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Abstract: By the use of the tertiary amine A327 and 1 M HCl solution as precursors, the ionic
liquid A327H+Cl− was generated and used to investigate its performance in the transport of Au(III)
from hydrochloric acid medium. The influence of the stirring speed (600–1800 min−1), ionic liquid
concentration (1.25–50% v/v) in the membrane phase, and gold concentration (0.01–0.15 g/L) in the
feed phase on metal transport have been investigated. An equation which included both equilibrium
and kinetics parameters was derived, and the membrane diffusional resistance (∆m) and feed phase
diffusional resistance (∆f) was estimated as 9.5 × 106 s/cm and 307 s/cm, respectively. At carrier
concentrations in the 5–50% v/v range and gold concentrations in the 0.01–0.15 g/L range, metal
transport is controlled by diffusion of metal species through the feed boundary layer, whereas at the
lowest carrier concentrations, membrane diffusion is predominant. From the receiving solutions,
gold can be recovered as gold nanoparticles.

Keywords: membrane transport; A327H+Cl− ionic liquid; gold; hydrochloric acid; nanoparticles

1. Introduction

Nowadays the presence of metals in urban environments is a norm, such as the necessity of
recycling of the materials contained in them, and thus, the concept of urban mining arises. From all the
metal-bearing solid waste produced by mankind, and also from years ago, the recycling of e-waste is an
environmental and economic issue [1]. In the treatment of these e-wastes, hydrometallurgy can be an
option; this technology included leaching of the product yielded from the corresponding pre-treatment
of the solid waste (dismantling, shedding, comminution), and separation and recovery of the valuable
elements from the leachate. Among these separation technologies, liquid membranes processes have
been of increasing interest (though not a single process has been yet installed in industrial form)
against liquid-liquid extraction, or even ion exchange and adsorption processes, for the separation
and concentration of metals, from dilute aqueous solutions, due to the fact that they combine in a
single operation the extraction and stripping stages. Two types of liquid membrane are considered:
supported and unsupported liquid membranes, the former consisting of a thin microporous and
hydrophobic polymer support impregnated with the carrier (organic phase containing the extractant),
which separates the feed and receiving or stripping solutions. From an engineering and practical
point of view, supported liquid membranes are of particular interest due to their stability (if corrected
operated) and simplicity.
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One of the metals encountered in such e-wastes is gold [2–4], in fact, this precious metal is found
in dentistry, jewellery, unused equipment, industrial fittings and the mentioned e-scraps mentioned
above, being, with a high probability, the recovery of this metal from these wastes more profitable
than the recovery of gold from raw materials, i.e., about 200 g/gold can be recovered from 1 ton/circuit
boards against 1 g/gold from 1 ton/ore. Very often, the recovery of gold from these wastes is done
by leaching of the waste with aqua regia, resulting in a leachate in which gold is present as AuCl4−

or HAuCl4 [5]. The recovery of this precious metal from the HCl solution can be done mainly by
activated carbon [6], ion exchange resins [7–10], liquid-liquid extraction using conventional [11–13]
and ionic liquid [14–17] extractants, different adsorbents [18–22], and as mentioned above by liquid
membranes [23–26]; more recently, the use of carbon nanotubes have been also considered in the
treatment of diluting Au(III)-bearing HCl solutions [27–29].

The aim of this investigation is to evaluate parameters to optimize performance of flat-sheet
supported liquid membrane for the active transport of gold(III) from HCl medium. The overall mass
transfer coefficient (KAu) was calculated under various experimental parameters, whereas other mass
transfer parameters were determined for the Au(III)-HCl-A327H+Cl− system. The treatment of the
receiving solutions with sodium borohydride leads to the precipitation of gold as nanoparticles.

2. Materials and Methods

2.1. Reagents and Solutions

The precursors for the generation of the ionic liquid were the tertiary amine A327 (Sanofi), which
is composed by a 50% mixture of tri-octyl and tri-decyl amines, with average molecular weight of 395
and density 0.82 g/cm3 (20 ◦C), the reagent was diluted in toluene (Fluka, Madrid, Spain) in order
to adequately determine the range of amine concentrations, and thus, of the ionic liquid to the gold
transport experiments. A 1 g/L gold(III) stock solution was prepared by dissolving HAuCl4 (Fluka)
with 6 M HCl. All the chemicals used in the experimentation, except the amine, were of A.R. grade.
The solid support used in the present work was Millipore Durapore (Darmstadt, Germany) GVHP4700
(polyvinylidene fluoride) of 75% porosity, 1.67 tortuosity and 12.5 × 10−3 cm thickness.

2.2. Methods

2.2.1. Liquid-Liquid Extraction Experiments

The ionic liquid A327H+Cl− was generated by mixing in thermostatted separatory funnels equal
volumes of organic solutions of the amine A327 in toluene with 1 M HCl solutions for 5 min at 20 ◦C.
Previous experiments showed that equilibrium was reached within 1 min of contact between both
phases. After the quick phase disengagement (less than 30 s), the HCl concentration in the organic
phases was determined by titration, in ethanol medium, of the corresponding aliquots with standard
NaOH solutions, and using bromothymol blue as indicator. The analytical method has less than ±2%
variation of the results.

Gold(III) liquid-liquid extraction experiments were done using the same experimental protocol as
above, but mixing for 10 min. Previous experiments showed that maximum gold extraction efficiency
was found in the 2–4 M HCl range. Gold(III) was analyzed in the aqueous solutions by atomic
absorption spectrometry, being found to be reproducible within ~3%, and the metal concentration in
the equilibrated organic solutions was estimated by the corresponding mass balance.

2.2.2. SLM Experiments

Single-stage permeation experiments were carried out in a two-compartment cell which consisted
of a feed solution half-cell (200 cm3) separated from the receiving solution half-cell (200 cm3) by the
solid support having an effective membrane area of 11.3 cm2. The feed and the receiving solutions
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were mechanically stirred, at 20 ◦C, to avoid concentration polarization conditions at the support
interfaces and in the bulk of both solutions.

The solid support used in the present work was Millipore Durapore GVHP4700 (Darmstadt,
Germany), formed by a microporous polyvinylidenedifloride film of 12.5× 10−3 thickness, 75% porosity,
1.67 tortuosity, and 0.22 µm effective pore size. The supported liquid membrane was prepared by
impregnation of the solid support, with the corresponding organic solution, by immersion for 24 h and
then left to drip for 15 s before being placed in the cell.

Metal transport was determined by monitoring gold(III) concentrations in the feed and receiving
phases as a function of time by atomic absorption spectrometry. The gold(III) concentration in the
solutions was found to be reproducible within ±5%. The overall mass transfer coefficient (KAu) was
computed using the next equation:

ln
[Au]f,t
[Au]f,0

= −
AmKAu

Vf
t (1)

where Am support area, Vf is the volume of the feed solution, [Au]f,t and [Au]f,0 are the gold
concentrations in the feed solution at an elapsed time and time zero, respectively, and t is the
elapsed time.

The percentage of gold transported to the receiving solution was calculated by:

%T =
[Au]r,t

[Au]f,0 − [Au]f,t
100 (2)

where [Au]r,t is the gold concentration in the receiving solution at an elapsed time.
The precipitation of the Au(III)-bearing thiocyanate solution was done in a glass reactor with

gentle stirring (50 min−1) and at 20 ◦C. To the gold solution, a NaHB4 solution was dropwise added
during 15 min; from the first drop, a dark precipitated was formed with the evolution of hydrogen gas,
after, the precipitated was separated from the solution by filtration, washed with water, and was left to
dry in a desiccator under CaCl2.

The solid obtained had a dark brown-purple color and was observed using an Olympus optical
microscope model PMEV (Tokyo, Japan). The morphology and chemical composition were carried out
by Field Emission Scanning Electronic Microscopy using a Hitachi S-4800 (Chiyoda, Japan) equipped
with an energy dispersive X-ray microanalyzer (EDX) from the Oxford INCA Instrument (EDS, Oxford,
Concord, MA, USA).

3. Results and Discussion

It is worth to note here that in all the experimentation, the ionic liquid was dissolved in toluene.
Though many authors claimed that ionic liquids must be used without dilution, which can be true, in
real practice it is better to dissolve in a safe and suitable organic diluent to ensure:

(i) the use of ionic liquid concentrations within the adequate range for the given metal-organic
system. This practice avoided the use of an excessive and unusable ionic liquid concentration,
which used to be the most expensive item of a process,

(ii) to reduce the organic phase viscosity. This is important because it facilitates the phase separation
in liquid-liquid experiments, and also in supported liquid membranes methodology, because
in many systems, the increase of the organic phase viscosity tends to increase the membrane
resistance to the metal transport.
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3.1. Preparation of R3NH+Cl− Ionic Liquid

This ionic liquid was prepared by reaction of the tertiary amine diluted in toluene and 1M HCl
solutions, and the results were estimated by the distribution coefficient D, defined as:

DHCl =
[HCl]org

[HCl]aq
(3)

where [HCl]org and [HCl]aq were the HCl concentrations in the extracted phase and in the raffinate
or aqueous solution, at the equilibrium, respectively. A plot of log D versus log [A327]org (Figure 1),
resulted in a straight line of slope 1.08 (r2 = 0.986), thus, the ionic liquid was formed (99.8% amine
conversion) accordingly to the equilibrium:

H+
aq+Cl−aq+R3Norg ⇔ R3NH+Cl−org (4)

org and aq subscripts were the extracted phase and the raffinate, respectively.
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To verify the above, the experimental data were treated by a tailored computer program
with minimizes the U function, defined as:

U = Σ
(
log Dcal − log Dexp

)2
(5)

being Dexp and Dcal the experimental distribution coefficients and the corresponding values calculated
by the program. The results indicated that the ionic liquid was formed as indicated in Equation (4),
with log KHCl (KHCl being the equilibrium constant related to Equation (4)) 2.65 and U 2.3 × 10−5.

3.2. Gold(III) Extraction Equilibrium

The extraction of gold(III) by the ionic liquid is based on an anion exchange equilibrium. The
gold(III) ions in hydrochloric acid solutions (present as AuCl4−) form a complex with the extractant
R3NH+Cl− expressed as:

R3NH+Cl−org + AuCl−4aq
⇔ R3NH+AuCl−4org

+ Cl−aq (6)
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The extraction equilibrium can be described by the next equation:

Kext =

[
R3NH+AUCl−4

]
org

[Cl−]aq[
R3NH+Cl−

]
org

[
AuCl−4

]
aq

(7)

Using the same computer program than above, it is found that the value of log Kext is found to be
5.99 and U = 0.270.3.3. Gold(III) Transport Across the Supported Liquid Membrane.

The transport of gold(III) across the membrane containing the ionic liquid phase is described
by applying Fick’s first diffusion law to the diffusion layer at the feed phase side, to the membrane
phase, and to the receiving phase, though this last contribution is often negligible compared with
that at the feed phase side since the distribution coefficient of Au(III) between the membrane and the
receiving phases uses to be much lower than the value between the feed and the membrane phases.
Figure 2 shows a probable transport scheme for Au(III) with the ionic liquid (R3NH+Cl−) dissolved in
toluene through a supported liquid membrane. Accordingly, the transport of Au(III) is associated with
a mechanism of co-transport, being the driving force of the difference in acidity between the feed and
receiving phases.
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Figure 2. Concentration profile of the species across the supported liquid membrane.

In order to yield effective gold(III) transport across the supported liquid membrane, it is of
importance to investigate the influence of the stirring speed, applied to the feed phase, on the overall
mass transfer coefficient. The transport of gold(III) across the supported liquid membrane is dominated
by diffusional resistances which can be of two types: i) the resistance associated with the feed phase
boundary layer, and ii) that associated with the membrane support. It is not rare that the magnitude of
the first computed with the value of the support resistance [30]. In the present work, stirring of the
feed solution was carried out from 600–1500 cm−1 (Table 1).
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Table 1. Influence of the stirring speed on transport of Au(III) as a function of the overall mass transfer
coefficient (KAu).

Stirring Speed, min−1 KAu × 103, cm/s

600 2.6
800 2.7
900 2.9

1000 3.2
1200 3.0
1500 3.1
1800 3.2

Feed phase: 0.01 g/L Au(III) in 3 M HCl. Stirring speed: variable. Membrane phase: 10% v/v
ionic liquid in toluene supported on GVHP4700. Receiving phase: 0.25 M NaSCN. Stirring speed:
500 min−1. Temperature: 20 ◦C

The overall mass transfer coefficient increased from 600 to 1000 min−1, thus, indicates that there is
a continuous decrease of the feed boundary layer thickness with the increase of the stirring speed and
that a minimum in this thickness is reached about 1000 min−1. The maximum value of the overall mass
transfer coefficient is in the same range as that found in other systems using ionic liquids as carriers for
gold(III) transport [23–25]

In the case of the receiving phase, and if the stirrer in the half-cell is very close to the membrane
support, the thickness of the boundary layer is considered to be minimized and the resistance in this
side can be neglected [31]. Moreover, the variation of the receiving phase composition from 0.25 to
0.5 M NaSCN has no effect either on gold transport or on the percentage of gold recovered (55% after 3
h) in the receiving solution. In this phase, gold is recovered as Au(SCN)4

− complex (log β = 43.66) [32]
accordingly to the next reaction:

R3NH+AuCl−4m
+ 4SCN−r → R3NH+Cl−m + Au(SCN)−4r

+ 3Cl−r (8)

which also regenerates the ionic liquid. In the above equation, the subscripts m and r denote the
membrane and receiving phases, respectively. It should be noted here, that during the transport
process the acidity of the receiving phase increases from near neutral to pH 1–2, which reinforced the
previous assumption that the co-transport mechanism is the driving force for the present system.

To evaluate the influence of the carrier concentration on the transport of Au(III), various
concentrations of the ionic liquid in toluene were employed. Figure 3 shows that in the feed
phase, the dimensionless [Au]f,t/[Au]f,0 relationship decreased when the ionic liquid concentration is
increased from 1.25% to 5% v/v and then remained constant (5% to 50% v/v).

The overall mass transfer values were calculated using equation (1) and 10% v/v ionic liquid in
toluene, as a representative case for the influence of the concentration of the ionic liquid on mass
transfer, and showed in Figure 4. The mass transfer coefficient KAu was increased from 5.9 × 10−4 cm/s
for ionic liquid (1.25% v/v) to 3.1 × 10−3 cm/s for ionic liquid (5% v/v). At lower concentrations of the
ionic liquid, mass transfer control is in the solid support or liquid membrane. Beyond 5% v/v of carrier
concentration, it remained constant for a higher concentration of the carrier. This behavior is due to
that at these higher concentrations of the ionic liquid, mass transfer control is shifted to the feed phase,
thus, an increase in the ionic liquid concentration does not influence the mass transfer significantly.
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Figure 3. Experimental courses of Au(III) concentration in the feed phase at various ionic liquid
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The influence of the Au(III) concentration in the feed phase on the overall mass transfer coefficient
is showed in Table 2. As it can be observed from this Table, gold transport during the elapsed time
(3 h) changed when the metal concentration varies between 0.01 and 0.15 g/L; these results are not in
accordance with constant values of the distribution coefficient in the same range of gold concentrations
when determined performing conventional liquid-liquid extraction. Accordingly, with the above,
the overall mass transfer coefficient decreased from 3.2 × 10−3 cm/s to 1.4 × 10−3 cm/s when the
concentration of Au(III) in the feed phase was increased from 0.01 to 0.15 g/L, and these results could
be explained due to: (i) the organic solution immobilized within the support pores get saturated with
gold complex on increasing the metal concentration in the feed solution, and (ii) the as-formed organic
complex diffuses slowly into the bulk of the organic solution which resulted in decreased the mass
transfer in the organic solution.
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Table 2. Mass transfer coefficients for transport of Au(III) from 3 M HCl medium as a function of initial
Au(III) concentration in the feed phase.

[Au]f,0, g/L KAu × 103, cm/s ª % Transport

0.01 3.2 86
0.03 2.0 78
0.05 2.0 70
0.08 1.7 67
0.10 1.5 61
0.15 1.4 57

Feed phase stirring speed: 1000 min−1. Membrane phase: 10% v/v carrier in toluene supported on GVHP4700.
Receiving phase: 0.25 M NaSCN. Stirring speed: 500 min−1. Temperature: 20 ◦C. ª after 3 h and calculated as ([Au]f,0
− [Au]f,t) × 100/[Au]f,0.

The influence of the initial gold(III) concentration in the feed phase on the metal flux was also
considered by the use of the next relationship:

J = KAu[Au]f,0 (9)

and plotting (Figure 5) J versus [Au]f,0. It is shown that as expected from the above equation, the
flux increased continuously in the range of gold(III) concentrations investigated in this work, also
this result indicated that the membrane is not saturated because gold is effectively stripped from the
membrane to the receiving phase.
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Since the resistance due to the receiving phase is considered as negligible, the metal flux through
the membrane support can be described by applying Fick´s first diffusion law to the feed phase
diffusion layer and to the membrane [33], thus:

Jf = ∆−1
f

(
[Au]f,0 − [Au]f,i

)
(10)

Jm = ∆−1
m

[
R3NH+AuCl−4

]
f,i

(11)

where [Au]f,0 is the initial gold concentration in the feed phase, and [Au]f,i and [R3NH+AuCl4−]f,i are
the concentrations of the respective species in the feed/membrane interface.
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Considering that the extraction reaction (Equation (6)) is assumed to be fast in relation to the
diffusion rate, local equilibria at the interface are related by Kext (Equation (7)), then, at steady state
J = Jf = Jm and combining Equations (6), (10) and (11), a final expression for the flux is obtained:

J =

(
Kext

[
R3NH+Cl−

]
m
[Cl−]−1

f

)
[Au]f,0

∆m + ∆f

(
Kext

[
R3NH+Cl−

]
m
[Cl−]−1

f

) (12)

where ∆f and ∆m are the transport resistances due to diffusion across the feed phase boundary layer
and the membrane, respectively, whereas [Au]f,0 is the initial metal concentration in the feed phase.

From Equation (12), the overall mass transfer coefficient is:

KAu =
Kext

[
R3NH+Cl−

]
m
[Cl−]−1

f

∆m + ∆f

(
Kext

[
R3NH+Cl−

]
m
[Cl−]−1

f

) (13)

This equation contained both the equilibrium and diffusion parameters involved in the transport
of Au(III) across a supported liquid membrane in which the carrier dissolved in toluene is immobilized.
The values of the resistances to the mass transfer can be determined by the next relationship:

1
KAu

= ∆f + ∆m
1

Kext
[
R3NH+Cl−

]
m
[Cl−]−1

f

(14)

A plot of 1/KAu versus 1/Kext[R3NH+Cl−]m[Cl−]f
−1, for different carrier concentrations and 3 M

HCl, resulted in a straight line (r2 = 0.911) with intercept ∆f and slope ∆m. Thus, the values of the
transport resistances due to diffusion by the aqueous feed boundary layer and the membrane estimated
from the proposed model are 307 and 9.5 × 106 s/cm, respectively. The mass transfer coefficient in the
feed phase is ∆f

−1 = 3.3 × 10−3 cm/s, and assuming an overall diffusion coefficient (Df) of the gold
species in the feed solution as 1 × 10−5 cm2/ s, and:

df =
Df

∆−1
f

(15)

the thickness of the aqueous boundary layer (df) was estimated as 3.0 × 10−3 cm, which was in
agreement with other values derived from other gold(III)-HCl-transport systems [23–25,34–37].

The diffusion coefficient in the organic solution:

Dm =
dm

∆m
(16)

was estimated as 1.3 × 10−3 cm2/s, considering ∆m = 9.5 × 106 s/cm and the thickness of the membrane
support, dm, as 12.5 × 10−3 cm.

The diffusion coefficient of the gold(III)-ionic liquid species in the bulk organic phase is estimated
using the next relationship [38]:

Db,m = Dm
τ2

ε
(17)

where τ is the membrane tortuosity (1.67) and ε is the support porosity (75%), thus, Db,m is estimated
as 4.8 × 10−3 cm2/s.

The diffusion coefficient in the bulk organic phase presented a greater value than the diffusion
coefficient being this attributable to the diffusional resistance caused by the support thickness separating
the feed and receiving solutions.
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Considering that the ionic liquid concentration in the membrane support is constant, the apparent
diffusion coefficient for gold (III) can be calculated as:

Da
m =

Jdm[
R3NH+Cl−

] (18)

using a 10% v/v ionic liquid concentration (2.1 × 10−1 M), and being dm 12.5 × 10−3 cm, this apparent
diffusion coefficient has the value of 9.5 × 10−5 cm2/s.

Gold-bearing solutions collected from the receiving phases were precipitated by a 0.1 M sodium
borohydride solution, the dry solid formed has the appearance showed in Figure 6, it can be recognized
the bright colour of metallic gold, which precipitates in the form of nanoparticles, this was corroborated
by SEM, as it is shown in Figures 7 and 8 and Table 3.Membranes 2020, 10, x FOR PEER REVIEW 10 of 14 
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Table 3. Energy Dispersive x-ray Spectroscopy microanalysis microanalysis of the areas shown in
Figure 8.

Spectrum Au (wt %)

1 100.00
2 100.00
3 100.00

Mean 100.00
Standard deviation 0.00

The reduction of gold(III) to zero valent gold responded to the formation of H2 in the hydrolysis
of sodium borohydride and the subsequent next reaction:

2Au(SCN)−4 + 3H2 → 2Au0 + 6N+ + 8SCN− (19)

4. Conclusions

The reaction between the tertiary amine A327 and hydrochloric acid generated the ionic liquid
A327H+Cl−, this ionic liquid dissolved in toluene extracted gold(III) from 3 M HCl solution. Gold(III)
extraction by this ionic liquid is attributed to an anion exchange reaction, with the formation of
A327H+AuCl4− species in the organic phase. The extraction system has been implemented in a
supported liquid membrane process in which, and under the present experimental conditions, metal
flux increased with the increase of the initial metal concentration in the feed phase. Metal permeation
is dependent on ionic liquid concentration, though from a carrier concentration of 5% v/v in toluene, a
limiting permeability value is reached and under this condition the transport process is controlled
by diffusion in the feed phase boundary layer; at carrier concentrations lower than 5% v/v membrane
diffusion controlled the overall gold(III) transport. Mass transfer coefficients in the feed and membrane
phases are found to be 3.3 × 10−3 and 1.1 × 10−7 cm/s, respectively. From the receiving solutions,
gold(III) can be precipitated as gold nanoparticles.
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