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Abstract: Updated and revised versions of COVID-19 vaccines are vital due to genetic variations of
the SARS-CoV-2 spike antigen. Furthermore, vaccines that are safe, cost-effective, and logistic-friendly
are critically needed for global equity, especially for middle- to low-income countries. Recombinant
protein-based subunit vaccines against SARS-CoV-2 have been reported using the receptor-binding
domain (RBD) and the prefusion spike trimers (S-2P). Recently, a new version of prefusion spike
trimers, named HexaPro, has been shown to possess two RBD in the “up” conformation, due to its
physical property, as opposed to just one exposed RBD found in S-2P. Importantly, this HexaPro spike
antigen is more stable than S-2P, raising its feasibility for global logistics and supply chain. Here, we
report that the spike protein HexaPro offers a promising candidate for the SARS-CoV-2 vaccine. Mice
immunized by the recombinant HexaPro adjuvanted with aluminum hydroxide using a prime-boost
regimen produced high-titer neutralizing antibodies for up to 56 days after initial immunization
against live SARS-CoV-2 infection. Also, the level of neutralization activity is comparable to that
of convalescence sera. Our results indicate that the HexaPro subunit vaccine confers neutralization
activity in sera collected from mice receiving the prime-boost regimen.

Keywords: HexaPro; spike; SARS-CoV-2; vaccine

1. Introduction

The coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a current global pandemic. The
incidence for this pandemic reported by World Health Organization (WHO) on 31 March
2021, has included 130 million cumulative confirmed cases and over 2.84 million deaths
globally. There is an urgent need for preventative vaccines and therapeutics. SARS-CoV-2
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is an enveloped, single-stranded RNA virus. Its genome encodes four structural proteins
comprising of the spike (S), membrane glycoprotein (M), envelope (E), and nucleocapsid
(N) proteins. The spike protein mediates viral entry by binding to the host receptor
angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD). This
interaction triggers a substantial conformational alteration of the spike from a prefusion
conformation to a highly stable postfusion conformation [1–4]. The spike protein can
induce the production of neutralizing antibodies in patients, indicating its immunogenic
property. Thus, it has been widely adopted for vaccine development. However, the ongoing
COVID-19 pandemic has led to SARS-CoV-2 spike variants with serious concerns such
as D614G, N501Y, E484K, and 69/70 deletion [5–7]. Some of these variants can be highly
transmissible and capable of escape vaccine-induced neutralizing antibody responses [8].

A key strategy for vaccine design against coronaviruses SARS-CoV and MERS-CoV
has aimed at stabilizing the metastable prefusion conformation of the spike protein ho-
mologs [9,10]. The prefusion stabilization has been achieved with two consecutive proline
substitutions (S-2P) in a turn between the central helix and heptad repeat 1 (HR1). These
S-2P variants, together with a C-terminus foldon trimerization domain, have been shown
as a superior immunogen [10]. As a consequence, the SARS-CoV-2 S-2P has been employed
in currently used vaccines including mRNA-1273 [11], BNT162b2 [12], and ChAdOx1 [13].

In this work, we aim to provide a proof-of-concept of a recently published prefusion-
stabilized spike ectodomain, namely HexaPro, developed by McLellan and colleagues [14]
as a potential COVID-19 subunit vaccine. We show that the HexaPro subunit vaccine
administered with aluminum hydroxide adjuvant in mice elicits a strong neutralizing
antibody response against SARS-CoV-2. This finding holds a promise towards a next-
generation coronavirus vaccine development using the HexaPro spike protein.

2. Materials and Methods
2.1. Ethics Statement

Mouse experiments were performed under the Animal Ethics approved by Faculty
of Science, Mahidol University (MUSC63-016-524). PCR-confirmed COVID-19 patients
(n = 58) were hospitalized at Chakri Naruebodindra Medical Institute, Faculty of Medicine
Ramathibodi Hospital, Mahidol University. Serum specimens were collected from patients
14–30 days post-infection. The study protocol and human ethics were approved by Faculty
of Medicine Ramathibodi Hospital (COA. MURA2020/568).

2.2. Expression and Purification of HexaPro Subunit Vaccine

The mammalian expression plasmid containing SARS-CoV-2 HexaPro spike was
obtained from Addgene (Addgene plasmid # 154754; http://n2t.net/addgene:154754;
RRID: Addgene_154754; accessed on 1 December 2020). HEK293T cells were transiently
transfected with the HexaPro plasmid by calcium phosphate transfection. Cells and
culture medium were separated by centrifugation. The supernatant was concentrated
with Amicon® Ultra–15 Ultrace–30K centrifugal filter unit (MERCK). Cell protein contents
were extracted with a lysis buffer composed of 50 mM sodium phosphate, 300 mM NaCl,
20 mM imidazole, 1X CompleteTM EDTA-free protease inhibitor cocktail (Roche), 1 mM
Phenylmethylsulfonyl fluoride (PMSF, Sigma-Aldrich, St. Louis, MO, USA), and 1%
Triton-X (Sigma-Aldrich). Protein extracts were filtered through a 0.22 µm NalgeneTM
syringe filter (Thermo ScientificTM). S HexaPro protein was then purified with HisTrap
HP (cytiva) equilibrated with a buffer composed of 50 mM Sodium phosphate, 300 mM
NaCl, and 20 mM imidazole. Fractions containing HexaPro were pooled and exchanged
to phosphate-buffered saline (PBS). Purified protein was digested with HRV3C protease
to remove purification tags. The protein was further purified with Sephacryl S-300 HR
(GE Healthcare, Chicago, IL, USA) with PBS. Fractions that contained HexaPro protein
were pooled and analyzed with SDS-PAGE and Western blot against the SARS-CoV-2 RBD
protein (Sino Biological, Cat#40592-T62) or pooled convalescent sera. The purified protein
was kept at −80 ◦C until use.

http://n2t.net/addgene:154754
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2.3. Immunofluorescence Staining

HeLa cells were transiently transfected with the plasmid encoding HexaPro using
lipofectamine 3000 (Invitrogen, Cat#L3000008, Carlsbad, CA, USA). Cells were fixed with
4% PFA and were incubated with either a polyclonal antibody against the SARS-CoV-2
RBD protein (Sino Biological, Cat#40592-T62) or a monoclonal antibody against the SARS-
CoV-2 S1 protein (MyBioSource, Cat#MBS434277, San Diego, CA, USA). A goat anti-rabbit
secondary antibody (IgG) conjugated with Alexa Fluor 594 (Invitrogen, Cat#A-11037) or a
goat anti-mouse secondary antibody (IgG) conjugated with Alexa Fluor 488 (Invitrogen,
Cat#A-11029) was used for visualization under a fluorescence microscope. For convalescent
serum staining, cells were incubated with heat-inactivated serum and visualized with a
goat anti-human secondary antibody (IgG) conjugated with FITC (Abcam, Cat#ab97224,
Cambridge, UK).

2.4. Mouse Immunization

Female C57BL/6 mice (7–9 weeks old, n = 3 per group) were ordered from Nomura
Siam International. Mice were given a prime-boost immunization intramuscularly (IM),
spaced three weeks apart. For antigen formulation, SARS-CoV-2 S HexaPro protein (1 µg
for the first dose and 5 µg for the booster dose) was mixed with 100 µg of aluminum
hydroxide (Invivogen, Cat#vac-alu-250). Serum was collected for analysis on study days
14, 35, and 56 after the initial immunization.

2.5. Microneutralization Assay

Heat-inactivated sera at 56 ◦C for 30 min were two-fold serially diluted, starting with
a dilution of 1:10. The serum dilutions were mixed with equal volumes of 100 TCID50
of SARS-CoV-2. After 1 h of incubation at 37 ◦C, 100 µL of the virus–serum mixture at
each dilution was added in duplicate to Vero E6 cell monolayers in a 96-well microtiter
plate. The last two columns are set as virus control, cell control, and virus back-titration.
The plates were incubated at 37 ◦C in 5% CO2 in a humidified incubator. After two days
of incubation, the medium was discarded, and the cell monolayer was fixed with cold
fixative (1:1 methanol:acetone) for 20 min on ice. Viral protein in the virus-infected cells
was detected by ELISA assay. The cells were washed three times with PBST before blocking
with 2% BSA for 1 h at room temperature. After washing, the viral nucleocapsid was
detected using 1:5000 of SARS-CoV/SARS-CoV-2 Nucleocapsid monoclonal antibody (Sino
Biological, Cat#40143-R001) by incubation at 37 ◦C for 1 h. After removing the detection
antibody, 1:2000 HRP-conjugated goat anti-rabbit polyclonal antibody (Dako, Denmark
A/S, Cat#P0448) was added, and the plate was incubated at 37 ◦C for 1 h. After washing,
the TMB substrate (KPL, Cat#5120-0075) was added. After 10 min incubation, the reaction
was stopped by the addition of 1N HCl. Optical density (O.D.) at 450 and 620 nm was
measured by a microplate reader (Tecan Sunrise).

The virus neutralization endpoint titer of each serum was calculated using the follow-
ing equation:

X = [(average A450 of virus control wells) − (average A450 of cell control wells)]/2 + (average A450 of cell control wells) (1)

The reciprocal of the highest dilution of serum with O.D. values less than X is consid-
ered positive for neutralization activity. Serum samples that tested negative at a dilution of
1:10 were assigned an NT titer of <10. The serum that tests positive at 1:10 dilution will be
reported as the NT titer of 20.

Each sample was carried out in duplicate. Live SARS-CoV-2 viruses at passage 3 or 4
and Vero E6 cells at the maximum passages of 20 were employed. The activities with live
viruses were carried out in a certified biosafety level 3 facility.
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3. Results
3.1. Expression and Purification of Recombinant SARS-CoV-2 HexaPro Spike Protein

The prefusion-stabilized HexaPro construct (Figure 1A) encoding the spike ectodomain
of SARS-CoV-2 with proline substitution at residues 817,892,899, 942,986, and 987, “GSAS”
substitution at residues 682–685 (the furin cleavage site), and C-terminal foldon trimeriza-
tion motif [14] was used to produce the HexaPro subunit vaccine in HEK293 cells. Transient
transfection of HexaPro-encoding plasmid into the cells resulted in recombinant protein
expression in the culture supernatant. The recombinant HexaPro protein was purified by
Ni-NTA chromatography, followed by size-exclusion chromatography. The purity of the
purified recombinant HexaPro was ascertained by SDS-PAGE (Figure 1B). Using pooled
convalescence sera from COVID-19 patients and Western blot analysis, we show that the
HexaPro spike is immunogenic.
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Figure 1. The recombinant SARS-CoV-2 HexaPro spike protein. (A) Schematic representation of the prefusion-stabilized
SARS-CoV-2 HexaPro ectodomain showing the S1 and S2 subunits. Four additional proline substitutions from the S-2P
construct are indicated by the red arrows shown below the construct. (B) The HexaPro protein expressed in HEK293T cells
was purified and characterized by SDS-PAGE (left), Western blot using a commercial anti-RBD (middle), and Western blot
using pooled convalescence sera (right).
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To confirm the immunogenicity of the HexaPro spike, immunofluorescence staining
was then performed and this validated that antibodies could detect the spike structural
variant against SARS-CoV-2 spike protein, which was also validated by the pooled conva-
lescent sera (Figure 2). These results illustrate the potential of the HexaPro recombinant
protein as a subunit vaccine.
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3.2. Neutralization of SARS-CoV-2 by Sera Collected from HexaPro-Immunized Mice

The HexaPro subunit vaccine was then evaluated for its immunization activity via
neutralization of SARS-CoV-2 by immunized mouse sera. An immunization protocol
of low priming dose followed by high booster dose was followed. On day 0, C57BL/6
mice were prime-immunized with 1 µg of HexaPro adjuvanted with aluminum hydroxide
(100 µg) via intramuscular administration. On day 21, the mice were boost-immunized
with 5 µg of HexaPro (Figure 3A). The microneutralization assay using live SARS-CoV-2
infection in Vero E6 cells was performed with sera collected on days 14, 35, and 56 after
initial immunization. At 14 days after the priming dose, we did not observe a significant
neutralizing activity in vaccinated mice (Figure 3B). However, sera from vaccinated mice
collected 14 days after the booster dose elicit high neutralization titers. Furthermore, the
level of neutralization activity was sustained at least 56 days after the initial immunization
(Figure 3B). Together, our results indicate that the HexaPro subunit vaccine adjuvanted with
aluminum hydroxide confers neutralization activity in sera collected from mice receiving
the prime-boost regimen.



Vaccines 2021, 9, 498 6 of 9Vaccines 2021, 9, x 6 of 9 
 

 

 
Figure 3. The prime-boost regimen using the recombinant HexaPro adjuvanted with aluminum 
hydroxide results in sera possessing neutralization activity. (A) C57BL/6 mice were vaccinated 
intramuscularly with Alum or HexaPro (1 µg) + Alum. On day 21 they then received a booster 
dose with HexaPro (5 µg) + Alum. (B) The virus neutralization endpoint titer of sera collected 
from mice and from convalescence sera. The dashed line shows the limit of detection. Neutraliza-
tion activity on days 35 and 56 was compared to day 14. The error bars indicate the ±SD. Compari-
sons were performed using Student’s t-test (unpaired, two tail); * p < 0.01 (made in ©BioRender-
biorender.com). 

4. Discussion 
In this report, we observed a potent SARS-CoV-2 neutralizing activity delivered by 

the subunit vaccine HexaPro spike; four amino acids of which were substituted by McLel-
lan and colleagues into beneficial prolines leading to a more stable spike variant [14]. Spe-
cifically, the amino acid substitution was engineered within the S2 domain of the original 
S-2P spike [2]. This novel prefusion variant possesses 30% of the spike trimers being an 
“up” conformation with two exposed RBD, as opposed to just one exposed RBD found in 
S-2P. Due to its enhanced stability, the HexaPro spike has been proposed for its potential 
as a COVID-19 vaccine. 

Using alum in vaccination has been shown to enhance activation of inflammatory 
dendritic cells and T-cell responses [15–17]. In a phase 1 trial, alum was employed with 
the inactivated SARS-CoV-2 vaccine BBV152 [18] as well as in ongoing clinical trials of 
COVID-19 vaccines, including subunit vaccines (NCT04522089; NCT04527575; 

Figure 3. The prime-boost regimen using the recombinant HexaPro adjuvanted with aluminum
hydroxide results in sera possessing neutralization activity. (A) C57BL/6 mice were vaccinated
intramuscularly with Alum or HexaPro (1 µg) + Alum. On day 21 they then received a booster dose
with HexaPro (5 µg) + Alum. (B) The virus neutralization endpoint titer of sera collected from mice
and from convalescence sera. The dashed line shows the limit of detection. Neutralization activity
on days 35 and 56 was compared to day 14. The error bars indicate the ±SD. Comparisons were
performed using Student’s t-test (unpaired, two tail); * p < 0.01 (made in ©BioRender-biorender.com
(accessed on 2 March 2021)).

4. Discussion

In this report, we observed a potent SARS-CoV-2 neutralizing activity delivered
by the subunit vaccine HexaPro spike; four amino acids of which were substituted by
McLellan and colleagues into beneficial prolines leading to a more stable spike variant [14].
Specifically, the amino acid substitution was engineered within the S2 domain of the
original S-2P spike [2]. This novel prefusion variant possesses 30% of the spike trimers
being an “up” conformation with two exposed RBD, as opposed to just one exposed RBD
found in S-2P. Due to its enhanced stability, the HexaPro spike has been proposed for its
potential as a COVID-19 vaccine.

Using alum in vaccination has been shown to enhance activation of inflammatory
dendritic cells and T-cell responses [15–17]. In a phase 1 trial, alum was employed with the
inactivated SARS-CoV-2 vaccine BBV152 [18] as well as in ongoing clinical trials of COVID-
19 vaccines, including subunit vaccines (NCT04522089; NCT04527575; NCT04683484;

BioRender-biorender.com
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NCT04742738) and an inactivated SARS-CoV-2 vaccine (NCT0464148). In addition, we also
adopted a regimen of prime-boost immunization using a low priming dose followed by a
high booster dose. A number of studies and clinical trials have demonstrated that a lower
priming dose, followed by a subsequent higher booster dose, can induce more significant
levels of the immune response [19–21], including the COVID-19 vaccine ChAdOx1 [13].
Importantly, effector cells are adversely induced by higher doses of antigen at prime
immunization. On the other hand, immune memory cells are promisingly induced by lower
doses at prime immunization, making this regimen suitable for long-term immunological
memory [22].

Prefusion-stabilized spike proteins have been reported to facilitate their ectopic expres-
sion possibly by avoiding transition into a postfusion structure. Specifically, the HexaPro
is more stable than its S-2P counterpart, which is difficult to be ectopically expressed and
produced in mammalian cells [14]. Moreover, using biophysical assays, HexaPro has been
shown to be more resistant to cold-induced denaturation than the previous generation S-2P
variant [23]. Altogether, due to its highly stable conformation and feasible production, this
HexaPro spike is potentially logistically applicable, and should be further developed into a
COVID-19 vaccine and exploited for its efficacy in viral challenge studies using different
SARS-CoV-2 genetic variants. Moreover, this HexaPro variant is suitable for development
of next-generation mRNA, DNA, and viral vector vaccines. Indeed, an ongoing phase I/II
clinical trial has already been initiated by the Government Pharmaceutical Organization of
Thailand and Mahidol University for a viral vector vaccine, NDV-HXP-S, which utilizes
the HexaPro spike as the SARS-CoV-2 antigen (NCT04764422).

5. Conclusions

We provide a proof-of-concept which indicates that the HexaPro subunit vaccine con-
fers neutralization activity in sera collected from mice receiving the prime-boost regimen.
We support the use of this HexaPro spike variant for next-generation COVID-19 vaccines.
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