatography after incubation at 22°C for 24 h in the SDS solutions.



**Figure S3.** The structure of *h*CC V57G (a) before and (b) after 80 ns of MD simulation of *h*CC-DPC:SDS mixed micelle interaction; dynamics performed for three NMR structures differing mostly in the positioning of N-terminal part of the protein; NMR structure states: V57G-1 (green), V57G-2 (cyan), V57G-3 (magenta).



**Figure S4.** The structure of *h*CC WT (a) before and (b) after 80 ns of MD simulation of *h*CC-DPC:SDS mixed micelle interaction; dynamics performed for three NMR structures differing mostly in the positioning of N-terminal part of the protein; NMR structure states: *h*CC-1 (green), *h*CC-2 (cyan), *h*CC-3 (magenta).



**Figure S5.** (a) The structure of *h*CC WT (*h*CC-2) monomer before (green) and after (blue) 80 ns of MD simulation of hCC-DPC:SDS mixed micelle interaction; (b) histogram visualizing the percentage of the decrease of solvent accessible surface occurring as a consequence of the interaction between *h*CC V57G monomer and DPC:SDS mixed micelle; (c) a model of *h*CC WT monomer protein interacting with the DPC:SDS mixed micelle, corresponding to the histogram (structure after 80 ns of MD);  $\Delta$ SAS calculated as a difference between the SAS for the protein model without the micelle and protein model surrounded by the micelle.



**Figure S6.** The structure of *h*CC WT (*h*CC-2) and DPC:SDS micelle complex after the MD simulations; insets present magnified fragments of the complex.



**Figure S7.** (a) The structure of *h*CC WT (hCC-3) monomer before (green) and after (blue) 80 ns of MD simulation of *h*CC-DPC:SDS mixed micelle interaction; (b) histogram visualizing the percentage of the decrease of solvent accessible surface occurring as a consequence of the interaction between *h*CC V57G monomer and DPC:SDS mixed micelle; (c) a model of *h*CC V57G monomer protein interacting with the DPC:SDS mixed micelle, corresponding to the histogram (structure after 80 ns of MD);  $\Delta$ SAS calculated as a difference between the SAS for the protein model without the micelle and protein model surrounded by the micelle.



**Figure S8.** The structure of *h*CC WT (*h*CC-3) and DPC:SDS micelle complex after the MD simulations; insets present magnified fragments of the complex.



**Figure S9.** (a) The structure of *h*CC V57G (V57G-1) monomer before (green) and after (blue) 80 ns of MD simulation of *h*CC-DPC:SDS mixed micelle interaction; (b) histogram visualizing the percentage of the decrease of solvent accessible surface occurring as a consequence of the interaction between *h*CC V57G monomer and DPC:SDS mixed micelle; (c) a model of *h*CC V57G monomer protein interacting with the DPC:SDS mixed micelle, corresponding to the histogram (structure after 80 ns of MD);  $\Delta$ SAS calculated as a difference between the SAS for the protein model without the micelle and protein model surrounded by the micelle.



**Figure S10.** The structure of *h*CC V57G (V57G-1) and DPC:SDS micelle complex after the MD simulations; insets present magnified fragments of the complex.



**Figure S11.** (a) The structure of *h*CC V57G (V57G-2) monomer before (green) and after (blue) 80 ns of MD simulation of *h*CC-DPC:SDS mixed micelle interaction; (b) histogram visualizing the percentage of the decrease of solvent accessible surface occurring as a consequence of the interaction between *h*CC V57G monomer and DPC:SDS mixed micelle; (c) a model of *h*CC V57G monomer protein interacting with the DPC:SDS mixed micelle, corresponding to the histogram (structure after 80 ns of MD);  $\Delta$ SAS calculated as a difference between the SAS for the protein model without the micelle and protein model surrounded by the micelle.



**Figure S12.** The structure of *h*CC V57G (V57G-2) and DPC:SDS micelle complex after the MD simulations; insets present magnified fragments of the complex.



**Figure S13.** (a) The structure of *h*CC V57G (V57G-3) monomer before (green) and after (blue) 80 ns of MD simulation of *h*CC-DPC:SDS mixed micelle interaction; (b) histogram visualizing the percentage of the decrease of solvent accessible surface occurring as a consequence of the interaction between *h*CC V57G monomer and DPC:SDS mixed micelle; (c) a model of *h*CC V57G monomer protein interacting with the DPC:SDS mixed micelle, corresponding to the histogram (structure after 80 ns of MD);  $\Delta$ SAS calculated as a difference between the SAS for the protein model without the micelle and protein model surrounded by the micelle.



**Figure S14.** The structure of *h*CC V57G (V57G-3) and DPC:SDS micelle complex after the MD simulations; insets present magnified fragments of the complex.



**Figure S15.** Changes in the distance between mass centers of domains in the *h*CC dimers during MD simulations; the comparison for *h*CC WT and *h*CC V57P dimers.



**Figure S16.** Chromatograms visualizing the oligomerization state of (a) *h*CC WT dimer and (b) a mixture of *h*CC WT monomer:dimer (1:1 molar ratio), using the gel filtration chromatography after incubation at 22°C for 24 h in the DPC:SDS (5:1) mixed micelle solution; *h*CC V57P was used as a dimer marker in (a); dimer retention time – ca. 13.5 min (yellow box), monomer retention time – ca. 16 min (blue box).



**Figure S17.** Overlay of 2D <sup>1</sup>H-<sup>13</sup>C HSQC spectra (fragment) presenting signals from methyl groups recorded for *h*CC V57G protein only (red) and in the presence of the DPC- $d_{38}$ :SDS- $d_{25}$  micelle (blue). The changes in the position of cross peaks detected for a couple of residues. The increased linewidth in <sup>1</sup>H dimension observed for some signals resulting from the interaction with the DPC- $d_{38}$ :SDS- $d_{25}$  micelle corresponds to the increased molecular mass.