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Abstract: In the last 50 years, plasticized polyvinyl chloride (PVC) membranes have gained unique
importance in chemical sensor development. Originally, these membranes separated two solutions
in conventional ion-selective electrodes. Later, the same membranes were applied over a variety
of supporting electrodes and used in both potentiometric and voltammetric measurements of ions
and electrically charged molecules. The focus of this paper is to demonstrate the utility of the
plasticized PVC membrane modified working electrode for the voltammetric measurement of highly
lipophilic molecules. The plasticized PVC membrane prevents electrode fouling, extends the detection
limit of the voltammetric methods to sub-micromolar concentrations, and minimizes interference by
electrochemically active hydrophilic analytes.

Keywords: chemically modified electrodes; membrane-coated voltammetric sensors; antidepressant
and immunosuppressant drugs; detection limit; resolution

1. Introduction

There are a few areas of analytical chemistry where conventional methods have been
almost completely displaced by electrochemical sensor-based measurements [1,2]. In these areas,
the electrochemical sensors were integrated into fully automated clinical laboratory analyzers,
e.g., ion-selective electrodes (ISEs), and/or incorporated into hand-held instruments for short
turnaround time (STAT) point of care testing (POCT) devices, e.g., sensors for measuring blood
glucose concentrations [3]. The most essential parts of the sensors used in these applications are
unique membranes that, beyond individual measurements in small sample volumes, also permit
interference-free continuous monitoring of essential analytes in complex biological matrices like sweat,
urine and whole blood [4,5]. However, the role and function of the membranes utilized in the various
sensors are often fundamentally different. For example, in potentiometric ISEs, the membrane is
the sensing element of the sensor that provides the analytically relevant, concentration-dependent
signal [6]. In contrast, in voltammetric sensors, various membranes and coatings are used to enable
or improve the analytical signal of a Pt, Au or glassy carbon (GC) working electrode. The latter is
the concept of chemically modified electrodes (CMEs) [7,8]. By selecting the proper modifications,
desirable properties (e.g., selectivity or detection limit) may be achieved, and electrode fouling can
be prevented. The goal of this mini-review is to show the evolution of a new class of voltammetric
sensors with unique selectivities and exceptional detection limits that are based upon sensor structures
and membranes, which are most commonly utilized in solid contact ISEs. In line with this goal, we first
describe the structure of membrane separated, conventional electrochemical cells with symmetric and
asymmetric contacts that are used for potentiometric measurements of anions and cations (Schemes 1
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and 2). Next, we show the similarities in the layer structure of these electrochemical cells and cells
utilizing membrane-coated working electrodes for the measurement of redox-inactive cations and
anions by ion transfer voltammetry (Scheme 3b). Finally, through selected examples, we demonstrate
that the membrane coating on the working electrode surface can be utilized for the selective extraction
and simultaneous measurement (oxidation or reduction) of highly hydrophobic, electrochemically
active compounds (Scheme 3a).
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In conventional potentiometric sensors, the sensing membrane separates two solutions, the sample
and the filling solution of the sensor, and the membrane potential is measured at zero current between
two reference electrodes on the opposite sides of the membrane (Scheme 1). In 1971, Cattrall and
Freiser [9] designed a simple compact electrode by dip-coating a Pt wire with ion-selective membrane
(ISM) (Scheme 2a, coated wire electrode). Since the interface between the electron-conducting metal and
the ion-conducting membrane in coated wire-type electrodes is not thermodynamically well defined
(blocked interface) [10], these electrodes often have significant drift. The drift may also be related to
the detachment of the membrane from the metal electrode surface and the formation of a thin water
layer between the substrate electrode and the membrane [11,12]. To overcome some of the deficiencies
of the coated wire electrode, an ion-to-electron transducer layer, generally a conductive polymer
(CP) layer, has been sandwiched between the electron-conducting substrate and the ISM (Scheme 2b,
solid contact ion-selective electrodes). In solid contact ISEs, the ISM is deposited directly over the
conductive polymer by drop-casting or spin-coating (double polymer membrane modified electrodes).
In electrochemical cells utilizing solid contact ISEs, the membrane potential is measured between the
solid contact and the external reference electrode placed in the sample solution. The electrochemical
notation of solid contact ISEs is shown in Scheme 2. In Schemes 1 and 2, ISM represents the ion-selective
membrane, CP stands for conductive polymer, vertical lines represent phase boundaries, and two
vertical lines represent a liquid/liquid junction. Under ideal conditions, each phase boundary is in
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thermodynamic equilibrium and the composition of the contacting phases, including the ion-selective
membrane (ISM), is constant [6].

The layer structure of membrane-modified voltammetric sensors can be the same as that of solid
contact ion-selective electrodes (Scheme 3a,b) or significantly more complex (Scheme 3c). The more
complex layer structure is needed to enable the voltammetric sensors to be used for quantitative
measurements in complex matrices. Although the oxidation and reduction of organic molecules on
electrode surfaces offer almost limitless possibilities for both batch [13] and flow-analytical [14,15]
measurements for a variety of analytes, beyond some exceptions, voltammetric sensors are mainly
used in research laboratories [16]. The limited spread of practical analytical methods based on
voltammetric sensors can be traced back to three main causes: (i) limited selectivity of voltammetric
measurements and the difficulty of eliminating the influence of interfering compounds on the
voltammetric signal; (ii) inadequate detection limit of the voltammetric methods and the challenges
of quantification of analytes at sub-micromolar concentration; (iii) inconsistency of the voltammetric
signals due to electrode fouling. Since the voltammetric signal (the measured current) is a function
of the working electrode surface area, contaminations of the electrode surface from the sample or
as a consequence of the electrochemical reactions may contribute to a negative or positive bias in
the analytical signal. When resistive layers build up on or around the sensing surface, the sensor
may lose its utility because its signal deteriorates and/or its response slows down. The buildup of
resistive layers and encapsulation of sensors is most relevant during in-vivo applications when the
sensors are implanted into tissues for monitoring. The issue is related to the biocompatibility of
the sensors and the “sensor compatibility” of the environment where it is working [16–18]. While
unwanted precipitation or adsorption processes may reduce the response of a voltammetric working
electrode, targeted manipulation of the surface chemistries can enhance its electrochemical response,
e.g., improve the selectivity or detection limit, prevent electrode fouling, etc. However, the “proper
modifications” may require multi-layer constructions, as shown in Scheme 3b,c. For example, in
ion-transfer voltammetry, double polymer membrane modified electrodes are used, [19–21] and the Pt
working electrode surface of the voltammetric enzyme sensor for the measurement of glucose in whole
blood is generally coated by a selectivity enhancing layer, a biocatalytic layer and a mass transport
controlling layer. Each of these layers have specific roles for adequate voltammetric response.

Within the large family of CMEs, voltammetric working electrodes with an organic film coating
on their surfaces represent a special group. When the aqueous phase (sample) contains hydrophilic
electrolyte and the organic film is loaded with a hydrophobic electrolyte, then the organic film/sample
solution interface behaves analogously to polarizable working electrodes which can be used to drive
ions across the aqueous/organic interface. The analytical signal is the current related to the ion-transfer
of the measured ions across the aqueous/organic interface. The analytical methods utilized in
combination with double membrane-coated working electrodes (Scheme 3b) evolved from ion-transfer
voltammetry at the interface between two immiscible electrolyte solutions (ITIES) [20]. ITIES was
developed for the measurement of redox-inactive, generally hydrophilic anions and cations [22–24],
but has also been utilized for the voltammetric ion transfer of biologically relevant polyions such
as heparin [25,26] and protamine [27]. ITIES is attractive because it enables the measurements of
ions without their electrolysis [20,28]. With the double membrane arrangement, i.e., a conductive
polymer-supported thin plasticized PVC membrane, as shown in Scheme 2b, the oxidation or reduction
of the conductive polymer drives the transfer of anions or cations into the PVC membrane, respectively
(Figure 1). The selectivity of the method is related to differences in the solvation energies of the
different ions which can be facilitated by incorporating selective ionophores and or ion-exchange
sites in the polymeric membranes [22–24] and enhanced by kinetic effects of ion hydrophobicity [29].
Using an adequate applied potential, the analyte ions can be concentrated in the organic phase.
Following concentration, the ions can be stripped from the organic phase into the aqueous phase using
a voltammetric technique, e.g., linear sweep voltammetry. By using a highly plasticized, ionophore
loaded ion-selective membrane as the organic phase over a conductive polymer layer for ITIES, as in
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Scheme 2 and Figure 1, in combination with stripping voltammetry, subnanomolar concentrations can
be measured for both cationic [30] and anionic [21,23] analytes.
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Figure 1. Schematic representation of the processes during the concentration (black arrows)
and stripping (red arrows) of cations using a conductive polymer/plasticized PVC membrane
modified electrode. The 18-crown-6 molecule in the PVC membrane represents any selective ionophore
which may be used in this arrangement.

In contrast to the ion-transfer voltammetric methods, the single membrane-coated working
electrode (Scheme 3a) is used for the measurement of electrochemically active highly lipophilic
analytes [31,32]. The highly lipophilic analytes spontaneously partition into the membrane where
their oxidation/reduction provides the analytical signal. Consequently, these measurements can be
considered as voltammetric determinations in a non-aqueous phase, i.e., within the membrane coating.
Accordingly, potential sweep and potential step methods, with or without the integration of the
recorded current, can all be used in combination with this electrode. The selectivity and detection limit
of this working electrode is related to the membrane/solution partition coefficient of the analyte and
interfering compounds.

2. Materials and Methods

2.1. Membranes and Membrane Deposition

For the preparation of membranes poly(vinyl chloride) (PVC, high molecular weight),
and bis(2-ethylhexyl)sebacate (DOS) were purchased from Sigma-Aldrich, St. Louis, MO, USA.
Tetradodecylammonium tetrakis(pentafuorophenyl)borate (TDDA-TPFPhB) was prepared by
metathesis reaction between tetradodecylammonium chloride (TDDACl) (Sigma-Aldrich, St. Louis,
MO, USA) and high purity sodium tetrakis-(pentafluorophenyl)borate (KTPFPhB) (Boulder Scientific
Company, Mead, CO, USA) in dichloromethane. PVC membrane solutions were prepared by dissolving
25 mg PVC, 50 mg DOS, 22 mg TDDA-TPFPhB and 3 mg NaTPFPhB in 1 mL freshly distilled of
tetrahydrofuran (THF) (Sigma-Aldrich, St. Louis, MO, USA). This membrane cocktail was used to
spin-coat the surface of a 3 mm diameter glassy carbon (GC) electrode (Model MF-2012, BASi, West
Lafayette, IN, USA). Before the membrane deposition, the surface of the GC electrode was polished on
wet microcloth pads using Al2O3-based slurry (Mager Scientific, Dexter, MI, USA) with grain sizes of 1,
0.3 and 0.05 µm [31]. For spin-coating, the electrode was secured in the three-jaw chuck of a Dewalt 20V
MAX drill press (Baltimore, MD, USA) and dipped into a PVC membrane cocktail. After the removal
of the electrode from the cocktail, it was rotated for 60 s at 2000 rpm and left in an upright position
until the complete evaporation of THF. This protocol resulted in 1–3 µm thick PVC membrane-coating
on the electrode surface. For spin-coating the CHI Model 131 electrode, which was used in the CHI
Model 130 flow cell, a KW-4 spin coater (SETCAS LLC, San Diego, CA, USA) was employed at 1650
RPM rotation rate. While the GC electrode was rotated, 50 µL of the membrane solution was dropped
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on the center of the electrode. The GC electrode was rotated for 3 min and then was left for 3 h for
complete THF evaporation.

2.2. Batch Measurements with Linear Sweep Voltammetry and Chronoamperometry

Linear sweep voltammetry (LSV), and chronoamperometry (CA) experiments using the PVC
membrane-coated GC electrodes were performed in pH ~7.2 phosphate buffered saline (PBS) buffer
solution with 0.1 mol/L potassium chloride (KCl) (Sigma-Aldrich, St. Louis, MO, USA) or whole
blood, with ~0.17% Ethylenediaminetetraacetic acid (EDTA) as anticoagulant, using a GC rod and a
single junction silver/silver chloride (Ag/AgCl) 1 mol/L KCl reference electrode as the counter and
reference electrodes, respectively. The PBS buffer (pH ~7.2) was prepared as a mixture of 0.1 mol/L
KH2PO4 (Sigma-Aldrich, St. Louis, MO), 0.1 mol/L K2HPO4 (Sigma-Aldrich, St. Louis, MO), 0.1 M KCl,
and 0.045 mol/L NaOH (Sigma-Aldrich, St. Louis, MO). The PBS buffer solutions were spiked with
stock solutions of ascorbic acid (AA)(Acros Organics, a Thermo Fisher Scientific Subsidiary, Waltham,
MA, USA), p-acetamino phenol (APAP) (Sigma-Aldrich, St. Louis, MO, USA) and the individual
drugs. The LSV scans were performed between 0 and 1.4 V at 0.1 V/s scan rate. The CA experiments
were performed at the peak potentials determined in the LSV experiments for the individual drugs.
The calibration curves were recorded by spiking a PBS background electrolyte or whole blood by stock
solutions. For the voltammetric measurements, a CH Instruments (Austin, TX, USA) model CHI 842B
potentiostat was used with CH Instruments software version 18.01.

2.3. Chronoamperometry in a Continuous Flow Analysis Mode

For the continuous flow analysis (CFA) measurements, a CH Instruments model CH130 thin
layer flow cell was used. In the thin layer cell, the PVC membrane-coated GC working electrode was
used in combination with an Ag|AgCl|3.0 mol/L sodium chloride (NaCl) reference electrode and a
stainless steel counter electrode. The cell was connected with a Gilson Minipuls 3 peristaltic pump and
Hamilton modular valve positioner. The standard solutions in 0.1 mol/L, pH ~7.2 PBS were transported
by 0.5 mL/min flow rate.

3. Results

Voltammetric Measurement of Highly Lipophilic Molecules

In voltammetric analysis, the modification of the working electrode surface may be motivated by
various reasons, e.g., to improve the selectivity, sensitivity and detection limit of the method [33,34].
By coating a working electrode surface with an organic film, e.g., a plasticized PVC membrane,
analyte molecules spontaneously partition into the membrane. For highly lipophilic analytes, it means
that the analyte concentration in the membrane can be orders of magnitudes larger than in the aqueous
sample. Since the analytically relevant signal of the membrane-coated sensor is proportional to the
analyte concentration in the membrane, the attainable detection limit with the membrane-coated sensor
is expected to be much lower compared to measurements with an unmodified working electrode.
The extension of the detection limit towards lower concentrations can be estimated from the current
ratio (or slope/sensitivity ratio), which is expected at a given concentration with or without coating the
working electrode surface. The correlation between the measured current and the concentration in
linear sweep voltammetry (LSV) using a macroelectrode is described by Equation (1) (Randles–Sevcik
equation) and for micro disc electrodes at steady state by Equation (2). The corresponding current
ratios are provided by Equations (3) and (4), respectively.

ip,w =
(
2.69× 105

)
n3/2ADw

1/2cwv1/2 (1)

iL,w = 4nFDwrcw (2)
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ip,m

ip,w
=

Dm
1/2cm

Dw
1/2cw

(3)

iL,m

iL,w
=

Dmcm

Dwcw
(4)

where ip,w, ip,m and iL,w, iL,m are the peak or limiting currents in amperes, respectively, n number of
electrons involved in the electrochemical reaction, F (C/mol) is the Faraday number, A

(
cm2

)
is the

surface area of the electrode, r (cm) is the radius of the micro disc electrode, D
(
cm2/s

)
is the diffusion

coefficient, c
(
mol/cm3

)
is the concentration and v (V/s) is the scan rate. The subscripts w or m indicate

the currents, concentrations, and diffusion coefficients in water or in the membrane phase.
The analyte concentration in the membrane can be estimated using the octanol/water partition

coefficient (Po/w):

Po/w =
co

cw
(5)

where co and cw are the concentrations of an analyte in n-octanol and water. As a consequence of the
difference in the current versus concentration relationship for macro and microelectrodes (Equations
(1) and (2)), the combination of Equation (5) with Equations (3) and (4) shows a significant difference in
the expected signal amplification with a membrane-coated macro (Equation (6)) or micro (Equation (7))
electrode. Related to Equations (6) and (7), it must be emphasized that for more realistic estimates of
the signal amplification, Po/w should be replaced by Pm/w, the membrane-water partition coefficient.

ip,m

ip,w
=

Dm
1/2cm

Dw1/2cw
= Po/w

√
Dm

Dw
(6)

iL,m

iL,w
=

Dmcm

Dwcw
= Po/w

Dm

Dw
(7)

As an example, Equations (6) and (7) were applied to calculate the expected signal amplification
for a lipophilic and a hydrophilic drug. The highly lipophilic anesthetic drug propofol
(logPo/w(Propo f ol) ≈ 3.8) and p-acetamino phenol (APAP) (logPAPAP ≈ 0.31), a potential interfering
compound during propofol measurement, were selected as characteristic examples. As a diffusion
coefficient in the aqueous solution, Dw ≈ 7× 10−6cm2/s was used [35]. For the diffusion coefficients in
the membrane, Dm = 2× 10−8 cm2/s and Dm = 2× 10−7 cm2/s were used [36,37]. These values were
reported as ionophore diffusion coefficients in the ion-selective membranes [36] or calculated from the
scan rate dependence of the peak current (Equation (1)) [37] in plasticized PVC membranes with 1 to 2
PVC to plasticizer ratio. The results of these calculations are summarized in Table 1.

Table 1. Peak current ratios (ip,m/ip,w) which would be expected if linear sweep voltammetry (LSV)
experiments were performed with or without coating the working electrode surface with a plasticized
PVC membrane in solutions of the same concentration.

(ip,m/ip,w)propofol (ip,m/ip,w)APAP

Dm=2×10−8cm2/s Dm=2×10−7cm2/s Dm=2×10−8cm2/s Dm=2×10−7cm2/s

Macroelectrode, Equation (6) 337 1066 0.11 0.35
Microelectrode, Equation (7) 18.0 180 0.006 0.06

As shown in the Table 1, a remarkable signal amplification can be achieved (ip,m/ip,w � 1)
with highly lipophilic drugs (analyte with large Po/w), while the signal for hydrophilic drugs is
reduced compared to an uncoated electrode. The amplification of the analyte signal increases the
signal to noise and signal to background current ratios. Thus, it can be assumed that the signal
amplification is inversely proportional to the detection limit. Consequently, detection limits in the
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lower nanomolar concentrations may be attainable with voltammetric methods utilizing organic
membrane-coated working electrodes. However, there are significant differences in the expected signal
amplification with macro and microelectrodes. While microelectrodes have unique advantages for
voltammetric measurements in highly resistive media, like the plasticized polymeric membranes (small
IR potential drop), the detection limit using LSV is expected to be better with the membrane-coated
macroelectrode. The difference is related to the influence of the diffusion coefficient on the current signal,
i.e.,
√

Dm for macroelectrodes but Dm for microelectrodes.
On the other hand, the discrimination against hydrophilic interferences is expected to be the same

with the membrane-coated macro and microelectrode. It depends only on the partition coefficients of
the drugs. Using the octanol/water partition coefficient of propofol and APAP, we get:

discrimination =
Ppropo f ol

o/w

PAPAP
o/w

=
6309
2.04

= 3090

The discrimination can also be determined experimentally from the ip,m/ip,w or calibration slope
ratios for the analyte and the interfering compound. Using the data in columns 2 and 4 of Table 1
provides the same results for both the macro and the microelectrode:

discrimination =

(
ip,m
ip,w

)
propo f ol(

ip,m
ip,w

)
APAP

=
(337.26

0.109

)
macroelectr.

=
( 18.03

0.0058

)
microelectr.

= 3090

In Figure 2, linear sweep voltammograms recorded with a bare and a membrane-coated electrode in
ascorbic acid (AA) and p-acetamino phenol (APAP) solutions are shown to demonstrate the effectiveness
of the organic membrane coating for minimizing the interference of electrochemically active, hydrophilic
compounds on the voltammetric signal. As seen in the insets, 49.8 µmol/L AA did not result in any
measurable current signal with the PVC membrane-coated electrode, while in the 117.6 µmol/L
solution of APAP solutions, the current signal was about 20 times lower than with the bare electrode.
The difference between AA and APAP is related to the difference in their partition coefficients [38]:
logPAA = −1.84 and logPAPAP = 0.31.
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Figure 2. Linear sweep voltammograms recorded with a bare and a membrane-coated electrode in 49.8
µmol/L ascorbic acid (AA) (left) and 117.6 µmol/L p-acetamino phenol (APAP) (right) solutions.
The insets show the membrane-coated sensor signal with much higher resolution in the
current scale. The PVC membrane composition is 25% PVC, 50% bis(2-ethylhexyl)sebacate (DOS),
22% tetradodecylammonium tetrakis(pentafuorophenyl)borate (TDDA-TPFPhB) and 3% sodium
tetrakis[3,5bis(trifluoromethyl) phenyl] borate (NaTFPhB).

In Figure 3, the processes during voltammetric measurements of propofol with the PVC
membrane-modified electrode are summarized. The plasticized PVC membrane used for coating
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the GC electrode surface was similar to membranes used in ionophore-based ion-selective electrodes
and for ITIES measurement of charged molecules [19,21,23]. However, when these membranes are
used in voltammetric measurements, they must also contain a lipophilic background electrolyte,
e.g., tetradodecylammonium tetrakis(pentafluorophenyl) borate (TDDATPFPhB). These membranes
are labeled as “liquid membranes” due to their very high plasticizer content (up to 86%) [39] in
which the diffusion coefficients are similar to viscous solutions. Highly lipophilic compounds like
propofol preferentially partition in the membrane plasticizer in which the voltammetric measurement
is performed. The enrichment of the analyte in the plasticized PVC membrane is controlled by the
partition coefficient of the analyte. The logarithm of the octanol/water partition coefficient (logPo/w) of
propofol is between 3.83 and 4.15, i.e., the concentration of propofol is about 10,000 times higher in the
membrane where the electrochemical reaction occurs than in the aqueous sample solution. At the same
time, the hydrophilic interferences, such as ascorbic acid (logPAA = −1.84) [38] and p-acetamino phenol
(logPAPAP = 0.31) [38], are minimally extracted into the membrane phase, i.e., their concentration
generally is negligible in the membrane, which explains the LSVs in Figure 2.
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Figure 3. Three different variations of the processes during voltammetric measurements of propofol
with the PVC membrane modified electrode. In all three examples, propofol preferentially partitions
into the membrane, and during its electrochemical oxidation, propofol positively charged intermediates
are generated. The electroneutrality in the membrane is sustained through (a) the uptake of hydrophobic
counterions, e.g., (ClO−4 ) from the solution; (b) the release of positively charged counterions of the
cation exchanger (e.g., K+) incorporated in the membrane; (c) the generation of negatively charged
species on the counter electrode. In this scenario, both the working (WE) and counter (CE) electrodes
are coated with the membrane.

Figure 4 shows the response of the membrane-coated propofol sensor during calibrations
by chronoamperometry and linear sweep voltammetry. The attainable detection limit of the
membrane-coated propofol sensor was calculated from the standard deviation of the noise (SDbkg) in
the background electrolyte during linear sweep voltammetric and chronoamperometric measurements
and the slopes of the corresponding calibration curves (S) using the formula:

LOD = 3× SDbkg/S

In addition, we assessed the resolution of the propofol measurement using the residual mean
standard deviation (RMSD) of the data points around the line fitted to the data points of the
calibration curve, instead of the standard deviation of the background noise. The resolution
is defined as a minimum concentration difference between two solutions essential for their
quantitative determination.

Resolution = 3×RMSD/S
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The calculated values in the presence of different background electrolytes and using calibration
data points recorded in narrower or broader concentration ranges are summarized in Table 2 [31,40,41].
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Figure 4. Chronoamperometric response of a PVC-membrane-coated glassy carbon (GC) electrode upon
spiking the phosphate buffered saline (PBS) background electrolyte with propofol standard solutions.
The concentrations in the PBS solution labeled 1 to 9 are 1.25, 2.5, 4.98, 9.9, 19.6, 38.4, 56.6,
80.5 and 111.1 µmol/L. The inset in the lower right is the calibration curve constructed from the
chronoamperometric currents. The inset in the upper left corner shows linear sweep voltammograms
recorded in PBS background solution and in PBS with propofol concentrations between 9.9 and
111.1 µmol/L. Membrane composition 25.5% PVC, 50.9% 2-nitrophenyl octyl ether (o-NPOE),
21.2% tetradodecylammonium tetrakis(pentafluorophenyl) borate (TDDATPFPhB), 2.4% sodium
tetrakis[3,5bis(trifluoromethyl) phenyl] borate (NaTFPhB).

Table 2. Detection limit (LOD) and resolution values calculated for the propofol sensor from triplicate
chronoamperometry (CA) studies in different background electrolytes. The background electrolytes
are prepared in PBS containing 3 mmol/L ascorbic acid (AA), 1 mmol/L p-acetamino phenol (APAP),
5% w/v bovine serum albumin (BSA) or a combination of all three of these potential interferents (mix).

Membrane
Composition * Background Concentration Range †

[µmol/L]
LOD

[µmol/L]
Resolution

[µmol/L]

o-NPOE plasticizer

PBS 0–56.6 0.03 ± 0.01 1.1 ± 0.2
3 mmol/L AA 0–56.6 0.05 ± 0.05 2.0 ± 1.0

1 mmol/L
APAP 0–56.6 0.08 ± 0.02 4.6 ± 0.9

5% BSA 5–56.6 2.2 ± 3.1 14 ± 2
mix 2.5–109.8 0. 5 ± 0.4 28 ± 5

DOS
plasticizer

PBS 0–56.6 0.12 ± 0.05 4.3 ± 0.4
mix 0–56.6 3.0 ± 0.3 4.5 ± 2.3

* The composition of the PVC membranes are 25.5% PVC, 50.9% 2-nitrophenyl octyl ether
(o-NPOE), 21.2% tetradodecylammonium tetrakis(pentafluorophenyl) borate (TDDATPFPhB), 2.4% sodium
tetrakis[3,5bis-(trifluoromethyl) phenyl] borate dihydrate (NaTFPhB) and 25.1% PVC, 49.9 bis(2-ethylhexyl)sebacate
(DOS), 22.6% TDDATPFPhB and 2.4% potassium tetrakis-(pentafluorophenyl) borate (KTPFPhB). † The slope and
RMSD value of the calibration curve was calculated from data points recorded in the concentration range.

As shown in Table 2, by coating the GC working electrode surface with the plasticized PVC film,
the detection limit in propofol measurements can be extended below the lower limit of the therapeutic
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concentration range (1 and 60 µmol/dm3). The interference induced by electrochemically oxidizable
species are negligible (AA) or small (APAP), even if those are at the maximum of their therapeutic
concentrations. From the data, it appears that by optimizing the membrane composition, i.e.,
the selection of the membrane plasticizer, lipophilic background electrolyte and ion-exchanger,
and their concentration in the membrane, both the selectivity and the detection limit of the sensor may
be improved. Finally, it is important to note that in contrast to aqueous electrolyte solutions, during the
chronoamperometric determination of propofol with the PVC membrane-coated sensor, no electrode
fouling is observed [31].

Based on Equations (6) and (7), the signal amplification of the organic film (PVC membrane-coated)
voltammetric sensor is directly proportional with the partition coefficient of the target analyte
between the membrane and aqueous phase, i.e., the lowest detection limits are expected during the
voltammetric determination of the most lipophilic compounds. On the other hand, the selectivity of
the membrane modified electrode is controlled by the partition coefficient ratio of the analyte and the
interfering compound. Consequently, the voltammetric determinations with the membrane modified
electrodes are most desirable for tasks requiring the measurement of sub-micromolar concentrations of
lipophilic analytes in the presence of large excess hydrophilic interferents. A list of electrochemically
active target analytes (antidepressant and immunosuppressant drugs) are summarized in Table 3.
All these drugs are highly lipophilic with therapeutic blood concentration ranges below 1.0 µmol/L,
which could be measured in the presence of up to 1.3 mmol/L APAP and 0.06 mmol/L AA.

Table 3. List of highly lipophilic, electrochemically active analytes (antidepressant drugs) with
sub-micromolar therapeutic concentration ranges as potential targets for the development of
voltammetric methods based on organic film-coated working electrodes. The log p values are
generally from DRUGBANK (www.drugbank.ca). Experimentally determined values are provided
with the source. SSRI stands for selective serotonin reuptake inhibitors.

Sertraline
(Zoloft)

Antidepressant
SSRI
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Amitriptyline
(Elavil)

Antidepressant
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Table 3. Cont.

Sirolimus
(Rapamycin)

Immunosuppressant
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log P = 3.6–3.8
MW: 324.392 g/mol

Concentration range:
50–100 ng/mL

0.15–0.3 µmol/L

LSVs recorded with membrane-coated glassy carbon (GC) electrodes in sertraline, amitriptyline,
aripiprazole, sirolimus, everolimus and citalopram solutions of different concentrations are shown in
Figure 5. The peak currents of the LSVs were used to construct calibration curves for the individual drugs.
Calibration curves were also recorded using a chronoamperometric measurement protocol by applying
the drug-specific potential values to the PVC membrane-coated electrode. The chronoamperometric
transients recorded during the calibration of the PVC membrane-coated electrode in sertraline solutions
and the corresponding calibration curve is shown in Figure 6 as an example. Based on the calibration
curves recorded with linear sweep voltammetry and chronoamperometry, we calculated the LOD
and resolution of the determinations for all the drugs. The results of the calculations are summarized
in Table 4. As shown in Table 4, both types of measurement methods result in sub-micromolar
detection limits, and in the case of amitriptyline, even in whole blood. In agreement with the
expectations, both the LOD and resolution values are better in chronoamperometric experiments.
The detection limit and the resolution of the chronoamperometric method could be further improved
by performing the measurements in a flow through manifold (not shown). The reproducibility of the
chronoamperometric measurements in a continuous flow mode of measurement is shown in Figure 7.
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Figure 5. Linear sweep voltammograms recorded in sertraline (upper left), amitriptyline (upper right)
and aripiprazone (middle left), sirolimus (middle right), everolimus (lower left) and citalopram
(lower right) solutions. The concentration ranges are indicated in the individual pictures.Membranes 2020, 10, x FOR PEER REVIEW 15 of 19 
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Figure 6. Chronoamperometric transients recorded with the plasticized PVC membrane-coated GC
electrode in PBS solution of different sertraline concentrations. Applied potential: 1.0 V.
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Table 4. Detection limit (LOD), resolution of the plasticized PVC membrane-coated GC electrode for
amitriptyline, sertraline, aripiprazole, sirolimus, everolimus and citalopram.

Analyte Method Matrix LOD
µmol/L

Resolution
µmol/L

Amitriptyline

LSV PBS
Whole blood

0.09 ± 0.05 (n = 3)
0.07 ± 0.03 (n = 2)

0.60 ± 0.2 (n = 3)
0.09 ± 0.03 (n = 2)

CA PBS
Whole blood

0.01 ± 0.03 (n = 5)
0.03

0.05 ± 0.02 (n = 3)
0.07

Sertraline
LSV PBS 0.13 0.75

CA PBS 0.003 0.12

Aripiprazone
LSV PBS 0.02 0.43

CA PBS 0.009 0.07

Sirolimus
LSV PBS 0.02 0.07

CA PBS 0.003 0.02

Everolimus
LSV PBS 0.01 0.05

CA PBS 0.02 0.04

Citalopram
LSV PBS 0.6 0.7

CA PBS 0.008 0.08Membranes 2020, 10, x FOR PEER REVIEW 16 of 19 
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Figure 7. The reproducibility of the chronoamperometric measurements in a continuous flow mode
of measurement of amitriptyline with the PVC membrane-coated GC electrode in PBS solution.
Applied potential: 0.95 V. The standard solutions are switched between 0 and 0.25 µmol/L and 0.25
and 0.5 µmol/L in the PBS background. The blue line represents the mean value of the current in
0.25 µmol/L amitriptyline and the red dotted lines represent ±1 standard deviation range of the data
around the mean.

Using a plasticized PVC membrane-coated glassy carbon (GC) electrode for the measurement of
lipophilic drugs also prevented electrode fouling, which is commonly experienced with the uncoated
electrode (Figure 8).
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Figure 8. Repeated LSVs of a bare (left) and PVC membrane-coated (right) GC electrode in 50 µmol/L
(bare, left) and 10 µmol/L (membrane-coated, right) amitriptyline containing solutions.

4. Conclusions

The simple modification of voltammetric working electrodes by coating their surfaces with a thin
film of highly plasticized PVC membrane (an organic film) opens up the possibility of monitoring
highly lipophilic drugs continuously in biological samples. In general, PVC membrane coating
prevents electrode fouling and permits the quantification of analytes in sub-micromolar concentrations
even in the presence of a large excess of electrochemically active, hydrophilic interfering compounds.
The improvement in the sensitivity of the voltammetric measurements with the PVC membrane-coated
working electrode, compared to measurements with conventional working electrodes without coating,
is a function of the increased concentration and decreased diffusion coefficient (

√
D or D) of the analyte

in the membrane in which the voltammetric measurement is performed. For the lipophilic analytes
discussed in this paper, the concentration increase is estimated between 104 and 107 (from logPo/w = 4
to logPo/w = 7). At the same time, the diffusion coefficients in the highly plasticized PVC membranes
are about 2–2.5 orders of magnitude smaller than in aqueous solutions. As a consequence, a three
orders of magnitude signal amplification and a three orders of magnitude improvement in the detection
limit can be realized. The selectivity improvement with the membrane-coated voltammetric sensor is
a function of the partition coefficients for the analyte and the interfering compound. Consequently,
hydrophilic analytes at their therapeutic concentration, e.g., ascorbic acid and p-acetamino phenol,
have no or only negligible effects on the plasticized PVC membrane-coated sensor signal.
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