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Abstract: This work indicates that glycerolized chitosan-NH4F polymer electrolytes incorporated 

with zinc metal complexes are crucial for EDLC application. The ionic conductivity of the 

plasticized system was improved drastically from 9.52 × 10−4 S/cm to 1.71 × 10−3 S/cm with the 

addition of a zinc metal complex. The XRD results demonstrated that the amorphous phase was 

enhanced for the system containing the zinc metal complex. The transference number of ions (tion) 

and electrons (te) were measured for two of the highest conducting electrolyte systems. It confirmed 

that the ions were the dominant charge carriers in both systems as tion values for CSNHG4 and 

CSNHG5 electrolytes were0.976 and 0.966, respectively. From the examination of LSV, zinc 

improved the electrolyte electrochemical stability to 2.25 V. The achieved specific capacitance from 

the CV plot reveals the role of the metal complex on storage properties. The charge–discharge 

profile was obtained for the system incorporated with the metal complex. The obtained specific 

capacitance ranged from 69.7 to 77.6 F/g. The energy and power densities became stable from 7.8 to 

8.5 Wh/kg and 1041.7 to 248.2 W/kg, respectively, as the EDLC finalized the cycles. 
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1. Introduction 

Biopolymers are naturally abundant, low in cost, have high compatibility with solvents and are 

very stable in forming a film [1,2]. Researchers commonly use biopolymers like cellulose, starch and 

carrageenan as polymer hosts in polymer electrolytes [3–5]. Chitosan is also one of the biopolymers 

that is extensively studied in energy storage devices, as well as environmental and biomedical 

approaches [6]. Based on the chitosan chemical structure, there are different types of oxygen 

functional groups that are enriched in electron lone pairs. The conduction mechanism of an 

electrolyte is affected by the ions from the incorporated salt that has the ability to create a dative 

bond with these functional groups [7].Liquid electrolytes are widely used because of their high 

performance in various energy devices. However, they are easy to evaporate and damage 

equipment caused due to leaking and corrosion [8,9]. Therefore, solid polymer electrolytes (SPEs) 

have been introduced because of their advantages compared to liquid electrolytes, namely that they 

are safe, allow for easy fabrication and have a long shelf life [10]. Biopolymer SPEs can reduce plastic 

waste pollution since they are made of natural resources and are highly biodegradable. 

On the other hand, electrochemical double-layer capacitor (EDLC) is an alternative for 

conventional batteries used nowadays. The energy storage mechanism of EDLC is based on the 

non-faradaic process where the ions make a double layer at the interfacial region [11]. This means 

charge accumulation only occurs between the electrode surfaces but there is no electron transfer. 

Several materials have been used to fabricate the electrode for EDLC such as graphite [12], carbon 

aerogel [13], carbon nanotubes [14] and activated carbon [15]. Activated carbon has been widely 

explored in the electrolyte field due to its large surface area, good chemical durability and high 

electronic conductivity [16]. EDLC is more preferable than other supercapacitors because it has high 

power density, high durability and better thermal stability as well as a low fabrication cost with a 

straightforward methodology of EDLC devices [17–19]. Moreover, zinc-based electrochemical 

devices may provide equally good performance in the context of safety at ambient conditions 

because zinc is basically nontoxic, non-explosive, and inexpensive [20]. The availability of zinc is 

also found to be more abundant than lithium (Li). Furthermore, the sizes of Li+ and Zn2+ ions are 

quite comparable [21]. 

SPEs that have high conductivity (approximately 10−4 to 10−3 S/cm) are important for good 

performance of electrochemical storage devices. A few methods have been introduced to improve 

the conductivity of an electrolyte such as salt impregnation and plasticization [22,23]. Ammonium 

salts are a common ionic source in polymer electrolyte preparation. This is because these salts are 

able to replace other ionic sources such as inorganic salts to avoid the use of expensive and harmful 

lithium metal electrodes in lithium battery applications [24]. Ammonium salts have also been 

reported to be a good H+ provider to the polymer electrolytes due to their compatibility, high ionic 

conductivity as well as thermal stability [25]. Based on our previous work, there is an increment of 

conductivity for pure dextran film from (2.00 ± 0.70) × 10−9 S/cm to (2.23 ± 0.76) × 10−3 S/cm with the 

addition of 40 wt.% ammonium fluoride (NH4F) [26]. It has also been reported that the addition of 

NH4F salt into carboxymethylcellulose (CMC) film has increased the ionic conductivity of the 

electrolyte [27]. The dissociation of salt is affected by the plasticization process that provides more 

conducting paths for the mobile ions to migrate, thus increasing the ionic conductivity [28]. 

Meanwhile, Chai and Isa [29] mentioned that glycerol has the ability to increase the ionic mobility of 

the CMC–oleic acid electrolyte system and hence enhance ionic conductivity. According to Kumar et 

al. [30], maximum conductivity of 1.26 × 10−4 S/cm is achieved for glycerolized polyvinylidene 

fluoride (PVDF)–NH4F polymer electrolyte. A comparable conductivity is also obtained by 

glycerolized chitosan–NH4F polymer electrolyte [31]. Thus, glycerol has been chosen in this present 

work to be added into chitosan-based polymer electrolytes with an H+ ion to further enhance the 
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conductivity. In our previous work, it was shown that metal complexes are crucial in improving the 

amorphous phase of polar polymers [32]. The increase of the amorphous phase is promising to 

increase DC ionic conductivity. Thus, the main objective of increasing the zinc metal complex into 

the chitosan-based electrolyte is to improve an amorphous phase for ion conduction. The highest 

conducting plasticized system among the electrolytes with and without the metal complex is 

employed for EDLC fabrication. The results shown in the present work indicate that the metal 

complex can enhance the performance of the fabricated EDLC device. The XRD and impedance 

investigations explore more evidence. 

2. Materials and Sample Preparation 

2.1. Materials 

In the present work, chitosan with a relatively high molecular mass of around 310,000 to 375,000 

g/mol, ammonium fluoride (NH4F) salt and glycerol in the fabricating of plasticized systems was 

used. All chemicals were purchased from Sigma-Aldrich (Missouri, MO, USA) without further 

purification. 

2.2. Polymer Electrolyte Preparation 

The procedure consists of 1 g insertion of CS into 50 mL acetic acid (1%) solution. Next, 40 wt.% 

in ammonium fluoride (NH4F) salt with a fixed amount was inserted to the provided solution above. 

The solution was stirred constantly with a magnetic stirrer at surrounding temperature until a 

homogenous solution developed. Then, glycerol with different quantities was added to the provided 

solution of polymer and salt together, with constant stirring until a clear solution emerged. The 

glycerol amount in the fabricated electrolytes was subjected to change from 0 to 40 wt.% in 10 wt.% 

steps. The plasticized samples were named as CSNHG0, CSNHG1, CSNHG2, CSNHG3 and 

CSNHG4. In addition, the plasticized sample of CS:NH4F electrolyte with 40 wt.% glycerol was 

incorporated with 10 mL of diluted zinc metal complex and named as CSNHG5. The methodology 

of the preparation of the zinc metal complex using green approaches can be seen in our previous 

work [32]. Finally, the mixed solutions were spilled into Petri dishes and enclosed with filter paper 

to avoid any pollution. The Petri dishes were left to evaporate solvent gradually at the surrounding 

temperature and to fabricate dry as well as a free-standing plasticized system. 

2.3. EIS Analysis 

Electrical impedance spectroscopy (EIS) was employed to measure the impedance of an 

electrolyte in this work by using HIOKI 3532-50 LCR HiTESTER (50 Hz ≤ f ≤ 5000 kHz) at room 

temperature. The chosen electrolyte was placed between two stainless steel discs before 

measurements took place. The data collected from this analysis was used to study the ionic 

conductivity. 

2.4. Electrolyte Characterization 

TNM and LSV Measurements 

A digital DC power supply, V&A Instrument (Neware, Shanghai, China) DP3003 was used to 

conduct the transference number (TNM) analysis by using the DC polarization technique. Two 

blocking stainless steel electrodes in a Teflon holder were used to sandwich the highest conducting 

electrolyte. The electrode polarization was carried out at a constant potential of 0.8 V and the DC 

current was recorded as a function of time at room temperature. The potential window of the 

highest conducting electrolyte was also measured by using linear sweep voltammetry (LSV) analysis 

(DY2300 potentiostat, Neware, Shanghai, China) at a scan rate of 10 mV/s. 

2.5. EDLC Preparation 
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The electrode for EDLC fabrication was made of polyvinylidene fluoride (PVdF), activated 

carbon and carbon black materials. Our previous work reported the detail of electrode preparation 

[33]. The thickness of the electrodes was optimized at 25 µm. Then, the highest conducting 

electrolyte was placed between two activated carbon electrodes and packed in CR2032 coin cells. 

The cyclic voltammetry (CV) of an EDLC system was conducted using Digi-IVY DY2300 Potentiostat 

in a voltage range between 0.0 to 0.9 V and at different sweep rates (10 to 100 mV/s). Specific 

capacitance (Cs) can be calculated from the CV curve by using the following equation [34]: 

 
 2 12

f

i

V

s V

I V dV
C

m V V


 , (1) 

where I(V)dV is the area of the CV curve, while m and v are the mass of active material and scan rate, 

respectively. V2 and V1 in this work are 0.9 and 0.0 V, respectively. Charge–discharge profiles of the 

EDLC were tested using Neware battery cycler with the current density of 0.5 mA/cm2. Cs value from 

charge–discharge profiles and equivalent series resistance (ESR) were calculated using the equations 

below [35,36]: 

s

i
C

ms
 ; (2) 

dropV
ESR

i
 , (3) 

where i is the applied current, s is the slope of discharge part, and Vdrop is the voltage drop. 

Equation (1), was used to calculate the Cs values from the CV plots, while Equation (2), was 

used to determine the Csvalues from the discharge part of the charge–discharge profile. The value of 

the Cs from Equation (1) varied with various scan rates of 10, 20, 50 and 100, while the value of the Cs 

from the charge–discharge profiles was obtained for an applied current of 1 mA. The Cs values from 

the CV curves were compared with the values of Cs that were obtained from the charge–discharge 

curves. In addition, the Vdrop was measured from the charg–discharge curves and used to determine 

the ESR values using Equation (3). 

3. Results and Discussion 

3.1. XRD Analysis 

Today, plasticized polymer electrolytes have been widely applied in electrochemical devices, 

for example smart windows, fuel cells and secondary batteries. The plasticizer inclusion into 

polymer electrolytes can enhance the electrical and electrochemical characteristics due to 

modification in structure [37]. The spectrum of XRD for CS:NH4F electrolyte films isdemonstrated in 

Figure 1a. It wasclearly detected that the plasticized system was nearly amorphous in structure with 

a small number of crystalline peaks which ascribed to the complex creation between polymer and 

salt rather than the pure salt of NH4F. It can be seen that with an increase inthe amount of glycerol 

from 20 wt.% to 40 wt.%, the peaks extended and intensity reduction happened, as demonstrated in 

Figures 1b,c. In addition, the provided crystalline peaks from the complexes between the polymer 

and salt declined in the plasticized electrolyte systems. Previous reports have indicated that 

polymers with small molecular weight or comprised of nonvolatile organic solvents are well-known 

plasticizers. Herein, numerous plasticizer examples have been offered, for instance ethylene 

carbonate (EC), polyethylene glycol (PEG-200, PEG-400, PEG-600), propylene carbonate (PC) and 

dimethyl form amide (DMF) [38,39]. The properties of these fillers are due to their large dielectric 

constant which aids to expand the structure of amorphous in host polymers and assists the 

increment in degree of dissociation of inorganic salts, thus improving conductivity [39]. The high 

value (42.5) of the glycerol dielectric constant (ε), reduces the force of attraction among the cations 

and anions of the salts and among the chains of the polymers [23]. From astructural viewpoint, 
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glycerol (C3H8O3) hasthree hydroxyl groups (–OH), demonstrating the obtainability of extra lone 

pairs of electrons for ionic conduction. 

Due to plasticizer insertion, the increase in polymer chains’ flexibility consequently improved 

the conductivity of ions. The system incorporated with 10 mL of the Znmetal complex was more 

amorphous compared to those containing only glycerol (Figure 1d). These results indicate that 

metalcomplexes provide more amorphous phases and consequently more pathways would be 

available for ion conduction. In our previous work [32], it was established that metal complexes 

interact with the functional groups in the polymer and disrupt hydrogen bonding among polymer 

chains. 

 

 

Figure 1.XRD patterns for (a) CSNHG0, (b) CSNHG2, (c) CSNHG4 and (d) CSNHG5. 
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3.2. Impedance Study 

Impedance spectroscopy is an efficient method to examine the ionic conductivity of polymeric 

materials and is also used to analyze the electrical properties of new materials that will be applied in 

electrochemical devices [40,41]. Due to the wide range of applicationsof solid electrochemical 

devices, the attention of ion conducting materials has been focused over the decade [42]. The typical 

results for impedance studies of polymer electrolytes consists of a semicircle and a spike at high and 

low frequency regions, respectively [43]. The impedance plots of CS:NH4F:Gly electrolyte films at 

room temperature are shown in Figures 2a–f. 

The electrical equivalent circuit (EEC) technique was performed to study the electrochemical 

impedance spectroscopy (EIS) since this method is effortless, quick and produces a complete 

picture of the electrolyte system [38]. The Nyquist plots for the polymer electrolyte systems 

weregained in respect of the equivalent circuit (EC), which contains Rb for the charge species in the 

polymer electrolyte systems and also a constant phase element (CPE),which can be observed in the 

inserts of Figure 2. The CPEis shown at the region of low frequencies where the electrochemical 

doublelayer capacitance between the electrodes and the electrolytes was created. ZCPEimpedance 

can be demonstrated as [44,45]: 

1
cos sin

2 2
CPE p

p p
Z i

C

 



    
     

    
. (4) 

The parts of real (Zr) and imaginary (Zi) of the complex impedance (Z*) that are related to the 

EC (Figure 2a–f insert) are signified as follows: 

cos
2

r p

p

Z R
C





 
 
   ; 

(5) 

sin
2

i p

p

Z
C





 
 
  , 

(6) 

whereCis the capacitance of the CPE at the electrode and electrolyte interfaces andP is the spike/tail 

divergence from the horizontal axis. The parameters of the fitting in the EEC are indicated in Table 

1. 

Table 1.The EEC fitting parameters for all electrolyte systems at ambient temperature. 

Sample P(rad) K (F−1) C (F) 

CSNHG0 0.68746 318,000 3.14×10−6 

CSNHG1 0.738383 298,000 3.36×10−6 

CSNHG2 0.738383 238,000 4.20×10−6 

CSNHG3 0.776575 88,000 1.14×10−5 

CSNHG4 0.814768 40,000 2.50×10−5 

CSNHG5 0.814768 27,000 3.70×10−5 
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Figure 2.Impedance plots for (a) CSNHG0, (b) CSNHG1, (c) CSNHG2, (d) CSNHG3, (e) CSNHG4 

and (f) CSNHG5. 
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The impedance plots show a spike inclined at an angle less than 90°and at low frequency, which 

is due to the capacitive component in the electrolytes [46]. This inclination also illustrates the effect 

of the blocking electrodes and the polarization effect within the electrolytes [47,48]. This 

phenomenon occurs because of the growth of the electric doublelayer as well as the accumulation of 

free charge at the electrolyte and electrode surface interface [49]. Based on Figure 2, there was a 

decrease in the bulk resistance with increasing glycerol concentration and zinc complex. The ionic 

conductivity of the CS:NH4F:Gly electrolyte systems can be calculated using the following equation 

[50,51]: 

1
×dc

b

t

R A


   
    

  
, (7) 

wheret is the thickness of the sample while A represents the contact area of electrode–electrolyte. Rbis 

the bulk resistance of the material that is taken from the interception of the spike with real axis 

(horizontal axis). 

It is essential to determine the DC conductivity of the samples from the Rb values using the 

above equation [52]. The DC conductivities were calculated and tabulated as shown in Table 2. It can 

be observed that the highest ionic conductivity of 1.71 × 10−3 S/cm was recorded by the plasticized 

electrolyte with the zinc complex (CSNHG5) with the lowest Rb value. This proves that the metal 

complex inclusion into the plasticized system improved the electrolyte ionic conductivity. As 

documented by Amran et al. [53], the ionic conductivity of the electrolyte system of potato starch is 

chitosan (LiCF3SO4) and has been developed using glycerol inclusion from 7.65 × 10−5 S·cm−1 to 1.32 × 

10−3 S·cm−1.The current work demonstrates that plasticizer and metal complexes are crucial to 

enhance DC conductivity. This might be linked to the improvement of the structure of amorphous. 

XRD results demonstrated in the above section also provide extra description. 

Table 2.Calculated DC conductivity for CS:NH4F:Gly electrolyte films at room temperature. 

Sample Code DC Conductivity (S/cm) 

CSNHG0 (1.09 ×10−4) ± 0.19 

CSNHG1 (1.26 ×10−4) ± 0.56 

CSNHG2 (1.56 ×10−4) ± 0.47 

CSNHG3 (6.59 ×10−4) ± 0.84 

CSNHG4 (9.52 ×10−4) ± 0.93 

CSNHG5 (1.71 ×10−3) ± 0.32 

Consequently, it is important for the polymer electrolytes to obtain a relatively high DC 

conductivity between 10−5 and 10−3 S/cm, which gives a promising performance for the application of the 

electrical doublelayer capacitors [54,55]. Therefore, it is proven that the glycerol and zinc complex 

increase the DC conductivity in the polymer electrolytes. The CSNHG5 electrolyte was chosen for the 

study of influence of zinc in the polymer complexes which can be seen in the next section. 

3.3. EDLC Characteristics 

3.3.1. TNM Analysis 

The transference number measurement (TNM) was carried out to determine the dominant 

charge carrier species within the electrolytes. Shukur et al. [56] reported that the polymer electrolyte 

system is dominated by ions if the transference number of ions (tion) is near unity. The transference 

number of the ions and electrons (te) is calculated using the following equations [57,58]: 

i ss
ion

i

I I
t

I


 ; (8) 
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1el iont t  , (9) 

where Ii and Iss represent the current at initial and steady state, respectively. Figure 3 shows a plot of 

the current against time during polarization for the CSNHG4 and CSNHG5 electrolytes. 

 

Figure 3.Current versus time for the (a) CSNHG4 electrolyte and (b) CSNHG5 electrolyte. 

From Figure 3, it can be seen that the initial current decreased with time for both systems. This 

wasdue to the depletion of ionic species within the electrolytes whichreached steady state when the 

movement of mobile ions was balanced by the diffusion process [29,59]. The current flow of ions is 

blocked by the stainless steel electrodes during the polarization process and only electrons can pass 

through [60]. The calculated values te and tion for both electrolyte systems are listed in Table 3. The 

value of tion slightly decreased as the zinc was added into the glycerolized electrolyte. However, both 

systems show that ions are the dominant conducting species in the electrolytes and have been 

widely used in the application of electrochemical devices. This result is in good accordance with the 

glycerolized chitosan-NH4Br system as reported by Shukur et al. [31]. 

Ii 

Iss 

Ii 

Iss 
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Table 3.Calculated transference numbers of ions and electrons. 

Electrolyte tion te 

CSNHG4 0.976 0.024 

CSNHG5 0.966 0.034 

3.3.2. LSV Study 

The maximum operating voltage of an electrolyte at room temperature can be determined from 

the LSV study [61]. Figure 4 shows the LSV plot for the CSNHG4 and CSNHG5 electrolytes at 10 

mV/s. It can be observed that there was no current flow when the voltage was below 1.68 V in the 

CSNHG4 electrolyte which means that no electrochemical reaction occurred [62]. The decomposition 

of the CSNHG4 electrolyte occurred at the voltage of 1.68 V. However, the value was found to 

increase with the addition of the zinc complex in the system up to 2.35 V, which is comparable with 

the value reported by Aziz et al. [52] for the chitosan/PEO–LiClO4 polymer electrolyte system. This 

shows that the potential window of the glycerolized electrolyte can be enhanced with the addition of 

the zinc complex. However, both electrolytes in this present work obtain a suitable decomposition 

voltage that is high enough to be applied in EDLCs that normally operate at 1.0 V [63]. 

 

Figure 4.Linear sweep voltammetry (LSV) curve for the (a) CSNHG4 electrolyte and (b) CSNHG5 

electrolyte. 
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3.3.3. CV and EDLC Characterization 

CV analysis was conducted to test the charge storage behavior at the electrodes–electrolytes 

interface of an EDLC. The CV is carried out at different scan rates for both electrolyte systems and 

presented in Figures 5a,b. 

 

Figure 5.CV curves of the fabricated EDLC using (a)CSNHG4 and (b) CSNHG5 electrolyte at 

different scan rates. 

Based on Figure 5a, it was observed that the curves turned from a leafshape to a rectangular 

shape as the scan rate decreased. The internal resistance and porosity of the carbon electrodes are the 

factors that cause the shape of the CV curves to become an imperfect rectangular shape [64]. There 

were no redox peaks observed in the CV curves of the fabricated EDLC using CSNHG4 electrolyte 

which indicates that neither oxidation nor reduction happens in the EDLC. The cations and anions in 

the EDLC will migrate to negative and positive electrodes, respectively, during the charging process. 

At the positive electrode, the induced electric field will attract anions and repel cations, while the 

opposite situation occurs at the negative electrode. The intense electric field holds the ions and 
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electrons from electrolyte and electrode, respectively [65]. This phenomenon explains that a 

doublelayer charge is developed on the surface of carbon electrodes where the stored energy is the 

potential energy [66]. A similar pattern of curves was observed for the fabricated EDLC using the 

CSNHG5 electrolyte as shown in Figure 5b. The values of Cs for both electrolyte systems at different 

scan rates werecalculated by using Equation (1) and tabulated in Table 4. 

Table 4.Specific capacitance (Cs)of the fabricated EDLC using different electrolytes at various scan rates. 

Scan Rate (mV/s) 
Specific Capacitance, Cs (F/g) 

CSNHG4 CSNHG5 

10 28.35 46.18 

20 23.09 35.32 

50 16.37 21.54 

100 11.36 12.60 

Generally, the Cs values decreased when the scan rates increased. This is because the number of 

stored charges on the surface of the electrodes is reduced at higher scan rates, resulting in an 

increment of energy losses, hence the decrease in Cs values [67]. However, the fabricated EDLC using 

the CSNHG5 electrolyte achieved higher Cs values compared to the CSNHG4 electrolyte at every 

scan rate. This shows that the presence of the zinc complex in the glycerolized electrolyte helpsto 

improve the specific capacitance of the EDLC. In our earlier study, it was demonstrated that 

metalcomplexes expanded the structure of amorphous [32] and therefore more pathways 

wereavailable for ion conduction. As stated by a previous report [68], the enhancement in 

amorphous structure is helpful in moving local chain segments since it enhances ion movement and 

improves the DC ionic conductivity. Thus, ions freely move inside the polymer electrolyte. Rapid 

ion transportation in the polymer electrolyte also improves the adsorption of ions at the 

electrode–polymer–electrolyte interfaces, which offers larger Cs of EDLC [69]. Therefore, the 

CSNHG5 electrolyte is chosen to be further analyzed in the EDLC fabrication studies. 

The charge–discharge profile of the fabricated EDLC can further explain the cyclic durability of 

the EDLC as well as the charging and discharging processes that occurred within the system [70]. 

Figure 6 exhibits the charge–discharge curves of the EDLC at the initial cycles. 

 

Figure 6.Charge–discharge profile for the fabricated EDLC at initial cycles. 

By using the galvanostatic charge–discharge profile, the capacitive behavior in the EDLC can be 

verified via the discharge slope that is almost linear [54]. The Cs of the EDLC from the 

charge–discharge curves can be calculated by using Equation (2). 

The calculated Cs value of the EDLC for 100 cycles is presented in Figure 7. The Csat the 

firstcycle was found to be 69.7 F/g which was comparable to theCsvalue obtained from CV analysis 
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which proves that EDLC exhibited the characteristics of a capacitor cell [71]. The Cs increased to 73.5 

F/g at the twentieth cycle and continued to increase to be almost constant at an average value of 75.6 

F/g up to the one hundredthcycle. The Cs achieved in this work is comparable to the Cs value 

reported by Aziz et al. [54] for the fabricated EDLC which was at approximately 76.7 F/g for 100 

cycles. Thus, the electrolyte studied in this current work can be established as a new material in the 

fabrication of EDLC with high specific capacitance. 

 

Figure 7.Specific capacitance (Cs) of the fabricated EDLC for 100 cycles. 

Coulombic efficiency (η) is a parameter that is used to study the cycling stability of the EDLC 

which can be calculated using the following equation [34]: 

100d

c

t

t
   , (10) 

where td and tc are the discharge and charge time, respectively. Figure 8a shows the efficiency of the 

fabricated EDLC for 100 cycles. The efficiency at the firstcycle was found to be 28.0% and then 

significantly increased to 95.1% at the tenthcycle. At the thirtiethcycle, efficiency was observed to be 

97.5% and then remained constant at approximately 99.0% up to 100 cycles. It is thoughtthat the 

fabricated EDLC possesses plausible electrode–electrolyte contact as the efficiency was beyond 

90.0% [72]. 

From the charge–discharge profile in Figure 6, it can be seen that there were tiny potential 

drops (Vdrop) before the discharging process began. This can be related to the existence of internal 

resistance in the EDLC, which is called equivalent series resistance (ESR). This ESR of the EDLC can 

be obtained from Equation (3). Figure 8b exhibits the ESRof the EDLC for the 100 cycles. It can be 

determined that the ESR value at the firstcycle was found to be 80 Ω and then increased to 234 Ω at 

the fiftieth cycle. It is notable that the value slightly increased up to 335 Ω throughout the 100 cycles. 

0

25

50

75

100

0 20 40 60 80 100 120

S
p

ec
if

ic
 c

a
p

ac
it

a
n

ce
 (

F
/g

)

Cycle number



Membranes 2020, 10, 132 15 of 20 

 

 

Figure 8.The plot of (a) efficiency, and (b) ESR of the fabricated EDLC for 100 cycles. 

As mentioned by Arof et al. [73], the internal resistance exists due to the charge and discharge 

process of electrolytes, type of current collectors (aluminum foils) and also the gap between the 

electrolyte and the electrode. The small value of ESR represents good contact between electrode and 

electrolyte and indicates that it is easy for ions to migrate toward the surface of the electrodes to 

form an electrical doublelayer [74]. A similar trend was reported for the 

chitosan/methylcellulose-NH4SCN system where the ESRvalues slightly increased while the Cs 

values remained constant [54]. The rapid charging and discharging process will lead to the 

recombination of free ions and then the ion pair will be developed which leads to conductivity 

decrement. 

Energy density (E) and power density (P) are also important to describe the performance of the 

EDLC. These parameters can be expressed by using the following equations [34,57]: 

2

2
sC VE  ; (11) 
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Figure 9 exhibits the calculated energy density as well as power density for the 100 cycles. The 

EDLC obtained the energy density of 7.8 Wh/kg at the first cycle and the value gradually increased 

to 8.3 Wh/kg at the tenth cycle and then remained stable around 8.5 Wh/kg from the thirtieth cycle 

towards the final cycle. This trend was harmonized with the pattern of Cs illustrated in Figure 7. This 

result explains that the charge carriers require almost the same amount of energy to migrate towards 

the surface of the electrodes for the entire process of charge and discharge [75]. Moreover, the power 

density values werecalculated by using Equation (12), as plotted in Figure 9 where the Pvalue at the 

firstcycle was found to be 1041.7 W/kg. The value then dropped to 506.9 W/kg at the twentiethcycle 

and slightly decreased to 248.2 W/kg until the EDLC completed 100 cycles. The trend of P is in 

agreement with the trend of theESR plot. This is because the depletion of the electrolyte occurred 

when the internal resistance increased which caused the recombination of ions due to the fast 

charging and discharging mechanism, thus reducingP at a high cycle number [76]. BothE and P 

values are clearly dependent on the mass loading of active material in the fabrication of EDLC. 

 

Figure 9.Energy density and power density of the fabricated EDLC for 100 cycles. 

4. Conclusions 

The synthesis of glycerolized chitosan–NH4F solid polymer electrolyte has been successfully 

prepared using a solution cast technique. The CSNHG0 has the lowest ionic conductivity of 1.09 × 

10−4 S/cm. With the addition of 40 wt.% glycerol, the ionic conductivity increased to 1.71 × 10−3 S/cm. 

The effect of zinc complex addition into the highest conducting electrolyte has been studied. The 

TNM measurements exhibited the transference number of ion (tion) and electron (te) for both systems. 

It showed that ions have been confirmed to be the dominant charge carrier in both electrolyte 

systems as tion values for CSNHG4 and CSNHG5 electrolytes were 0.976 and 0.966, respectively. 

Based onthe LSV analysis, the zinc complex improved the electrochemical stability of CSNHG5 

electrolyte to 2.25 V. The specific capacitance obtained by using the CV plot of the EDLC with the 

CSNHG5 electrolyte wasslightly higher compared to EDLC with theCSNHG4 electrolyte. The 

fabricated EDLC has been tested using CSNHG5 electrolyte for 100 cycles. The specific capacitance 
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from the charge–discharge analysis ranged between 69.7 to 77.6 F/g over the 100 cycles. The 

equivalent series resistance increased from 80.0 to 335.7 Ω throughout the cycles. Finally, energy and 

power densities stabilized at the range of 7.8 to 8.5Wh/kg and 1041.7 to 248.2 W/kg, respectively, as 

the EDLC completed the cycles. 
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