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Abstract: Membrane filtration of biological suspensions is frequently limited by fouling. This
mechanism is well understood for ultrafiltration of activated sludge in membrane bioreactors.
A rather young application of ultrafiltration is the recovery of nutrients from anaerobic digestates, e.g.,
from agricultural biogas plants. A process chain of solid/liquid separation, ultrafiltration, and reverse
osmoses separates the digestate into different products: an organic N-P-fertilizer (solid digestate),
a recirculate (UF retentate), a liquid N-K-fertilizer (RO retentate) and water. Despite the preceding
particle removal, high crossflow velocities are required in the ultrafiltration step to overcome fouling.
This leads to high operation costs of the ultrafiltration step and often limits the economical application
of the complete process chain. In this study, under-stoichiometric ozone treatment of the ultrafiltration
feed stream is investigated. Ozone treatment reduced the biopolymer concentration and apparent
viscosity of different digestate centrates. Permeabilities of centrate treated with ozone were higher
than without ozone treatment. In a laboratory test rig and in a pilot plant operated at the site of two
full scale biogas plants, ultrafiltration flux could be improved by 50–80% by ozonation. Nutrient
concentrations in the fertilizer products were not affected by ozone treatment.

Keywords: nutrient recovery; biological suspension; ultrafiltration; ozone treatment; rheology;
membrane performance

1. Introduction

Ultrafiltration (UF) is a state-of-the-art technology for municipal and industrial wastewater
treatment, e.g., as membrane bioreactor in combination with activated sludge processes [1]. The
interaction mechanisms between biological suspension and membrane surface are well understood and
commonly classified into deposition, reversible and irreversible (bio-)fouling, and pore-blocking [1,2].
Solid concentration, particle size and structure as well as sludge rheology have an impact on membrane
fouling [3,4]. Many authors link membrane filtration performance to the presence of soluble or
macromolecular substances, especially proteins and polysaccharides, which are often summarized as
biopolymers, extracellular substances (EPS), or soluble microbial products (SMP) [5,6].

Rather young applications for ultrafiltration of biological suspensions are anaerobic membrane
bioreactors [7–9] and the recovery of nutrients from manure and anaerobic digestates [10,11]. Anaerobic
digestate is a side product of sewage sludge, animal waste, or energy crop fermentation in biogas
plants. With 90–95%, it mainly consists of water, but also contains essential plant nutrients like nitrogen
(N), phosphorus (P), and potassium (K). Whenever possible, digestates are used as field fertilizer in
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the vicinity of the biogas plant [12]. Optionally, they can be upgraded into concentrated fertilizer
products. This can be an economical option whenever good fertilizing practice otherwise requires
transportation and storage of the digestate. After initial solid/liquid separation, e.g., by a decanter
centrifuge, membrane processes can be applied for digestate upgrading [13,14]. Ultrafiltration enables
the recovery of a retentate and a particle free permeate with dissolved ammonium and potassium. The
UF permeate can be further treated in a reverse osmosis (RO) step into concentrated liquid N-K-fertilizer
and dischargeable water. Recovery of nitrogen and phosphorus are increasingly important for a
sustainable economy, as particularly phosphor is a globally limited resource [15].

The process combination of mechanical solid/liquid separation and membrane treatment is an
emerging technology which offers the advantage of producing dischargeable water on the one hand
and concentrated, transport worthy nutrient products on the other hand. However, the commercial
launch of the process is affected by its high operational costs. Within a process chain of solid/liquid
separation, ultrafiltration, and reverse osmosis, the ultrafiltration step has the highest operational
energy demand, and consequently the highest operational costs [11,16]. Membrane material, cross flow
velocity and transmembrane pressure influence flux performance of the ultrafiltration process, while
the flux rates are generally low and limited by organic fouling [10,17]. Fouling mechanisms have been
found to be quite similar to those reported for activated sludge filtration, i.e., influenced by particle
size concentration, organic macromolecules, and apparent viscosity [13]. Pretreatment and alteration
of the ultrafiltration feed stream is thus considered to improve ultrafiltration performance. Successful
approaches include precipitation/flocculation [15], thermal treatment [18], and acidification [19].

Ozone treatment of biological suspensions generally results in a disruption of organic compounds.
Uzun et al. (2012) investigated the influence of ozone on functional properties of proteins [20], while
Wei et al. (2016) observed a dramatic decrease of biopolymer substances in algae suspensions from
approximately 50,000 Da to 1000–10,000 Da after ozonation [21]. In wastewater treatment applications,
ozone treatment is applied to alter activated sludge properties [22–24]. Bougrier et al. (2006) reported an
improved anaerobic degradability of ozone-treated activated sludge, while simultaneously rheological
sludge properties changed from shear thinning to Newtonian behavior [25]. Sun et al. (2011) showed
a 70% reduction of particle size in MBR activated sludge when dosing ozone in a concentration
of 500 mgO3·gTOC

−1, with positive effects on membrane filtration performance. Ozone dosage of
180 mgO3·gTOC

−1 already reduced the membrane fouling rate by 70% [22].
The objective of this paper is to investigate the potential of ozone treatment on the optimization of

membrane driven nutrient recovery from anaerobic digestates. As the ultrafiltration is the economically
most crucial process step in the nutrient recovery process chain, ozonation is used to alter the fluid
properties of the UF feed. Digestates from different biogas plants are treated with varying ozone
concentrations and the effect on fluid properties, UF performance, and nutrient split is discussed.

2. Materials and Methods

The membrane-driven nutrient recovery process consists of three process units: solid/liquid
separation, ultrafiltration, and reverse osmosis (Figure 1). A detailed description of the process and
operational results can be found in Gienau et al. (2018) [11]. The focus of this study is the improvement
of the UF filtration performance by ozone treatment of the UF feed (liquid digestate fraction, hereinafter
called “centrate”) and its influence on nutrient recovery.
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Figure 1. Process scheme of the membrane-based nutrient recovery process. 
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Figure 1. Process scheme of the membrane-based nutrient recovery process.

2.1. Experimental Set-Up

Digestates were sampled from either digestate storage or post fermenter tanks of different
agricultural biogas plants. The samples were further treated and analyzed in the laboratory of UAS
Osnabrück. Pilot trials were carried out at the site of two full scale agricultural biogas plants. Table 1
lists significant operational parameters for biogas plant I (BP I) and biogas plant II (BP II).

Table 1. Process parameters of biogas plants BP I and BP II.

Process Parameter Unit BP I BP II

Electrical capacity MWel 2.5 1.27
Operational temperature ◦C 40–42 39.5–40

Retention time d 60–65 40–45

Substrate
36% cattle manure
36% maize silage
28% sugar beets

37% slurry/manure
51% maize silage

12% oat/whole plant
silage

Digestate storage m3 15,800 13,000
Yearly digestate volume m3

·a−1 35,000–55,000 30,000–35,000
Dry matter content digestate % 5.8 ± 0.4 7.7 ± 0.5

Organic percentage of DM digestate % of DM 72.8 ± 1.0 71.2 ± 0.3
Dry matter content centrate % 1.9 ± 0.0 2.2 ± 0.1

Organic percentage of DM centrate % of DM 59.5 ± 2.7 55.5 ± 2.5

All experiments on ultrafiltration performance were carried out with digestate centrate. In the
laboratory, solid/liquid separation was achieved by centrifugation at 4300 min−1 (3493 g) for 10 min
with a laboratory centrifuge Heraeus Megafuge 1.0 (ThermoFisher Scientific, Waltham, MA, USA).
For on-site trials, solid/liquid separation was carried out with a screw press separator (agriKomp,
Quetschprofi, 3 kW, mesh size: 500 µm) followed by a decanter centrifuge (GEA, Westphalia Separator
AD 0509, relative centrifugal force: 3400 g). The on-site solid/liquid separation was improved by
cationic polymeric flocculants with a molecular weight of 3 × 106–4 × 106 g·mol−1. The applied
concentration of polymers was 4–6 gPolymer·kgTR

−1.
Dry matter content (DM) was 5.8% and 7.7% for BP I and BP II, respectively. For both anaerobic

sludges approximately 70% of DM were of organic nature. After solid/liquid separation, a significant
reduction of DM and organic dry matter (oDM) was measured. While the digestate contained 5.8–7.7%
DM and 4.2–5.5% oDM, the centrate contained 1.9–2.2% DM and 1.1–1.2% oDM.

Centrate was either directly processed by the ultrafiltration unit or previously treated with ozone.
The ozone generator in the laboratory (Sander 301.19) had a performance of 30 g·h−1 and a concentration
range of 45–120 g·m−3. For on-site trials, a full-scale ozone generator (Ozonia, CFS-14 2G) with a
performance of 980 g·h−1 and a concentration range of 50–150 g·m−3 was used. Both ozone generators
were operated with technical oxygen. Slight overpressure (1.5 barsabs) was applied. Figure 2 shows
the ozone pilot plant (Air Liquide GmbH) with the full-scale ozone generator for on-site pilot trials.
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Figure 2. Process flowsheet ozone pilot plant.

Both ozone installations were operated in batch mode. In the pilot plant, the receiving tank
B-02-OZ and the vertical ozone reactor B-02-OZ were initially filled with a total centrate volume of
10 m3. The liquid was then continuously circulated along the ozone venturi injector with a flow rate
of 7–8 m3

·h−1 until the desired ozone concentration was reached. Ozone dosages varied depending
on the organic fraction in the centrate in a range of 20–150 mgO3·goDM

−1. Ozone-treated centrate was
subsequently stored in a buffer tank.

Ultrafiltration tests in the laboratory were performed with one multi-channel ceramic ultrafiltration
module (UF 150, TiO2/αAl2O3, 150 kDa MWCO, Atech, Germany) with 19 channels of 3.3 mm diameter
and 1.20 m length. The membrane module had a total membrane surface area of 0.236 m2. To understand
the influence of operational parameters, the test rig was operated with varying temperatures and
crossflow velocities, transmembrane pressure differences of 1.15 ± 0.01 bars, and a recovery rate of
0–48%.

Permeate flux JP and recovery rate were calculated by the following equations with permeate
flow rate QP, feed flow rate QF and membrane surface area AM:

JP =
QP

AM
(1)

Recovery =
QP

QF
·100% (2)

The operational parameters, i.e., crossflow velocity, TMP, and recovery rate of the laboratory UF
plant were technically limited within the laboratory installation. Promising results of the laboratory
test rigs were thus transferred to pilot scale trials under full scale operating conditions.

The pilot scale UF plant was equipped with 31 multichannel ceramic tubular modules (UF 150,
TiO2/αAl2O3, 150 kDa MWCO, Atech, Germany) with a total number of 589 channels of 3.3 mm
diameter and 1.20 m length. The membrane module had a total membrane surface area of 7.328 m2.
During the trials on-site of two full-scale biogas plants, the feed stream entered the UF pilot plant
with a temperature of approximately 40 ◦C, which is the process temperature of the anaerobic biogas
process. By using surplus heat of the biogas plant’s CHP unit (combined heat and power), the UF feed
could be increased to temperatures around 70 ◦C. The UF pilot plant was operated at transmembrane
pressure differences of 3.5–4.0 bar, crossflow velocities of 4–5 m·s−1, and a recovery rate of 60–70%.

Figure 3 shows the ultrafiltration pilot plant (A3 Water Solutions GmbH). The feed to the
ultrafiltration pilot plant came either directly from the decanter centrifuge (reference samples) or from
the receiving tank from the ozonation plant (ozone-treated samples). Pilot plant operation and data
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capture was fully automated. Calculation of permeate flux and recovery was according to Equations (1)
and (2). Operation of the UF pilot plant was quasi-continuous—a centrate batch was continuously
processed during working hours and operation was stopped during nights and weekends. The UF
permeate was further treated in a three-stage reverse osmosis unit.
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2.2. Analysis and Instrumentation

Dry matter and organic dry matter were analyzed according to the European standards EN 12880
and EN 12879, respectively. The nutrient concentrations were measured with standard Hach vial
tests LCK 302 (ammonia), LCK 338 (total nitrogen), LCK 228 (potassium), LCK 350 (phosphorus) in a
photometer DR 6000 (Hach). All measurements were carried out as double determination and have
a relative error of ≤ 5%. Some nutrient measurements were undertaken by an external agricultural
laboratory (AGROLAB GmbH).

Particle size distribution of the samples was determined with a Mastersizer S long bench (Malvern
Instruments Ltd., Malvern, UK) at Gent University equipped with a 300 RF lens and an MSX-17 wet
sample dispersion unit.

Size separation and detection of organic fractions of the centrate were performed by Liquid
Chromatography–Organic Carbon Detection (LC-OCD, DOC-LABOR Dr. Huber, Karlsruhe, Germany)
with a HW-50S column (Tosoh Bioscience). The system consisted of size exclusion chromatography
columns for separation of organic molecules according to their molecular size. The separated
compounds were detected by UV absorption at 254 nm followed by dissolved organic carbon (DOC)
detection. Measurements were carried out by Berlin University of Technology.

The viscosity curve of the liquid phase after centrifugation was measured with a double-gap
viscosity system MCR101 (Anton Paar Physica) with the corresponding measuring unit DG 26.7. The
viscosity curve was recorded for a shear rate interval of 1–10,000 s−1 in a logarithmic ramp of 75 points.
Temperature was constant during the measuring procedure.

3. Results and Discussion

3.1. Influence of Ozone on Fluid Properties

In a first step, digestate centrates of different biogas plants were treated with ozone dosages
of 20–150 mgO3·goDM

−1. With a mean organic fraction of 20 goDM·L−1 this amounts to ozone
concentrations of 0.04–3 gO3·L−1. Related to the COD concentration in the centrates of 25–60 gCOD·L−1,
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the under-stoichiometric ozone treatment could only result in an oxidation of small fractions of the total
organic material. Optically, these low ozone dosages did not result in a decolorization of the generally
brown color of the centrates. Nevertheless, ozone treatment changed the fluid properties. Figure 4
gives the LC-OCD analyses of original centrate (reference) and centrate treated with a medium specific
ozone dosage of 69 mgO3·goDM

−1ozone. The first peak of the reference sample arrives at the organic
carbon detector at about 38 min after sample injection. It contains biopolymers, i.e., polysaccharides,
proteins, and organic colloids. It is followed by a second peak at 50 min, which contains humic
substances. The third peak at 61 min is due to the operating conditions (no adjustment of the sample
pH and ionic strength of the eluent) and contains organic acids. Concentrations of the different fractions
are proportional to areas under the curves. For unknown biological suspensions, it is difficult to
distinguish the transitions between the different peaks, though. Therefore, the analysis within this
paper is limited to a qualitative analysis instead of a quantification. Research on membrane bioreactors
has proven a strong correlation between the biopolymers peak and membrane fouling [5].
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Figure 4. LC OCD analyses of digestate centrate of an agricultural biogas plant with ozone treatment
and without. Dilution 1:400.

Ozone treatment results in a shift of a portion of rather large biopolymers to smaller fractions in the
region of the humic substances peak (Figure 4). Under-stoichimetric ozone treatment seems to result in
an oxidative disintegration of the long-chained structure of biopolymers, i.e., polysaccharides. This is
in good accordance with HPSEC-analyses of an algae suspension, where a reduction of biopolymers
(10,000–100,000 Da) towards substances with molecular weights of 1000–10,000 Da was observed [21].

Despite of the shift of biopolymers towards smaller fractions, particle size distribution was
not notably affected (data not shown). This is in accordance with literature findings of Erden and
Filibeli (2011) [26] and Bougrier et al. (2006) [25] where particle size decrease for ozone concentrations
<50 mgO3·goDM

−1 was within a very small range of 1–2%. On the one hand, even under-stoichiometric
ozone treatment seems to destroy part of the biopolymer structure; on the other hand, it might produce
more hydrophilic substances, which are enclosed by a hydration shell.

The presence of biopolymers, i.e., polysaccharides in aqueous solutions is known to result in
relatively high apparent viscosity levels as well as shear thinning rheological behavior due to the
long-chained molecular structure of polysaccharides [27]. Some authors describe an alteration of
the rheology of biological suspensions after ozone treatment due to the oxidation of long-chained
molecules [22,25].
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The influence of ozone treatment was tested for digestates of different biogas plants with specific
ozone dosages between 20 and 150 mgO3·goDM

−1. Even very low specific ozone concentrations of
20–30 mgO3·goDM

−1 were found to decrease apparent viscosities. For economic and environmental
reasons, low ozone dosages of 20 and 30 mgO3·goDM

−1 were further investigated. Figure 5 shows the
example of viscosity curves of a centrate from an agricultural biogas plant with an ozone treatment of
30 mgO3·goDM

−1 and without ozone treatment. The levels of apparent viscosities are well above water
viscosity (ηwater = 0.001 Pa·s, 20 ◦C). All samples are characterized by a shear-thinning rheological
behavior: with increasing shear rate, the apparent viscosity of the samples decreases. The increase of the
curves for very high shear rates can be explained by the occurrence of Taylor vortices. As the samples
are optically free of structural material, both the elevated apparent viscosity level and the pseudoplastic
behavior can be explained by the high presence of biopolymers, i.e., the long-chained molecular
structure of polysaccharides. For both temperatures, ozone-treated samples show a lower value of
apparent viscosity. This is in good accordance with the lower value of biopolymers: the reduction of
biopolymer chains reduces the level of apparent viscosity as well as the shear thinning properties.
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Figure 5. Viscosity curve (each curve average of three different days, Anton Paar MCR 101) of digestate
centrate of an agricultural biogas plant with ozone treatment and without (reference).

In a previous screening of 16 different digestate samples, biopolymers as well as centrate viscosity
were found to strongly influence the ultrafiltration performance of anaerobic sludge centrates [27].
The described influence of ozone on the centrate is therefore expected to improve the ultrafiltration
performance in the described process scheme.

3.2. Influence of Ozone on Ultrafiltration Performance

Membrane performance was analyzed as membrane flux JP of the ceramic ultrafiltration modules
in the laboratory test rig and the on-site pilot plant. Figure 6 shows the membrane flux of the
ceramic tubular ultrafiltration module measured for two different centrates in the laboratory test
rig. Temperature was set to approximately 48 ◦C (proposed operational temperature in the digestate
treatment process chain) and the recovery was continuously increased until a minimum flux rate of
approximately 20 L·m−2

·h−1 at a TMP of 1.15 bar was reached. This limited the achievable recovery to
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a maximum value of 38%. Flux rates of the reference samples started at 25–28 L·m−2
·h−1 and almost

linearly decreased to values of 18–21 L·m−2
·h−1. Ozone treatment with 30 mgO3·goDM

−1 resulted in a
significant increase of flux rates with 45 L·m−2

·h−1 at low recovery and 30 L·m−2
·h−1 at 30% recovery.

The difference between the ozone-treated sample and the reference can be expressed in form of a flux
enhancement factor according to Equation (3). The flux enhancement by ozone treatment was 1.7 (70%)
and 1.8 (80%) for samples A and B, respectively.

F =
JP, Ozone

JP, Re f erence
(3)
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Figure 6. Membrane flux (laboratory ultrafiltration rig) of digestate centrates of two agricultural biogas
plants with ozone treatment and without (reference) as a function of recovery, ∆p = 1.15 ± 0.01 bar, v =

2.46 ± 0.08 m·s−1, T = 47.7 ± 1.4 ◦C

The pilot plant was quasi-continuously operated with a constant recovery of 70%. Figure 7 gives
the membrane flux of BP I at constant recovery and continuously increased temperature. The results
confirm the general flux improvement by ozone treatment. The sample with an ozone dosage of
30 mgO3·goDM

−1 reveals higher flux rates with enhancement factors F of 1.4 at 40 ◦C, 1.5 at 55 ◦C and
1.8 at 70 ◦C.

The gradient for the ozone-treated sample in Figure 7 increases for temperatures above 45 ◦C.
As a hypothesis, this was explained by a transition from laminar to turbulent flow conditions in the
membrane tubes.

Temperature-dependent viscosity can be described by a combination of the power-law equation
and an Arrhenius approach to include the temperature dependency of the flow consistency index k
(see Equation (4) with temperature T in K and the shear rate

.
γ in s−1).

ηn−N = k·e
EA
R·T ·

.
γ

n−1 (4)

Table 2 gives the mean values for obtained rheological parameters of agricultural digestate centrate
corresponding to the operating conditions of Figures 5 and 6.
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Figure 7. Membrane flux of digestate centrates (pilot plant at BP I) with ozone treatment and without
(reference) as a function of temperature, ∆p = 4.02 ± 0.05 bar, v = 4.6 ± 0.4 m·s−1, 70% recovery.

Table 2. Mean rheological parameters of digestate centrate with and without ozone treatment.

Parameter Unit Reference 30 mgO3·goDM−1

k Pa·sn 9.3× 10−5 1.9× 10−4

n - 0.63 0.67
EA J·mol−1 21,240 16,770
R J·mol−1

·K−1 8.314 8.314
ρ kg·m−3 1010 1010

Reynolds numbers in pipe flow geometries for non-Newtonian fluids can be calculated according
to Equation (5) [13].

Ren−N =
v(2−n)

·dn
·ρ

k·e
EA
R·T ·

(
1+3n

4n

)n
·8(n−1)

(5)

Figure 8 shows calculated Reynolds numbers for rheological parameters of Table 2 and geometry
(diameter d = 3.3 m) and flow conditions (v = 4.6 m·s−1) corresponding to Figure 7.

For constant crossflow velocity and geometry, the ozone-treated sample reveals lower viscosity
values (Figure 5) and higher Reynolds numbers (Figure 8). The transition from laminar to turbulent
flow thus begins at lower temperatures (≈ 40 ◦C) for the ozone-treated and higher temperatures
(≈62 ◦C) for the untreated reference sample. These results undermine the hypothesis regarding the
gradient increase in Figure 7. Ozone treatment of digestate centrate thus not only reduces the viscosity
of the UF feed, but also leads to a transition towards turbulent flow conditions in the tubular membrane
modules. On the one hand, turbulent flow conditions enhance back transportation of particles into the
bulk stream. On the other hand, turbulent flow conditions enhance mass transfer phenomena. This
leads to a decrease of concentration polarization layer thickness, less accumulation of macro molecules
near the membrane surface and accordingly lower cake layer resistance.
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Figure 8. Calculated Reynolds numbers of digestate centrates with ozone treatment and without
(reference) as a function of temperature, v = 4.6 m·s−1, d = 3.3 mm, rheological parameters according to
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Figure 9 shows the accumulated results of flux rates for reference and ozone-treated samples
at different operational conditions. The results were obtained with the pilot plant at the site of two
different full scale biogasplants (BP I and BP II).

Membranes 2020, 10, 64 11 of 14 

 

reference III and ozone dosage of 30 mgO3∙goDM−1 at crossflow velocities of 3 m∙s−1, a further flux 

enhancement of 1.2 and 1.6 was measured at BP I and BP II, respectively. Compared to the untreated 

sample, ozone treatment at elevated temperature can result in a considerable reduction of crossflow 

velocity and parallel flux enhancement (Reference I to 30 mgO3∙goDM−1 at 3 m∙s−1). At both pilot plant 

operation sites, the described process combination resulted in 50%–60% of electric energy reduction 

for the ultrafiltration process step including ozone generation and treatment. As the ultrafiltration 

step, i.e., the crossflow pump, has the highest operational energy demand within the total combined 

process, a 50% reduction of electrical energy demand of the ultrafiltration unit is a considerable step 

towards economical launch of the membrane-based nutrient recovery from digestates.  

 

Figure 9. Summary of pilot plant membrane flux values at BP I (left) and BP II (right), Y = 70%. 

3.3. Influence of Ozone on Nutrient Recovery 

The complete conditioning process produces four different fractions. The solid fertilizer contains 

most of particulate organic material, phosphorous and organic nitrogen. The second fraction is the 

retentate of the ultrafiltration step, which contains all soluble nutrients and some organic substances, 

e.g., biopolymers. This fraction is usually recirculated to the biogas plant. The third fraction is a 

particle free concentrated liquid fertilizer, which contains most of the potassium and ammonium. 

The last fraction is water. Dependent on the RO design, it can be treated to discharge or process water 

quality. Figure 10 gives the mean dry mass and nutrient concentrations in the different process 

streams over the whole operation time of the pilot plant at BP I and BP II, respectively.  

 

Figure 10. Mean dry matter and nutrient concentrations in process streams of BP I (first value) and 

BP II (second value). 

In the current study, under-stoichiometric ozone treatment is applied to change the centrate 

properties and improve ultrafiltration performance. As most of the organically bound nutrients are 

0

10

20

30

40

50

60

R
e

fe
re

n
ce

 I
v

 =
 4

.7
 m

·s
-1

T
 =

 4
4

.4
 °

C

20
 m

g
O

3
·g

o
D

M
-1

v
 =

 4
.8

 m
·s

-1

T
 =

 6
9

.4
 °

C

30
 m

g
O

3
·g

o
D

M
-1

v
 =

 4
.6

 m
·s

-1

T
 =

 7
3

.2
 °

C

30
 m

g
O

3
·g

o
D

M
-1

v
 =

 3
.0

 m
·s

-1

T
 =

 7
5

.3
 °

C

R
e

fe
re

n
ce

 I
I

v
 =

 4
.8

 m
·s

-1

T
 =

 7
4

.4
 °

C

R
e

fe
re

n
ce

 I
II

v
 =

 3
.0

 m
·s

-1

T
 =

 7
2

.6
 °

C

0

10

20

30

40

50

60

M
e

m
b

ra
n

e 
fl

u
x 

in
 L

·m
-2

·h
-1

R
e

fe
re

n
ce

 I
v

 =
 4

.2
 m

·s
-1

T
 =

 4
1

.5
 °

C

20
 m

g
O

3
·g

o
D

M
-1

v
 =

 4
.8

 m
·s

-1

T
 =

 6
7

.4
 °

C

30
 m

g
O

3
·g

o
D

M
-1

v
 =

 4
.8

 m
·s

-1

T
 =

 6
7

.4
 °

C

30
 m

g
O

3
·g

o
D

M
-1

v
 =

 2
.9

 m
·s

-1

T
 =

 6
5

.0
 °

C

R
e

fe
re

n
ce

 I
I

v
 =

 4
.8

 m
·s

-1

T
 =

 6
5

.5
 °

C

R
e

fe
re

n
ce

 I
II

v
 =

 3
.1

 m
·s

-1

T
 =

 6
2

.9
 °

C

BP I BP II

Solid/liq

uid 
UF RO 

Figure 9. Summary of pilot plant membrane flux values at BP I (left) and BP II (right), 70% recovery.

For mesophilic biogas plants, digestate leaves the biogas plant with a temperature of 40–45 ◦C.
This temperature can typically be maintained in the nutrient recovery process. An increase of centrate
temperature to 65–75 ◦C is possible by heat recuperation if the biogas plant is equipped with a combined
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heat and power plant and surplus heat is easily available. This was tested at both operational sites.
Figure 9 shows that a temperature increase from 45 to 70 ◦C resulted in mean flux enhancement factors
of 1.4 (reference I to reference II). This can be explained by the decrease of apparent viscosity with
increasing temperature. In another operational mode, the effect on lower viscosity on Reynold number
was used to reduce crossflow velocity. With a mean temperature increase from 45 to 70 ◦C, crossflow
velocity could be reduced from 4–5 m·s−1 to 3 m·s−1 for constant flux rates (reference I to reference III).
Ozone treatment of the centrate further increased flux rates: for ozone dosages of 20 mgO3·goDM

−1,
flux enhancement factors of 1.3 and 1.22 (reference II to 20 mgO3·goDM

−1) were measured at BP I and
BP II, respectively. For ozone dosages of 30 mgO3·goDM

−1, flux enhancement factors increased to 1.68
and 1.4, respectively.

The combination of temperatures increase, ozone treatment and simultaneous decrease of crossflow
velocity is an interesting operation mode for full-scale applications. By comparing reference III and
ozone dosage of 30 mgO3·goDM

−1 at crossflow velocities of 3 m·s−1, a further flux enhancement of
1.2 and 1.6 was measured at BP I and BP II, respectively. Compared to the untreated sample, ozone
treatment at elevated temperature can result in a considerable reduction of crossflow velocity and
parallel flux enhancement (Reference I to 30 mgO3·goDM

−1 at 3 m·s−1). At both pilot plant operation sites,
the described process combination resulted in 50–60% of electric energy reduction for the ultrafiltration
process step including ozone generation and treatment. As the ultrafiltration step, i.e., the crossflow
pump, has the highest operational energy demand within the total combined process, a 50% reduction
of electrical energy demand of the ultrafiltration unit is a considerable step towards economical launch
of the membrane-based nutrient recovery from digestates.

3.3. Influence of Ozone on Nutrient Recovery

The complete conditioning process produces four different fractions. The solid fertilizer contains
most of particulate organic material, phosphorous and organic nitrogen. The second fraction is the
retentate of the ultrafiltration step, which contains all soluble nutrients and some organic substances,
e.g., biopolymers. This fraction is usually recirculated to the biogas plant. The third fraction is a
particle free concentrated liquid fertilizer, which contains most of the potassium and ammonium. The
last fraction is water. Dependent on the RO design, it can be treated to discharge or process water
quality. Figure 10 gives the mean dry mass and nutrient concentrations in the different process streams
over the whole operation time of the pilot plant at BP I and BP II, respectively.
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Figure 10. Mean dry matter and nutrient concentrations in process streams of BP I (first value) and BP
II (second value).

In the current study, under-stoichiometric ozone treatment is applied to change the centrate
properties and improve ultrafiltration performance. As most of the organically bound nutrients
are already separated from the liquid stream in the solid/liquid separation step, nutrients in the
centrate are mainly salts like ammonium and potassium. Figure 11 gives total nitrogen, ammonium,
and phosphorous concentrations in the centrate, UF retentate, and UF permeate with and without
ozone treatment. Ozone treatment did not systematically change nutrient concentrations in the
process streams.
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Figure 11. Comparison of total nitrogen, ammonium, and phosphorous concentrations without (full
symbols) and with ozone treatment (open symbols) for BP I and BP II.

4. Conclusions

The membrane-based nutrient recovery from biogas digestates produces concentrated fertilizer
products which allow storage and transportation. The economic application of the process depends
on its operational costs, which are dominated by the energy demand of the ultrafiltration step. The
presented results indicate that ultrafiltration is essentially influenced by biopolymer concentrations
and resulting viscosity in the UF feed, i.e., digestate centrate. Under-stoichiometric ozone treatment
with very low ozone dosages can reduce both biopolymer concentration and apparent viscosity. On the
one hand, this leads to higher flux rates under otherwise constant operation conditions. On the other
hand, the same fluxes as those in the reference case can be achieved with considerably lower crossflow
velocities. Ozone treatment prior to ultrafiltration thus offers the potential either to reduce membrane
surface area or to reduce operation costs. A negative influence on nutrient recovery was not observed.

5. Patents

Based on the described findings, the German patent DE 10 2018 108 450 A1 2019.10.10 “Verfahren
und Vorrichtung zur Behandlung einer biologischen Suspension” was disclosed on 10. October 2019.
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