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Abstract: An osmotic microbial fuel cell (OsMFC) using a forward osmosis (FO) membrane to
replace the proton exchange membrane in a typical MFC achieves superior electricity production
and better effluent water quality during municipal wastewater treatment. However, inevitable FO
membrane fouling, especially biofouling, has a significantly adverse impact on water flux and thus
hinders the stable operation of the OsMFC. Here, we proposed a method for biofouling mitigation
of the FO membrane and further improvement in current generation of the OsMFC by applying a
silver nanoparticle (AgNP) modified FO membrane. The characteristic tests revealed that the AgNP
modified thin film composite (TFC) polyamide FO membrane showed advanced hydrophilicity,
more negative zeta potential and better antibacterial property. The biofouling of the FO membrane in
OsMFC was effectively alleviated by using the AgNP modified membrane. This phenomenon could
be attributed to the changes of TFC–FO membrane properties and the antibacterial property of AgNPs
on the membrane surface. An increased hydrophilicity and a more negative zeta potential of the
modified membrane enhanced the repulsion between foulants and membrane surface. In addition,
AgNPs directly disturbed the functions of microorganisms deposited on the membrane surface.
Owing to the biofouling mitigation of the AgNP modified membrane, the water flux and electricity
generation of OsMFC were correspondingly improved.
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1. Introduction

The concept of an osmotic microbial fuel cell (OsMFC) was proposed in 2011 [1]. In an OsMFC,
a forward osmosis (FO) membrane acts as a separator between the anode chamber with wastewater and
the cathode chamber full of draw solution [1–6]. Specifically, the concentrated organic contaminants in
the anode chamber by the FO membrane are oxidized with the production of bioelectricity, and water flux
through the FO membrane transports protons from the anode to the cathode [1–6]. Compared with the
conventional microbial fuel cell (MFC), the OsMFC achieves superior electricity production and better
effluent water quality during municipal wastewater treatment [1–6]. However, there are some drawbacks
hindering the application of OsMFC in wastewater treatment, including the lower water flux of the FO
membrane, membrane fouling and salt accumulation [6,7]. Previous literature has demonstrated that
membrane fouling has a significantly adverse impact on the water flux of the FO membrane and stable
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operation of the OsMFC [8–10]. In addition, membrane fouling reduces the electricity generation of MFCs
owing to limiting the diffusion of cations [11,12]. Based on the critical influence of membrane fouling
on the performance of the OsMFC, the fouling behavior of the FO membrane has been systematically
investigated [5,6,8–10]. The results indicated that a thick fouling layer, including biofouling and inorganic
fouling existed on the FO membrane surface in OsMFCs treating wastewater [8–10]. Lu et al. [7] further
pointed out that biofouling was the dominant fouling type of the FO membrane in OsMFCs. Although
these publications are helpful for understanding FO membrane fouling in OsMFCs, effective methods to
mitigate fouling are still limited. Thus, it is necessary to search for effective fouling, especially biofouling,
mitigation for improving the performance of the OsMFC.

According to previous studies [13–21], in situ modification of the membrane via biocides is an
effective method to prevent the deposition of bacteria on the membrane surface and subsequently
to mitigate the biofouling. Silver nanoparticles (AgNPs) are commonly used as the biocide owing
to their strong antibacterial activity against numerous types of bacteria [13]. In recent years, several
studies have demonstrated the potential of using AgNPs as the biocide to alleviate the biofouling
in membrane separation processes including nanofiltration (NF) [14], reverse osmosis (RO) [15] and
FO [16]. Generally, the protocol for Ag or AgNP deposition on membranes included embedding
inside the membrane during membrane fabrication, and loading on the membrane surface via in
situ formation [18–21]. For instance, Wu et al. [18] found that an Ag-PDA/PSf hybrid membrane
achieved optimal separation performance because of dramatically enhanced protein-fouling resistance
and good antibacterial activity, and Chew et al. [19] ascribed the membranes’ excellent performance
to the coupled effects of improved surface hydrophilicity and a self-healing mechanism via in situ
immobilization of the AgNPs. Based on the effective biofouling mitigation through modifying the
membrane surface via AgNPs, it might be an alternative method to alleviate the biofouling of the
FO membrane in OsMFC. In fact, the modified FO membrane made of cellulose triacetate (CTA) by
AgNPs has been mentioned in OsMFC [17]. Given that the silver atom could not be directly formed on
the pristine CTA–FO membrane due to lack of adhesion between AgNPs and substrate, the modified
CTA–FO membrane was prepared by silver nitrate (AgNO3) with the help of dopamine and UV
light. Although the AgNP modified CTA–FO membrane alleviated the biofouling, the aggravated
concentration polarization of the FO membrane due to the addition of dopamine had an adverse
impact on the performance of the OsMFC.

In order to avoid the diminishing of the CTA–FO membrane property modified by AgNPs,
we intend to prepare the AgNP modified FO membrane using the thin film composite (TFC) polyamide
FO membrane according to the following two reasons. Compared with the CTA–FO membrane,
the TFC–FO membrane has more potential to be applied in wastewater treatment owing to its higher
flux and selectivity, better pH stability, and resistance to hydrolysis [22–25]. In addition, AgNPs could
be directly coated by sodium borohydride (NaBH4) on the TFC–FO membrane surface due to the
presence of carboxyl groups on the membrane surface while AgNPs could not be directly formed on
the CTA–FO membrane surface [13,26]. Thus, this study aims to mitigate the biofouling of the TFC–FO
membrane via in situ formation of AgNPs on the membrane surface, and subsequently to improve
the electricity generation of the OsMFC during wastewater treatment. To the best knowledge of the
authors, this is the first study focusing on the modification of the TFC-FO membrane by direct coating
with AgNPs for biofouling mitigation in OsMFC.

2. Materials and Methods

2.1. In Situ Formation of AgNPs on TFC-FO Membrane

The dried TFC–FO membrane coupon (supplied by Hydration Technologies Innovations, Albany,
GA, USA) was wetted through immersing in 20% isopropanol solution for 20 min. Subsequently, it was
rinsed three times with deionized (DI) water and then placed in a design membrane module between a
glass plate and a rubber frame for holding the solutions on the active layer of the TFC–FO membrane.
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The effective membrane area contacting the solution in the design module was about 80 cm2. In situ
formation of AgNPs on the TFC–FO membrane was carried out in the following stages as summarized
in Figure 1. Firstly, 20 mL of AgNO3 solution (2 mM) was put in the design module and directly reacted
with the active layer for 10 min. Subsequently, the AgNO3 solution was discarded, and then the active
layer of the TFC–FO membrane was reacted with a NaBH4 solution (2 mM) for 5 min. After forming
AgNPs, the NaBH4 solution was removed from the membrane surface. Finally, the prepared AgNP
modified TFC–FO membrane was rinsed for 10 s with DI water. All in situ reactions were done at
ambient conditions of 25 ± 0.5 ◦C.
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Figure 1. Sketch map of the preparation for an AgNP modified thin film composite-forward osmosis
(TFC–FO) membrane.

2.2. Analytical Methods

In order to identify the impact of in situ formation of AgNPs on the TFC–FO membrane properties,
the pristine and modified TFC–FO membranes were characterized in terms of morphological observation,
surface hydrophilicity, surface roughness, surface charge, anti-microbial properties and intrinsic
separation characteristics. Specifically, a scanning electron microscope (SEM, S-4800, Hitachi, Minato-Ku,
Japan) and an energy dispersive X-ray spectrometer (EDX, Falcon, EDAX Inc., Philadelphia, PA, USA)
were applied for observing the membrane surface and identifying the AgNPs on the modified membrane
surface, respectively. The surface hydrophilicity and the surface roughness were determined by a
surface contact angle analyzer (OCA-15EC, Dataphysics, Stuttgart, Germany) and by an atomic force
microscope (AFM, Bruker MuLtimode 8, Karlsruhe, Germany), respectively. In addition, the surface
charge was analyzed by a SurPASS solid surface zeta potential analyzer (Anton Paar Co., Ltd., Glaz,
Austria). The specific procedures for the SEM, EDX, contact angle analyzer, AFM and zeta potential
analyzer can be found in previous literature [27,28]. The transport properties of the TFC–FO membranes
were determined using a bench-scale FO system (8.5 cm × 3.9 cm) with DI water as the feed solution
and 1 M NaCl as the draw solution [29,30]. The pure water permeability flux and the salt permeability
coefficient were measured according to the method described in previous literature [28,31].

To quantify the AgNPs loaded onto the TFC–FO membrane surface, the modified membrane
samples (1 cm × 1 cm) were firstly digested by 7% nitric acid at 105 ◦C for 2 h to promote dissolution of
the silver from the membrane [32], and then the filtrate obtained by a 0.45 µm filter membrane was
used for Ag analyses by an inductively coupled plasma mass spectrometer (ICP-MS, 720ES, Agilent,
Santa Clara, CA, USA) [16]. In order to examine the residual silver loading on the membrane after
the dissolution experiment, 4 cm2 coupons of in situ AgNP modified membranes were placed in 10
mL of 5 mM NaHCO3 solution (pH value of 8.3). After five days dissolution, the dissolved silver
concentration in the solution was quantified with ICP-MS.
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The antimicrobial property of the modified TFC–FO membrane was assessed using E. coli as the
model bacteria [33–35]. An overnight-cultured bacteria in Luria Bertani (LB) medium was diluted to
108 colony-forming units (CFU)/mL before using. A bacterial viability assay was carried out according
to previous literature [36]. Specifically, the pristine and modified FO membranes were contacted with
1 mL bacteria solution, and then the membranes were gently rinsed and the remaining liquid was
removed after 24 h incubation. A confocal laser scanning microscope (CLSM, LSM 710, ZEISS, Jena,
Germany) was used for observing the distributions of dead and living cells on the pristine and AgNP
modified membrane samples. In addition, the cytometry method was used to quantify the number of
live bacteria attached to the FO membrane samples.

Water flux through the FO membrane was measured by the volume change of the draw solution versus
time [8], and the reverse salt flux was calculated based on the conductivity change of the anolyte [37]. Silver
ion concentrations of the anolyte were monitored at the end of experiment using ICP-MS (720ES, Agilent)
after digesting by 7% nitric acid at 105 ◦C for 2 h, and the total organic carbon (TOC) was determined
using a TOC analyzer (Shimadzu TOC-Vcsh, Kyoto, Japan). The measurements and calculations of TOC,
ammonia nitrogen (NH4

+–N), total nitrogen (TN), and total phosphorus (TP) concentrations in the FO
permeate and their rejections by the FO membrane have been shown in our previous study [7]. In addition,
the removal efficiencies of contaminants by the combination of microorganisms and FO membrane and
only by microorganisms were also referred to in the previous study [7].

The foulants on the FO membrane surface were collected by ultrasonic (25 ◦C, 500 W, 20 kHz) for
30 min, and then their mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended
solids (MLVSS) concentrations were determined according to Chinese NEPA standard methods [38].
An EDX (Falcon, EDAX Inc., Philadelphia, PA, USA) and an SEM (S-4800, Hitachi, Minato-Ku, Japan)
were applied for analyzing the element compositions and capturing the surface images of the fouled
FO membranes, respectively. A CLSM (LSM 710, ZEISS, Jena, Germany) was used for observing the
distributions of biofoulants, including microorganisms, proteins and polysaccharides on the fouled FO
membrane samples. The specific methods of SEM, EDX and CLSM analyses have been reported in
previous literature [17,39].

The OsMFCs voltages were recorded every 5 min by a data acquisition system (RBH8221, Ruibohua
Co., Beijing, China). The polarization curve and internal resistance were obtained by using a series
of different external resistances [40]. The volumetric densities of power and current were calculated
based on the anode liquid volume [41].

All measurements were conducted at least three times, and the data were given with the mean
value and the standard deviation.

2.3. Set-up and Operating Conditions

In order to compare the performance between the pristine and modified TFC-FO membranes, two
identical laboratory-scale OsMFC set-ups (denoted as control OsMFC and AgNP-OsMFC, respectively)
were operated in parallel. The schematic diagram of the set-up is shown in Figure S1. It consisted
of an anode chamber and a cathode chamber (each with an effective volume of 144 mL), and the FO
membrane was located between the two chambers. A carbon brush and a carbon cloth coated with
Pt (0.3 mg/cm2) were pretreated as anode and cathode electrodes, respectively [7,40]. The pristine
(supplied by Hydration Technologies Innovations, Albany, GA, USA) and the AgNP modified (made
in house) TFC–FO membranes with an effective membrane area of 48 cm2 and an orientation of active
layer facing the feed solution (AL-FS) were applied in the control OsMFC and the AgNP-OsMFC,
respectively. The operation of both set-ups was stopped when their voltage was lower than 50 mV
and then the solution in anode and cathode chambers would be replaced with fresh wastewater and
0.5 NaCl solution, respectively [7].

Both OsMFCs were operated under closed circuit conditions with 500 Ω external resistance at
room temperature of 30 ± 0.5 ◦C during the whole experiment. The synthetic domestic wastewater
was fed into the anode chamber, and its concentrations of TOC, NH4

+–N, TN, and TP were 118.4 ± 4.0,
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28.7 ± 0.5, 34.9 ± 1.5, and 2.91 ± 0.11 mg/L, respectively. The composition of the synthetic wastewater
could be found in Table S1 (Supplementary Material). The 0.5 M NaCl solution was used as the draw
solution. The anode and cathode chambers were circulated with a buffer tank at a cross-flow velocity
of 0.03 cm/s. The seeded sludge in the anode chambers was collected from a local domestic wastewater
treatment plant (Taihu Xincheng Wastewater Treatment Plant, Wuxi, China). The initial MLSS and
MLVSS of the sludge in both OsMFCs were 3.2 and 2.4 g/L, respectively.

3. Results and Discussion

3.1. In Situ AgNP Modified FO Membrane Analyses

The active layer images and EDX analyses of the pristine and modified TFC–FO membranes
are illustrated in Figure 2. Compared with the pristine TFC–FO membrane, the surface color of
the modified membrane changed from yellow (Figure 2(a-1)) to glossy dark brown (Figure 2(a-2)),
and some particle clusters were observed on the surface of the modified membrane from the SEM
image (Figure 2(b-2)). From EDX analyses (Figure 2(c-1),(c-2)), the pristine TFC–FO membrane only
contained carbon, oxygen and sulfur elements, which is exactly consistent with the atomic components
of the active layer, and silver (2.14%) was observed on the modified TFC–FO membrane surface
(see Table S2). The SEM and EDX results implied the successful formation of AgNPs on the modified
membrane surface. Furthermore, the ICP-MS results indicated that the total quantity of silver on the
modified TFC–FO membrane surface was up to 3.07 ± 0.10 µg/cm2.
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modified active layer of the TFC–FO membranes.

Characteristics of the pristine and modified TFC–FO membranes, including the surface contact
angle, surface roughness, surface charge, water permeability (Jw) and reverse salt flux (Js) were
determined and compared for evaluating the impact of an AgNP coating on TFC–FO membrane
properties (see Table 1). There was no significant change in the roughness between the pristine
and modified TFC–FO membranes owing to the relative high roughness of the pristine TFC–FO
membrane (Table 1 and Figure S2). We observed the smaller contact angle of the modified TFC–FO
membrane (contact angle decreasing from 46.6 ± 1.3 degree to 33.6 ± 1.1 degree) (Table 1 and Figure S2).
The current study suggested that the modified membrane had a better hydrophilicity [42–45]. As the
hydrophilicity of the membrane surface increased, the adhesion of the pollutants would be poor [46,47].
The membrane surface charge was also considerably changed by the AgNP coating. The surface
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of the modified membrane (−34.56 ± 0.40 mV) had more negative charges than that of the pristine
membrane (−19.10 ± 0.21 mV) at pH 7.5. This might be attributed to the fact that AgNPs have a
negative zeta potential (approximately −20 mV) [48]. In general, the colloidal particles in water are
negatively charged, and electrostatic repulsion between membrane surface and particles can reduce the
adsorption and deposition of colloidal particles on the membrane surface. Therefore, more negative
charges on the surface of FO membrane result in a better anti-fouling performance.

Table 1. Characteristics of the pristine and modified TFC–FO membranes a.

Characteristics Pristine Membrane Modified Membrane

Contact angle (degree) 46.6 ± 1.3 33.6 ± 1.1
Surface charge (mV) −19.10 ± 0.21 −34.56 ± 0.40

Surface roughness (nm) 38.4 ± 1 33.3 ± 2
Water flux (LMH) 12.5 ± 0.5 8.5 ± 0.5

Reverse salt flux (10−8 m/s) 9.4 ± 0.3 2.7± 0.1
JS/JW 0.75 ± 0.12 0.31 ± 0.05

Bacteria colonies (107 CFU/mL) 2.05 ± 0.07 1.55 ± 0.07
a Values are given as mean values ± standard deviation (number of measurements: n = 3).

Additionally, it could be observed from Table 1 and Figure S3 that water flux of the modified
membrane was about 33.3% lower than that of the pristine membrane. Based on the fact that NaBH4

does not reduce the carboxylic or amides in the polyamide selective layer under the conditions used [49],
the decrease in water permeability might be due to the deposition of AgNPs on the membrane surface
resulting in a reduction of the effective membrane surface area for water flow [20,32]. However, Js was
lower for the modified membrane (see Table 1), indicating that the nature of the polyamide layer was
unaffected by the in situ reaction. Indeed, the Js/Jw value of the modified membrane was much lower
than the pristine membrane (see Table 1), suggesting that the modified membrane had better properties
in the FO process.

In order to examine the effect of silver loading on the antibacterial activity, E. coli bacteria were
contacted with the pristine and AgNP modified membranes for 24 h. A decrease of 25% in the number
of E. coli bacteria colonies for the modified membrane compared to the pristine membrane was observed
(see Table 1). Moreover, biofilm development was significantly suppressed on the modified membrane
coupons indicated by the CLSM images (see Figure S4). These observations demonstrated that silver
deposited on the TFC–FO membrane had a strong antibacterial ability.

The release of the AgNPs from the modified membrane to the aqueous solution was further
evaluated. Based on the fact that silver ion dissolution from AgNPs highly depends on the solution
chemistry and pH value, the modified membrane was immersed in a solution buffered by NaHCO3 at
pH 7.5 (a similar pH value to the wastewater used in this study). After 5 days, only 18.99% of silver ion
on the modified membrane was released, which proved that the AgNPs were strongly immobilized on
the membrane surface.

3.2. Electricity Generation of OsMFC

The electricity generation of the control OsMFC and AgNP-OsMFC is illustrated in Figure 3.
In both reactors, the voltage increased upon the replacement of the anolyte and then decreased due
to the depletion of the organic substrates in all cycles. It is worth noting that the AgNP-OsMFC
achieved a much longer operating time (approximately 760 h) than the control OsMFC (approximately
250 h), which could be attributed to a more severe flux decline of FO membrane in the control OsMFC.
Moreover, the maximum voltage of AgNP-OsMFC was about 440 mV, which was higher than that in the
control reactor (approximately 400 mV). In addition, the polarization test demonstrated the maximum
power density of the AgNP-OsMFC and control OsMFC were 3.67 and 3.45 W/m3, respectively,
and their internal resistances were approximately 305.8 and 303.7 Ω, calculated from the slope of
the polarization curve, respectively. Based on the above results, the AgNP-OsMFC exhibited better
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electricity generation than the control OsMFC owing to better properties of the modified membrane.
The improved hydrophilicity and highly negative charge of the modified membrane surface increased
the proton or cationic ion transport thus reducing the internal resistance of the OsMFC [17]. Compared
with the maximum power density of an OsMFC using the commercial CTA–FO membrane [7] and the
modified CTA–FO membrane with Nag-pDA [17], a higher value was obtained in this study using the
modified TFC–FO membrane.Membranes 2020, 10, x FOR PEER REVIEW 7 of 15 
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3.3. Removal of Contaminants

Contaminants removal was also compared between the control OsMFC and the AgNP-OsMFC for
evaluating the impact of the modified TFC–FO membrane on the performance of the OsMFC. Figure 4
shows the variations in TOC, NH4

+–N, TN, and TP concentrations in the influent, anolyte, atholyte,
and FO permeate during the operation of both OsMFCs. From Figure 4a, both reactors achieved an
excellent TOC removal with a removal rate of more than 99.0%. It could be attributed to the combining
effects of the microorganisms in the anode chamber (more than 96%) and the rejection of FO membrane
(more than 99%). High TOC removal efficiency in this study was consistent with previous reports on
OsMFCs treating low-strength wastewater [5,8]. Moreover, the average concentration of TP in the FO
permeate in both OsMFCs was below 0.3 mg/L with a removal rate about 95% due to the high rejection
of the FO membrane.

In addition, it could be seen from Figure 4b,c that the variations in NH4
+–N of the influent, anolyte,

atholyte, and FO permeate were consistent with that of TN because the main component of TN was
NH4

+–N. Thus, we only paid attention to the changes in NH4
+–N. The FO permeate concentrations

of NH4
+–N in the control OsMFC and the AgNP-OsMFC were 20.7 ± 2.3 mg/L and 12.0 ± 1.4 mg/L

with an average removal efficiency of 58.0% and 58.7%, respectively, which were similar results to a
recent study on OsMFCs [50]. Like previous reports on OsMFCs [5,7,8], both OsMFCs in this study
had better effluent quality compared to the traditional MFCs.

Since AgNPs might be released from the modified TFC–FO membrane to aqueous solutions, silver
concentration in the anolyte was further assessed at the end of each cycle. The silver content in both
anolyte and catholyte was below detection limit (<0.01 µg/mL), indicating that AgNP release was
negligible and had little influence on microorganisms.
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Figure 4. Variations in (a) total organic carbon (TOC), (b) NH4
+–N, (c) total nitrogen (TN), and (d) total

phosphorous (TP) concentrations in the influent, anolyte, catholyte, and FO permeate at the end of each
cycle in (1) the control OsMFC and (2) the AgNP-OsMFC, respectively.

3.4. Performance of the FO Membrane

Variations in the FO membrane flux and the conductivity of anolyte and catholyte at the end
of each cycle of both OsMFCs are presented in Figure 5. It could be observed that the modified
FO membrane had a larger initial water flux (4.55 LMH versus 3.49 LMH) and a lower flux decline
rate (2.87 × 10−3 LMH/h versus 8.69 × 10−3 LMH/h) than the pristine FO membrane. It implied that
the modified FO membrane achieved a better flux performance in the OsMFC. With regard to the
variations in salinity in each cycle of both OsMFCs, it gradually increased in the anode chamber due
to the rejection of the FO membrane for influent solutes and the reverse solute transport from the
draw solution while it decreased in the cathode chamber owing to the dilution of the FO permeate.
The variations in salinity in the anolyte and catholyte of both OsMFCs were consistent with previous
literature [7]. It can also be seen from Figure 5 that there was no significant difference in the final salinity
in both anolyte and catholyte at the end of each cycle between the two OsMFCs, suggesting that the
modified FO membrane had no significant impact on the salinity variations in OsMFC. Considering that
the variations in FO membrane flux in OsMFC were dependent on salinity and membrane fouling [7],
the better flux performance of the modified FO membrane could be attributed to the mitigation of
membrane fouling on the basis of a similar salinity (in the range of 15–30 mS/cm) in both reactors.
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Figure 5. Variations in water flux of the FO membrane and conductivity of the anolyte and catholyte at
the end of each cycle in (a) the control OsMFC and (b) AgNP-OsMFC.

3.5. Mechanisms of Fouling Mitigation by AgNPs

In order to understand the role of AgNPs in mitigating biofouling, the FO membranes were
removed from the control OsMFC and AgNP-OsMFC. The photo and SEM images (see Figure 6)
showed an apparently different morphology of the fouled TFC-FO membranes in the control OsMFC
and in the AgNP-OsMFC. The fouled TFC–FO membrane in the control OsMFC was covered with
a thick cake layer (with thickness of 69.87 ± 2.67 µm measured by the CLSM), while a thin fouling
layer (with thickness of 58.19 ± 1.24 µm measured by the CLSM) was found on the modified TFC–FO
membrane in the AgNP-OsMFC. Furthermore, the EDX results (see Figure 6) indicated a great variety
of elements in the fouling layer of both TFC–FO membranes including C, O, Na, Mg, Al, P, S, Cl, K, Ca,
Fe and Cu, which could be found in the feed wastewater. Thus, influent wastewater was regarded
as the main source of the membrane foulants. The existence of metal cations such as Ca2+ and Mg2+

demonstrated the combined fouling on both FO membrane surfaces [51,52]. In order to distinguish
the different contributions of inorganic fouling and biofouling, the foulants on the FO membrane
were further collected and analyzed according to the method described in previous reports [53,54].
The MLVSS/MLSS rate of the foulants on the control and modified TFC–FO membranes were 0.90 ± 0.08
and 0.88 ± 0.07, respectively (see Table S3), suggesting that biofouling played a more significant role in
the fouling of TFC–FO membranes during the operation of the OsMFC.
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Figure 6. Photos (a) SEM and (b) EDX; (c) results of (1) the fouled pristine membrane and (2) the
modified TFC–FO membrane.
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In order to further understand the biofouling of FO membranes in both OsMFCs, variations in
α-d-glucopyranose and ß-d-glucopyranose polysaccharides, proteins, and microorganisms on the
FO membrane surfaces were investigated by the CLSM combined with the multiple fluorescence
probes, and their biovolume was calculated by the software of PHLIP. As shown in Figure 7 and
Figure S5, the fouling layer of the modified TFC–FO membrane was thinner than the pristine membrane
(58.19 ± 1.24 µm versus 69.87 ± 2.67). In addition, the biovolume of the polysaccharides, proteins,
and microorganisms was less in the fouling layer of the modified TFC–FO membrane (Figure 7 and
Table S4), indicating that the organic foulants and biofoulants were reduced on the TFC–FO membrane
via the modification by AgNPs. Furthermore, the mechanism of the AgNPs mitigating biofouling
layer could be divided into two parts. On the one hand, the improved performance of the modified
TFC–FO membrane was due to the increased hydrophilicity and the more negative zeta potential
decreasing the fouling tendency of the FO membrane. In this case, the microorganisms and their
secretion of extracellular polymeric substances were hard to deposit on or attach to the modified
TFC–FO membrane surface as a result of the increased repulsion between foulants and the membrane
surface [18–21]. On the other hand, with their antibacterial property, AgNPs disturbed the functions of
the microorganisms deposited on the FO membrane surface and eventually led to the death of the
microorganisms [18–21].
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4. Conclusions

The AgNP modified TFC–FO membrane successfully mitigated biofouling in OsMFC. It could be
attributed to the changes of TFC–FO membrane properties and the antibacterial property of AgNPs on
the membrane surface. The modified TFC–FO membrane achieved an increased hydrophilicity and
a more negative zeta potential which enhanced the repulsion between foulants and the membrane
surface. In addition, in situ formation of AgNPs on the TFC–FO membrane surface could effectively
disturb the functions of microorganisms deposited on the membrane surface. The biofouling mitigation
of the FO membrane further improved the water flux and the electricity generation of the OsMFC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0375/10/6/122/s1,
Figure S1: Schematic diagram of the OsMFC; Figure S2: (a) AFM micrographs and (b) contact angle micrographs
of (1) the pristine and (2) the modified active layer of TFC–FO membranes; Figure S3: Water flux of the pristine
and modified TFC–FO membranes determined by the FO–Cell using synthetic wastewater as the feed solution
and 1 M NaCl solution as the draw solution; Figure S4: CLSM images of bacteria attached to the surface of (a)
the pristine and (b) the modified TFC-FO membranes; Figure S5: Integrated CLSM images of polysaccharides
(blue), proteins (green) and microorganisms (red) in the biofouling layer of (a) the pristine and (b) the modified
TFC–FO membranes; Table S1: Composition of the synthetic wastewater; Table S2: EDX analyses of the pristine
and modified active layer of TFC–FO membranes; Table S3: Properties of the foulants collected from the fouled
pristine and modified TFC–FO membranes; Table S4: Biovolume and mean thickness of the pristine and modified
TFC–FO membranes.
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