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Abstract: In this study, the characteristics of activated sludge flocs were investigated and their effects
on the evolution of membrane fouling were considered in the anaerobic membrane bioreactors
(AnMBR), which were operated at 25 and 35 ◦C for municipal wastewater treatment. It was found that
the membrane fouling rate of the AnMBR at 25 ◦C was more severe than that at 35 ◦C. The membrane
fouling trends were not consistent with the change in the concentration of soluble microbial product
(SMP). The larger amount of SMP in the AnMBR at 35 ◦C did not induce more severe membrane
fouling than that in the AnMBR at 25 ◦C. However, the polysaccharide and protein concentration
of extracellular polymeric substance (EPS) was higher in the AnMBR at 25 ◦C in comparison with
that in the AnMBR at 35 ◦C, and the protein/polysaccharide ratio of the EPS in the AnMBR at 25 ◦C
was higher in contrast to that in the AnMBR at 35 ◦C. Meanwhile, the fouling tendencies measured
for the AnMBRs could be related to the characteristics of loosely bound EPS and tightly bound EPS.
The analysis of the activated sludge flocs characteristics indicated that a smaller sludge particle
size and more fine flocs were observed at the AnMBR with 25 ◦C. Therefore, the membrane fouling
potential in the AnMBR could be explained by the characteristics of activated sludge flocs.

Keywords: anaerobic membrane bioreactor; temperature; membrane fouling behavior; sludge flocs
characteristics; soluble microbial product; extracellular polymeric substance

1. Introduction

Membrane separation technology coupled with an anaerobic bioreactor can be used for municipal
sewage treatment [1]. The anaerobic membrane bioreactor (AnMBR) has attracted a lot of attention
due to the advantages of less sludge production, higher loading rate, better quality effluent, and lower
energy consumption [2]. The anaerobic process can be operated under different temperature [3]. As a
result of the slow anaerobic microorganism growth, a long sludge retention time (SRT) is needed
to achieve better pollutant removal efficiency, especially for municipal wastewater treatment [4].
Although the SRT should be longer than that commonly used at mesophilic temperatures, AnMBR
operation near room temperature is technically feasible for municipal wastewater treatment [5].
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However, due to the limitation of anaerobic microbial metabolism at 25 ◦C, the increased colloid and
dissolved solids content during the anaerobic process may enhance the membrane fouling propensity.
Membrane fouling still is one of the key problems of membrane bioreactor research. Extracellular
polymeric substances (EPS) and soluble microbial products (SMP) are the major causes of membrane
fouling. SMPs are the soluble cellular components secreted by microorganisms, and the EPSs have been
differentiated into the inner layer and the outer layer [6]. The inner layer is mainly composed of tightly
bound EPSs (TB-EPS), and the outer layer is mainly referred to as loosely bound EPSs (LB-EPS) [7].
The content of the LB-EPS and TB-EPS has some effect on the microbial aggregates [8]. Moreover,
some authors indicated that the protein and carbohydrate were considered to be the main reason for
flux reduction [9,10], and other researchers observed that pore blockage and cake layer formation were
significantly enhanced by EPS during MBR operation [11,12]. It has been reported that the proteinous
and carbohydrate EPSs and SMPs were strongly correlated with the type of wastewater [13,14].

Therefore, the purpose of this research was to discuss the membrane fouling mechanisms
in an anaerobic membrane bioreactor for municipal wastewater treatment under two different
temperature conditions. We sought to (1) assess the membrane fouling behavior; (2) investigate the
EPS and SMP characteristics, and (3) analyze the size distribution and morphology of the sludge flocs.
This study would further improve the understanding of membrane fouling behaviors in AnMBR for
wastewater treatment.

2. Materials and Methods

2.1. AnMBRs Operating at Two Different Temperatures

The anaerobic process can be conducted at psychrophilic, mesophilic, and thermophilic
temperature ranges [15]. Under the mesophilic condition, the reactor was usually operated at
35 ◦C [16]. During the conventional experiment, the MBR was often operated under the room
temperature condition, at a temperature of 25 ± 0.5 ◦C [17]. Therefore, two identical AnMBRs operated
at 25 and 35 ◦C were used in this study to discuss the membrane fouling mechanisms in an anaerobic
membrane bioreactor for municipal wastewater treatment under different temperature conditions.
The experimental set-up of the AnMBRs at 25 and 35 ◦C is shown in a previous study [18]. The cylindrical
anaerobic MBR was made of a polymethyl methacrylate, and the volume was 8.0 L. The AnMBR was
equipped with a rounding polyvinylidene fluoride (PVDF) membrane module with a membrane pore
size of 0.22 µm and membrane surface area of 0.2 m2. A water level controller was utilized to maintain
the wastewater volume. The transmembrane pressure (TMP) was recorded by a vacuum meter (YB150,
Yangquan, China). The TMP data presented were based on the measurements conducted after the
AnMBRs reached steady state. The steady state herein refers to the experimental period approximately
after 200 days. Once the TMP reached 30 kPa in the AnMBRs, the membrane modules were taken out
and cleaned. The modules were reloaded into the bioreactors to run the next hydraulic retention time
(HRT) after cleaning. Furthermore, the effluent pump was operated intermittently in scheduled mode.
The bioreactor temperature was maintained at scheduled temperatures.

2.2. Operating Parameters of the AnMBRs

Simulated municipal sewage was used as feed water for the AnMBRs at 25 and 35 ◦C, according to
previous study [18]. Activated sludge from sewage treatment plant (Harbin, China) was used as
inoculum for the AnMBRs at 25 and 35 ◦C. The sludge retention time (SRT) and the HRT were
maintained at 370 days and 24 h, respectively. The sludge concentration (MLSS) was 5861 mg/L and
6024 mg/L for the AnMBR at 25 and 35 ◦C, respectively, and the MLSS concentrations of the AnMBRs
had little change during the whole long-term operation process.
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2.3. SMP and EPS Preparation from Anaerobic Membrane Bioreactor

The SMP and EPS was prepared based on the following procedure. First, the sludge mixture was
centrifuged for 5 min with 5000 rpm. Second, the collected supernatant was filtered by microporous
membrane. The collected filtrate was considered to be SMP. The LB-EPS and TB-EPS were extracted
according to previous research and measured for the amount of proteins and carbohydrates [19].
EPS content was characterized by the sum of protein and polysaccharide per gram of dry sludge.
All the above analyses were performed in triplicate, and their average values were listed.

2.4. Analytical Methods

Proteins and carbohydrates were analyzed by the Lowry method [20] and the phenol–sulfuric
method [21], respectively. Excitation–emission matrix (EEM) spectra (FP 6500, JASCO, Tokyo, Japan)
were obtained according to a previous study [22]. The morphological characteristics of the activated
sludge were investigated by the floc size distribution and sludge flocs morphology. Particle size
distribution (PSD) was analyzed through a Mastersizer 2000 coupled to Hydro 2000SM (A) with a
detection range of 0.02–2000 µm (Mastersizer 2000, Malverin, England). The sludge floc morphology
was investigated by microscopy (BX51, Olympus, Tokyo, Japan) and the images were obtained.
The EEM spectra and PSD were conducted in triplicate, and only the representative results are reported
in the paper. In total, 12 different sludge floc morphology images of each sample were obtained, and the
representative images are shown in the research.

3. Results and Discussion

3.1. Membrane Fouling Behavior

The changes in TMP throughout the experimental period are illustrated in Figure 1. The TMP
generally increased with time and reached low values (1.45 kpa for the AnMBR at 35 ◦C, 3.1 kpa for the
AnMBR at 25 ◦C) at the initial 90 d in the two AnMBRs. However, the TMP jumped to 19.4 kpa at 106 d
in the AnMBR at 25 ◦C, while the TMP in the AnMBR at 35 ◦C remained stable and never underwent
transition during the 180-day operation. Obviously, the membrane fouling rate of the AnMBR at 25 ◦C
increased more slowly than that of the AnMBR at 35 ◦C. The mixed liquor in the AnMBR at 25 ◦C
exhibited consistently higher membrane fouling propensity than the mixed liquor in the AnMBR at
35 ◦C. It is believed that membrane fouling is mainly induced by SMP and EPS [23,24]. We aimed to
clarify the reason for different membrane fouling rates between the AnMBR at 25 ◦C and the AnMBR
at 35 ◦C; the characteristics of the SMP and EPS are studied in the following sections.
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3.2. Changes in Concentrations of SMP

The variations in carbohydrate and protein contents for SMP are illustrated in Figure 2 during
the operation time. This shows that the content of SMP of the two AnMBRs at 35 and 25 ◦C had
the same tendency. Figure 2a illustrates the variations in the carbohydrate concentration in SMP
throughout the experimental period. It was found that the carbohydrate concentrations were increased
in the beginning 120 days in the supernatant and permeate of the anaerobic membranes, and then the
carbohydrate concentrations were kept relatively stable in the following period.
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Figure 2. The changes in carbohydrate (a) and protein (b) contents in soluble microbial products (SMP)
during the operation time.

Figure 2b shows the protein concentration in SMP of the two AnMBRs at 35 and 25 ◦C. The protein
content seemed to be less affected by the long-term operation. Though the protein content in SMP of
the AnMBR at 35 ◦C was slightly higher than that in SMP of the AnMBR at 25 ◦C, the protein content in
the permeate of the AnMBR at 35 ◦C was dramatically lower than that in the permeate of the AnMBR
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at 25 ◦C. Although the carbohydrate and protein contents of the AnMBR at 35 ◦C in the supernatant
were slightly higher than those of the AnMBR at 25 ◦C, this difference was small and was assumed not
to cause a significant change in sludge filterability. Therefore, the membrane fouling trends were not
consistent with the change in the concentrations of SMP, and the content of SMP was obviously not
indicative of the fouling tendencies of the two AnMBRs.

3.3. Changes in Concentrations of EPS

EPS was commonly considered to be the main reason for membrane fouling in MBR [25].
The content changes in carbohydrate and protein of LB-EPS and TB-EPS are shown in Figure 3a,b
in the two AnMBRs at 35 and 25 ◦C against the operation time. It can be seen from Figure 3a that
the carbohydrate in TB-EPS was more than that in LB-EPS in both the two AnMBRs at 35 and 25 ◦C.
Meanwhile, the carbohydrate in LB-EPS and TB-EPS of the AnMBR at 35 ◦C was less than that in
LB-EPS and TB-EPS of the AnMBR at 25 ◦C.
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Figure 3. The variations in carbohydrate (a) and protein (b) contents and the proteins (PN)/polysaccharides
(PS) ratio for extracellular polymeric substances (EPS) (c) in the two anaerobic membrane bioreactors
(AnMBRs) at 35 and 25 ◦C against the operation time.

The protein content of LB-EPS and TB-EPS in the two AnMBRs at 35 and 25 ◦C is listed in
Figure 3b. It was found that the protein concentrations declined slowly for the LB-EPS and TB-EPS in
the two AnMBRs at 35 and 25 ◦C, but the values for the LB-EPS and TB-EPS in the AnMBR at 25 ◦C
were significantly higher than those in the AnMBR at 35 ◦C. It was seen that protein was the main
component of the EPS. It has been reported that LB-EPS plays a more important role in membrane
fouling compared to TB-EPS [26]. In this research, the content of LB-EPS and TB-EPS in the sludge
flocs showed a relationship with the fouling tendency. The polysaccharide and protein concentration
of LB-EPS and TB-EPS were higher at the AnMBR with 25 ◦C compared those at AnMBR with 35 ◦C,
which may result in the faster fouling propensity in AnMBR at 25 ◦C.

The variation in the proteins (PN)/polysaccharides (PS) ratio for EPS with operation time is
presented in Figure 3c. Obviously, the PN/PS ratio for EPS of AnMBR at 35 ◦C was lower than that
for EPS of AnMBR at 25 ◦C. In the course of the experiment, the average PN/PS ratio for EPS in the
AnMBR at 35 ◦C was 4.88, which was 10% lower than that in the AnMBR at 25 ◦C (5.40). It has been
found that the PN/PS ratio of EPS could indicate the membrane fouling trend of sludge flocs [27].
Therefore, with respect to the AnMBR at 35 ◦C, the lower PN/PS ratio for the EPS could lead to less
membrane fouling than that in the AnMBR at 25 ◦C. Additionally, it had been reported that the PN/PS
ratio reduction of EPS could cause a decrease in floc hydrophobicity [27]. It was for this reason that the
sludge deposition on the membranes was reduced and the fouling layer caused by the sludge flocs
would be mitigated in the AnMBR at 35 ◦C.

In the present study, mixed liquor samples with higher polysaccharide and protein content and
protein/polysaccharide ratio in EPS were observed to have greater potential to foul membranes during
the AnMBR operation at 25 ◦C. It was suggested that the EPS in the mixed liquor, particularly the
carbohydrates and protein substances, were the major substances that accumulated on the membranes
and consequently caused membrane fouling.

3.4. Characteristics of SMP and EPS

EEM analysis was used to study the characteristics of SMP and EPS in the two AnMBRs at 35 and
25 ◦C, which provides spectral information about the aromatic protein-like and tryptophan protein-like
compounds [28]. It can be seen from Figure 4 that the EEM spectra all showed two peaks for the SMP
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and EPS in the mixed liquor suspension of the two AnMBRs at 35 and 25 ◦C. At the excitation/emission
wavelengths (Ex/Em) of 230–240 nm/335–350 nm (Peak A), the peak was considered to reflect aromatic
protein-like substances, and at the Ex/Em of 280 nm/330–340 nm (Peak B), the peak was associated
with the tryptophan protein-like substances [29].
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Figure 4. Excitation–emission matrix (EEM) spectra of SMP (a), loosely bound EPS (LB-EPS) (b) and
tightly bound EPS (TB-EPS) (c) in the AnMBR at 35 ◦C (1) and the AnMBR at 25 ◦C (2).

It was found that the peak relative dominance for protein-like substances in the SMP extracted
from AnMBR at 35 ◦C was stronger than that extracted from AnMBR at 25 ◦C; however, the peak
intensity of protein-like substances for the LB-EPS and TB-EPS extracted from AnMBR at 25 ◦C were
stronger than those extracted from AnMBR at 35 ◦C. The trends in the EEM spectra intensity for LB-EPS
and TB-EPS coincided with the fouling tendencies monitored for the two AnMBRs at 35 and 25 ◦C.
It was demonstrated that the protein-like substances in the LB-EPS and TB-EPS had an important effect
on the membrane fouling development in the AnMBR at 35 ◦C and the AnMBR at 25 ◦C. Taking into
consideration the results of EEM fluorescence spectra analyses, indicating that the EPS in the AnMBR
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at 25 ◦C showed more proteinaceous characteristics, it can be inferred that the protein-like substances
are abundant in EPS of the AnMBR at 25 ◦C, which would cause severe membrane fouling.

3.5. Morphology Characteristics of the Sludge Flocs and Their Effects on Membrane Fouling

The PSD of activated sludge in the two AnMBRs at 35 and 25 ◦C is listed in Figure 5. There are
obvious differences between the two AnMBRs at 35 and 25 ◦C, indicating that operation temperature
had significant impact on PSD in the two AnMBRs at 35 and 25 ◦C. At the steady state of the AnMBR
at 35 ◦C, the particle size of 90% sludge flocs was less than 383.579 µm, and the particle size of 90%
sludge flocs was less than 180.043 µm in the AnMBR at 25 ◦C. A previous study reported that sludge
particles with smaller particle sizes could be easily deposited on the membrane surface to form a cake
layer [30]. The reason was that the back transport velocity of the particles reduced with the decrease of
their size [31]. Thus, one of the reasons for the more severe membrane fouling trend in the AnMBR at
25 ◦C could be attributed to the smaller particle size of flocs, inducing serious cake formation.
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The sludge floc structure in the two AnMBRs at 35 and 25 ◦C is shown in Figure 6. It was illustrated
that the sludge floc size was lower in the AnMBR with 25 ◦C condition than that in the AnMBR with
35 ◦C condition. Compared to that in the AnMBR under 35 ◦C conditions, the decrease in floc size
in the AnMBR under 25 ◦C conditions could be owing to the effect of the lower temperature on the
growth rate of anaerobic microorganisms, which caused the lower sludge aggregation.

As seen from the microscopic analysis, the amount of fine flocs in the AnMBR at 25 ◦C was more
than that in the AnMBR at 35 ◦C. Consequently, the greater quantity of small sludge flocs in the AnMBR
at 25 ◦C might have contributed to the more severe membrane fouling compared to the AnMBR at
35 ◦C. Thus, the membrane fouling propensity for the AnMBR at 25 ◦C was higher than that for the
AnMBR at 35 ◦C. It has been indicated that more LB-EPS in EPS could reduce floc bioflocculation and
affect the floc structure [8]. Therefore, the LB-EPS concentration was higher in the AnMBR at 25 ◦C
compared to that in the AnMBR at 35 ◦C, which may result in the higher fouling propensity.
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4. Conclusions

In this study, sludge floc characteristics were analyzed and their effect on membrane fouling
was researched for anaerobic membrane bioreactors (AnMBR). The temperature differences between
the two AnMBRs resulted in a number of different physical and biochemical properties of mixed
liquor that seemed to be related to the differences in the fouling behaviors of the two types of sludge.
It was found that the mixed liquor in the AnMBR at 25 ◦C exhibited consistently higher membrane
fouling propensity than the mixed liquor in the AnMBR at 35 ◦C. The content of EPS in the sludge flocs
showed a relationship with fouling tendency. Mixed liquor samples with higher polysaccharide and
protein content and protein/polysaccharide ratio in EPS were observed to have greater potential to foul
membranes during the AnMBR operation at 25 ◦C. Meanwhile, the EEM spectra peak intensities of
protein-like substance for the LB-EPS and TB-EPS extracted from the AnMBR at 35 ◦C were stronger
than those extracted from the AnMBR at 35 ◦C. The content of EPS (especially polysaccharide and
protein substances) in the activated sludge mixed liquor was concluded to be a key index to assess the
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fouling propensity. Furthermore, the sludge particle size was smaller and a larger amount of fine flocs
was found in the AnMBR at 25 ◦C. Thus, one of the reasons for the raised membrane fouling potential
in the AnMBR at 25 ◦C could be attributed to the EPS and sludge floc characteristics.
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