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Heat treatment temperatures selected for SiCH organic-inorganic hybrid synthesis

In this study, allyl-hydro-polycarbosilane (AHPCS) was converted to SiCH organic-inorganic
hybrid as a component of hydrogen separation membrane. The temperatures for thermal conversion
of AHPCS to SiCH hybrid in this study was selected as 300, 400 and 500 °C based on the results
obtained by the simultaneous thermogravimetric (TG)-mass spectrometry (MS) analyses shown in
Figures S3 and S4, Fourier transform (FT)-IR and Raman spectroscopic analyses for the heat-treated
AHPCSs shown in Figures S5 and 56, respectively.

Characterizations

The molecular weight distribution curve of as-received AHPCS was measured at 40 °C by using
Gel Permeation Chromatography (GPC, Model ShodexGPC-104 equipped with two tandem columns
(Model Shodex LE-404) and a refractive index detector (Model Shodex RI-74S), Showa Denko K.K.,
Tokyo, Japan). The columns were calibrated against polystyrene standards. Tetrahydrofuran (THF)
was used as the eluent and a flow rate was adjusted to 1.0 mL min-.

The thermal decomposition and cross-linking behaviors of as-received AHPCS up to 1000 °C
was studied by thermogravimetry combined with mass spectrometry (TG-MS) analyses (Model
STA7200, Hitachi High Technologies Ltd., Tokyo, Japan/Model J]MS-Q1500 GC, JEOL, Tokyo, Japan).
The measurements were performed under helium (He) atmosphere with a heating rate of 10 °C min-
1

Fourier transform (FT)-IR spectrum was recorded on the as-received AHPCS and AHPCS-
derived powder samples by the potassium bromide (KBr) disk method (Model FT/IR-42001IF, JASCO
Corp., Tokyo, Japan).

The Raman spectrum was recorded on as-received AHPCS and heat-treated AHPCS (Renishaw,
inVia Reflex, England).

Powder samples of the heat-treated AHPCS were prepared by heat treatment at 300, 400 and 500
°C under argon (Ar). Note that, FT-IR spectrum was also recorded on the powder sample of 700 °C-
heat treated AHPCS.

Results and Discussion
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Chemical structure and molecular distribution of the AHPCS are shown in Figures S1 and S2,
respectively. The thermal behavior of AHPCS has been already studied by several research groups
[1-4], and the results obtained in this study were well consistent with those previously reported: As
shown in Figure S2, as-received AHPCS had a considerable amount of low molecular weight fraction
below 1000. TG-MS analyses revealed the thermal decomposition of the low molecular weight
fraction proceeded during the first weight loss at 100 to 300 °C and second one from 350 to 500 °C by
detecting gaseous species assigned to the fragments of carbosilane species (Figures S3 and 54). On
the other hand, thermal cross-linking was observed up to 300 °C for formation of =5i-CH2-CH>-CHz-
Si= and/or =5i-CH(CHs)-CH>-Si= via hydrosilylation between =Si-H and =5i-CH>-CH=CH: groups in
AHPCS, which was identified by the disappearance of the FT-IR absorption band at 1629 cm™
attributed to C=C bond of allyl group [2,3] associated with the decrease in the relative FT-IR band
intensities assigned to v(Si-H) at 2123 cm ! and d(Si-H) at 947 cm™ [2,3] (Figure S5).

At 400 to 700 °C, formation of =5i-Si= by the reaction between Si-H and Si-CHs groups was
suggested by detecting the m/z ratio at 15 assigned to methane (CHa4) (Figure S4(b)). Because the
thermal decomposition and cross-linking contentiously proceeded at 300 to 500 °C, the quantity of
organic groups and microporosity of the SiCH hybrid differed depending on the specific heat
treatment temperature in this temperature range. On the other hand, the FT-IR spectrum of the 700
°C-heat treated AHPCS revealed that polymer/inorganic silicon carbide conversion almost completed
(Figure S5). It should be noted that the samples heat-treated at 300 to 500 °C were SiCH hybrid
without graphite-like carbon, since the Raman spectra of these samples exhibited several peaks due
to the organic-groups without those attributed to graphite-like carbon typically detected at 1347.5
and 1596.5 cm assigned as D-band (for disordered graphite) and G-band (for the sp2 graphite
network), respectively [5,6] (Figure S6). Based on these results, heat treatment of as-received AHPCS
in this study was performed at 300, 400 and 500 °C for the synthesis of powder and membrane
samples.
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Figure S1. Structure of commercially available allyl-hydrido-polycarbosilane (AHPCS).
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Figure S2. Molecular weight distribution of as-received AHPCS.



Membranes 2020 3o0f5

Weightloss/ %

Total ion current/ a.u.

40 L I L I L I L I L 1 . I L I L I L I L
0 100 200 300 400 500 600 700 800 900

-
o
o
o

Temperature/ °C

100 18 (b) 100 18

9 57
43
a9 113
h ‘ | l

Figure S3. Thermal behavior of as-received AHPCS. (a) TG curve and total ion current chromatogram
(TICC) under flowing He, and typical mass spectra recorded during (b) the first weight loss from100
to 250 °C and (c) the second weight loss from 350 to 500 °C.
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Figure S4. Continuous in-situ monitoring of gaseous species by mass spectrometry: (a) Fragments derived from
low molecular weight fraction of as-received AHPCS during the first weight loss from 100 to 300 °C and the
second one from 350 to 500 °C and (b) methane (CHa) at 400 to 700 °C. (c) Fragments suggested for gaseous spices
derived from low molecular weight fraction of as-received AHPCS (Eq. 1), m/z= 42 ((CHz)3) from AHPCS after
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cross-linking via hydrosilylation between =Si-H and CH=CH-CH->-Si= (Egs. 2 and 3) and m/z= 15 (CHa) due to

the thermal crosslinking between =Si-H and =Si-CHs groups to afford =Si-Si= above 350 °C (Eq. 4) [4].
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Figure S5. FT-IR spectra for as-received AHPCS and those after heat treatment at 300 to 700 °C in

Ar.

Intencity / a.u.

400°C

As-received
AHPCS

1800 1600 1400 1200 1000 800 600

Raman Shift / cm™’

Figure S6. Raman spectra for as-received AHPCS and those after heat treatment at 300 to 500 °C in
Ar. Spectra indicated the heat-treated samples were free from graphite-like carbon typically detected
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at 1347.5 and 1596.5 cm™ attributed to the D-band (for disordered graphite) and G-band (for the sp2
graphite network), respectively [5,6].
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