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Abstract: A new discrete susceptible-exposed-infectious-recovered (SEIR) epidemic model is pre-

sented subject to a feedback vaccination effort involving two doses. Both vaccination doses, which 

are subject to a non-necessarily identical effectiveness, are administrated by respecting a certain 

mutual delay interval, and their immunity effect is registered after a certain delay since the second 

dose. The delays and the efficacies of the doses are parameters, which can be fixed in the model 

for each concrete experimentation. The disease-free equilibrium point is characterized as well as 

its stability properties, while it is seen that no endemic equilibrium point exists. The exposed sub-

population is supposed to be infective eventually, under a distinct transmission rate of that of the 

infectious subpopulation. Some simulation examples are presented by using disease parameteriza-

tions of the COVID-19 pandemic under vaccination efforts requiring two doses. 
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1. Introduction 

Typical formulations used to describe epidemic models are based on either differ-

ential or difference equations. In that way, the basic reproduction number and its physi-

cal and biological insight are discussed in [1] which is related to pertussis and measles 

descriptions. In addition, feedback vaccination laws have been developed using tech-

niques such as sliding-mode control or linear or impulsive feedback vaccination [2,3]. 

The transient evolution of epidemic diseases is also an important issue for properly de-

scribing the day-to-day time-transmission levels and the appropriate eventual interven-

tions to perform since the stability properties are more related to the stationary states, 

typically the disease-free and the endemic ones. For instance, in [4], an analytic method-

ology is given to predict and monitor the dates of maximum hospital occupancy of beds. 

The differential and difference models have also been corrected with other powerful 

analysis techniques. In that way, the bifurcation analysis and the stability of a fractional 

order susceptible-infectious-recovered (SIR) epidemic model with delay has been dis-

cussed in [5]. On the other hand, discretized and discrete-time epidemic models have 

been proposed in the background literature. The different approaches can basically con-

sist of the discretization of continuous-time-based models by numerical methods or in 

the development of discrete models based in difference equations. See, for instance, [6–

12] and some of the references therein. It turns out that since the relevant time of the 

dynamics evolution in epidemics is relatively long, typically for instance, on the orders 

of days or weeks, discrete-oriented epidemic models can be found to be appropriate for 

describing and monitoring the infection evolution through time. An extended SEIR 
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model which incorporates its usual subpopulations, the asymptomatic, and the dead-

infective subpopulations has been proposed in [6]. That model has been proposed as ap-

propriate for the Ebola disease. On the other hand, a multistaged SIR was discussed in 

[7]. Such a model considers several coupled layers of infectious subpopulation for a 

coupled disease transmission from each layer to the adjacent ones. Moreover, discrete 

susceptible-infectious-recovered-susceptible (SIRS) models have also been studied in 

heterogeneous networks [8]. The vaccination effort can be considered either as an exter-

nal forcing term or as a generator of a new subpopulation, the so-called vaccinated one. 

Such a subpopulation becomes dynamically coupled to the remaining ones in the model 

rather than as a specific forcing control [9]. Other types of epidemic models, such as, for 

instance, discretized susceptible-infectious-recovered (SIR)-type ones, or susceptible-

infectious-susceptible (SIS)-type ones, have been proposed in [10–13] and some of the 

references therein. 

Recently, a lot of research is being dedicated to studying and monitoring the new 

COVID-19 pandemic using registered data, like infection and detection tests, hospital 

bed occupancies, and mortality-related records. Normally, such data are updated in dis-

crete time, typically, day to day or week to week. Therefore, discrete epidemic models 

have been found appropriate for processing such data. See, for instance, [14–36] and 

some related references therein. Studies on particular data for different countries or re-

gions can be found in the literature related to COVID-19, sometimes related to public in-

terventions, such as quarantines, isolation measures, lockdowns, use of masks, social 

distance rules, etc. See, for instance, those concerned with Saudi Arabia [16,17], Madrid 

capital town, metropolitan area and surrounding administrative area [18,19], India 

[23,24], Italy [25], United States [26], Canada and several of its provinces [28], Switzer-

land, [29], Brazil [30], etc. In addition, the analysis of data has been sometimes accompa-

nied with mathematical analysis techniques on the pandemic evolution related to public 

interventions or mathematically founded analysis of the obtained data. In that way, the 

impact of lockdowns is investigated in [17], while the effects of total or partial quaran-

tines are investigated in [18] for a SEIAR model, which incorporates the asymptomatic 

subpopulation to the typical SEIR model by considering the isolated population as re-

moved either from the infectious individuals or from the susceptible ones. In [19], a 

more general model of potential usefulness in the description and monitoring of 

COVID-19 has been proposed, discussed, and tested with recorded real data. Such a 

model includes three different infectious subpopulations, namely, the slightly infections, 

the hospitalized ones and the ones staying at the intensive care units are considered. On 

the other hand, the implementation of control rules oriented either toward reducing the 

number of exposed individuals or toward increasing the number of treated individuals 

is proposed and discussed in [20] while impulsive optimal control techniques are devel-

oped in [21]. In particular, the analysis technique proposed in [20] relies on the fact that 

the epidemics is endemic. In [23], the inadequacy of the implementation of open-loop 

(i.e., without using feedback) controls is emphasized contrarily to the use of closed-loop 

controls like, for instance, sliding mode-based control or other feedback laws. Moreover, 

it has been proved in [27] that the suppression strategies are appropriate, provided that 

they are sufficiently strong while taken through prompt decisions, whereas the mitiga-

tion strategies can fail because of eventual unfavorable combinations of delays, unstable 

dynamics, and uncertainties in the model. 

This paper proposes and investigates a new discrete SEIR model subject to a linear 

two-stage delayed feedback vaccination effort having in mind that some of the recently 

approved vaccines for COVID-19 require two doses for increasing their average effec-

tiveness. Such doses are administered to the susceptible subpopulation with a delay pe-

riod, and their potential benefits on immunity appear several days after the administra-

tion of the second doses. In fact, the model considers the injection of two doses with dif-

ferent delays and eventual average different effectiveness. The proposed model consid-

ers also that the exposed have a transmission rate exposed-susceptible which may be 
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eventually distinct from the infectious-susceptible transmission rate. The underlying 

idea is that in some infectious diseases, such as, for instance, in the COVID-19 pandemic, 

there are contagions from both exposed to susceptible and from infectious to susceptible. 

The delays of the vaccination and expected achievable immunity as well as the transmis-

sion rates are model parameters which can be updated for different experiments, [37–

39]. 

The paper is organized as follows: Section 2 is devoted to present the new men-

tioned proposed discrete susceptible-exposed-infectious-recovered (SEIR) epidemic 

model with delayed double-dose linear feedback vaccination. Section 3 discusses the 

non-negativity and boundedness of the solution under any given finite non-negative ini-

tial conditions, as well as the existence and components of the disease-free equilibrium 

point and its stability properties. It is also proved that the endemic equilibrium point 

does not exist for the proposed model in Section 4. Section 5 presents and discusses 

some examples of the proposed model related to the evolution of the COVID-19 pan-

demic. Finally, a set of illustrative concluding remarks ends the paper. Some auxiliary 

technical results are proved in Appendix A which are supported by general necessary 

mathematical results given or proved in [40–44]. 

2. The Discrete SEIR Epidemic Model Subject to Two Vaccination Doses 

Note that the rationale of the sampling period interpretation is unity, typically one 

day or one week for a correct practical use of the model. The model parameters should 

be expressed in values of dimensionality being the inverse of the sampling period units. 

The SEIR epidemic model equations may be rewritten equivalently as follows: 

 
212 121 ddk,dk,kk

e
kkkkk VVSEIaS     (1) 

    kk
e
kkkkk SEIEE   11  (2) 

  kkk EII   11  (3) 

212 121 ddk,dk,kkk VVIRR     (4) 

222 22 dkdkdk, SKV     (5) 

212121 11 ddkddkddk, SKV     (6) 

for any integer  00   ZZk  and any given finite initial conditions 00 S , 00 E , 

00 I  and 00 R  and 0 kkkk RIES  for Zk , where S , E , I  and R  are the 

susceptible, exposed, infectious and recovered subpopulations, respectively. The forcing 

terms of Equations (5) and (6) are the two doses of vaccination on the susceptible which 

are generated via linear feedback and which are subject to integer delays 21 dd   (first 

dose) and 2d  (second dose), respectively, with respect to each current sampling instant, 

where   021 d,dmin . In the above model: 

 ka  is the average recruitment rate proportional to the susceptible at the kth  sam-

pling instant related; for instance, to the rates of births and a  is a constant reference 

value for the above sequence; for instance, its average over the whole time period 

under study and typically it might be unity.  

 k and e
k  are, respectively, the average transmission rates of the infectious and 

exposed subpopulations at the thk   sampling instant. 

   is the average recovery rate 

  is the average incubation rate 

 kK  is the vaccination rate (a feedback control gain) which can be eventually de-

pending on the sampling instants. It is assumed in the sequel that    10
0

,Kk 
 . 
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 1 , 21    are parameters in  10 ,  which quantify the average effectiveness (or effi-

ciency) of the respective doses. In particular, 2  gives the extra effectiveness obtained 

from the injection of the second dose. In this context,  1021 ,   and 121    

refer to the ideal situation, unattainable in practice, of 100 percent effectiveness of the 

combined injection of the two doses. Note that 02121    refers to the 

worst case where the vaccination is fully superfluous. 

Typically, we can consider two different transmission rates for the exposed and in-

fectious since the exposed are not usually identified to be allocated under quarantine or 

isolation, and furthermore, it has been argued that the infective periods are, in general, 

of distinct time length for both stages in the case of COVID-19 pandemic. It turns out 

that these transmission rates can be time varying, in general, since the transmission rates 

can depend on the intervention measures and on the social customs in the geographic 

area under study. Note that, even if the vaccination is performed under the same gain K  

for both doses, it can be considered that the effectiveness if only the first injected dose is 

smaller than if both of them are injected. Therefore, it can be typically argued that 

02   leads to 121   . It can also be pointed out that the proposed discrete-time 

model corresponds to the backward Euler discretization on the continuous –time SEIR 

model given by: 

)dt('V)ddt('V)t(I')t(R

)t(I')t(E')t(I

)t(S))t(E')t(I'()t(E')t(E

)dt('V)ddt('V)t(S))t(E')t(I'()t(S)t()t(S

e

e

22211

22211

























  

whose discretization is given by 

'hV'hV)t(I'hRR

E'hI)'h(I'hE'hII

S)E'hI'h(E)'h(S)E'hI'h(E'hEE

'hV'hVS)E'hI'h(S)h(

'hV'hVS)E'hI'h(ShSS

dk,ddk,kk

kkkkkk

kk
e

kkkk
e

kkkk

dk,ddk,kk
e

kk

dk,ddk,kk
e

kkkkk

221

221

221

211

1

1

21

211

1

1

1































  

so that the discretized and the proposed discrete-time model are equivalent if the follow-

ing correspondence is performed 

'h,'h

'hVV,'hVV

'h,'h

ha

dk,dk,ddk,ddk,

ee

kk















 222121 2211

1

  

However, the model is originally set up in discrete-time instead as the discretiza-

tion of a continuous-time one. One of the daunting challenges to counteract the epidemic 

spreading is the design of the vaccination functions. The control theory provides a 

framework to systematically design them in order to fulfill with a prescribed control ob-

jective. Thus, an output feedback approach is adopted in this work and discussed in the 

sequel. However, control theory has developed many analytical tools that allows one to 

face this problem by using other approaches such as state feedback and feedback linear-

ization [2], output-controllability [19], optimal control [21], impulsive control [22], slid-

ing mode [23] and lockdown and quarantine [18,28], to cite just a few. 

The model (1)–(6) may be compacted after replacing the vaccination controls (5)–(6) 

in the susceptible and recovered subpopulations dynamics, which result in: 
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  kddkdkkk uSSKSaS   212 121   (7) 

    kk
e
kkkkk SEIEE   11  (8) 

  kkk EII   11  (9) 

  kddkdkkkk gSSKIRR   212 121   (10) 

   kk
e
kkkkk SEIaau   kg  (11) 

   
212122 12 ddkddkdkdkk SKKSKKg     (12) 

for any integer  0Zk , where k
e
k

e
k

/    and K  and a  are reference values for the 

vaccination rate gain and recruitment, for instance, the estimated average values of their 

asymptotic limits if they converge. In particular, a scalar discrete function of the form of 

the susceptible subpopulation (7) is discussed in detail in Appendix A from the points of 

view of stability and convergence to a limit. Those auxiliary results based on a similar 

discrete Equation (7) subject to (11) are then used to discuss the stability of the proposed 

epidemic model. 

3. Non-Negativity, Stability and Disease-Free Equilibrium Point 

The following result which relies on boundedness, convergence and non-negativity 

of the solution is direct by summing up (7) to (10) (or (1) to (4)) by considering (7) to (11) 

(or (1) to (6)): 

Theorem 1. The following properties hold: 

(i) Assume that 100000  RIESN . Then, the total population

1 kkkkk RIESN ;  0Zk  if 1ka . 

(ii)   j

k

j
jk SaN 






1

0
11 ;  0Zk  

(iii)  0kkS  is non-increasing, and then bounded and convergent, if 

   kk
e
kkkkddkddkdkdkddk,dk, SEIaSKSKVV 1

212122212 1212    ;  0Zk  (13) 

leading to 

   







 

1

0
0

1

0
1 1111

k

j
jk

k

j
jk aSNaS ;  0Zk  (14) 

and, if the average value of the sequence  
0kka  is unity, then there exists the limit 

10 


NNlim k
k

.  0kkS  is strictly decreasing if the inequality in (13) is strict. 

(iv)  0kkS  is non-negative if and only if 

   kk
e
kkkkddkddkdkdkddk,dk, SEIaSKSKVV    212122212 1212  

;  0Zk  (15) 

provided that the infectious transmission rate is sufficiently small according to 
k

e
kk

k
k

EI

a







;  0Zk  which is guaranteed if 
  k

e
k

k
k

N

a







1
;  0Zk . 

(v) Assume that  10 , ,  10 ,  and that (15) holds. Then, any sequence trajectory solu-

tion of (1)–(4) subject to (5)–(6) is non-negative. 
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Proof: If 1ka ;  0Zk  then 100000  RIESN  implies directly that 

10  NRIESN kkkkk  ;  0Zk  by summing up (1) to (4). The same calcula-

tions proves Property (ii) in the general case. To prove, Property (iii), note from (3) that, 

under the given constraint,  0kkS  is non-increasing so that (14) holds directly from 

Property (ii) since: 

  1212 121 





k

ddk,dk,

k
e
kkkk

k

k

S

VV
EIa

S

S
 ;  0Zk  (16) 

Note that  
0kkS  is also bounded and convergent since it is non-increasing and its 

initial condition is finite by hypothesis. Property (iv) follows directly by replacing (15) 

with (1) subject to 00 S  and to 
k

e
kk

k
k

EI

a





  (guaranteed if 

  k
e
k

k
k

N

a







1
) ; 

 0Zk since 0kV ;  0Zk . If, addition,  10 , ,  10 ,  then from (2)–(4) and 

   000  

 RRkkS  yields   


  00 RkkE ,   


  00 RkkI  and   


  00 RkkR , 

since the initial conditions of all the subpopulations are non-negative. Property (v) is 

proved. □ 

Remark 1. The non-negativity property of the susceptible of Theorem 1 (iv) is a necessary 

constraint for a well-posedness of the model. Note that the condition of sufficiently smaller 

transmission rate of the Infectious 
  k

e
k

k
k

N

a







1
;  0Zk , which guarantees according to 

Theorem 1 (iv) that the sequence of susceptible is non-negative if 00 S  and the vaccination sat-

isfies (15), is reasonable since the transmission rate decreases as the total population increases in 

the popular class of true-mass action epidemic models. The property of the susceptible sequence 

being non-increasing [Theorem 1 (iii)] describes appropriately the disease growing since it starts 

until its first maximum peak.  

Remark 2. It turns out the need of the assumption    10
0

,Kk 
  for the vaccination gain 

sequence since the daily vaccination (or, in general, the one for the used sampling period in the 

model parameterization) is proportional to the susceptible subpopulation. Therefore, note that the 

condition (13) for  0kkS  to be non-increasing requires the necessary condition: 

   kk
e
kkkkddkdk SEIaSS 1

212 12    ;  0Zk  (17) 

to be fulfilled by the vaccination gain unity, which is the maximum possible one, provided that 

the existing stock vaccines covers such a need. Note that the above condition always holds if 

 0kkS  is non-negative and   1 k
e
kkkk EIa  ;  0Zk  and it also holds if  0kkS  is 

non-negative,   1 k
e
kkkk EIa  ;  0Zk . This second condition is guaranteed by under 

unity vaccination gain: 

   
  

1
1

21221




 

kk
e
kkkk

ddkdk

SEIa

S,Smin




 ;  0Zk  (18) 

In practice, 
 

k

ddkdk

S

S,Smin
212   is slightly greater than unity if the susceptible sequence 

is decreasing since 1d  and 21 dd   are typically delays of one and three weeks, in the case of 

SARS-CoV-2 which do not affected significantly the variation of the susceptible population levels. 

In addition,   1 k
e
kkkk EIa   is typically close to zero for small infection levels compared 

to the susceptible population values. Therefore, for reasonable vaccine efficacies, (18) holds if 

  1 k
e
kkkk EIa  ;  0Zk . 
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Note that the condition (15) for the susceptible sequence  0kkS  to be non-negative re-

quires the necessary condition to be fulfilled by some maximum possible vaccination gain rate 

1K  (since this feature would ensure that it holds for any lower effort as well), that is, 

   0 kk
e
kkkk SEIa  ;  0Zk  which holds if 00 S  if 

k
e
kk

k
k

EI

a





 ;  0Zk  

which is guaranteed if 
  k

e
k

k
k

N

a







1
;  0Zk .  

The existence of a disease- free equilibrium point is discussed in the subsequent re-

sult: 

Theorem 2. Assume that 121   , 
k

e
kk

k
k

EI

a





  (guaranteed if 

  k
e
k

k
k

N

a







1

);  0Zk ,    1
0





aa

kk ,      K,K
kk 



10

0  and assume also that the constraints 

(13) and (15) hold. Then, there is a disease-free equilibrium point 

 Tdfdfdfdfdf SNR,,,Sx  00 , being in general dependent on the initial conditions, with 

0dfS  and dfdfdf SNR  , where   dfkk NN 

0 , such that 0dfS  if 

21  


a
K . 

Proof: Note that      K,K kk 

 100  implies that  10,K . Note also that 0dfE  

and 0dfI  are trivial solutions of (2) and (3) if  0kkS  is bounded. It follows further-

more that  0kkS  is non-increasing and bounded from Theorem 1 (iii),    1
0





aa

kk  

and (13) holds. As a result, if furthermore, (15) holds then      000  

 dfkk SS R  with 

0dfS  if 
21  


a

K  subject to the assumed constraint 121    since  10,K . Note 

that 

  kkkkkkkkk SaNRIESaN 11   (19) 

implies that   kkkk SaNN 11   and   10 

kka  implies that   dfkk NN 


0  and 

  dfdfdfkk SNRR 

0  since   00 


 dfkk EE  and   00 


 dfkk II . □ 

The subsequent result gives conditions for both the infection and the susceptibility 

to asymptotically vanish implying convergence of the solution to a disease-free equilib-

rium point without susceptible individuals. Some supportive auxiliary results used in its 

proof are given in Appendix A. 

Theorem 3. Assume that the constraint (15) holds, so that any solution sequence is non-

negative for non-negative initial conditions. Assume also that the first assumptions below, and, 

furthermore, at least one of the assumptions 2 to 5 below also holds: 

1)  10 , ,  10 , , 121   , 
k

e
kk

k
k

EI

a
K


  (guaranteed if 

  k
e
k

k
k

N

a







1
); 

 0Zk ,    1
0





aa

kk ,    


0kk ,   e
k

e
k  


0 ,   KK kk 

0 . 

2) Either the constraint (13) holds with strict inequality for all  0Zk  and 
21  


a

K . 

3)   10 ,Kmin,K , where: 
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 






























 yf/y

a
,

a
ysupK 1:

11

2121 
 (20) 

 
 

             
      



 cosyaya

ddsindsinddcosdcos
supyf

, 21
2

21

2
21122

2
21122

20 21

11








 (21) 

and 

 1 kk x̂oKK  ;  1 kk x̂oaa  (22) 

where  T
ddkdkkkk x,...,x,...,x,xx̂

2121  . 

4)  10 ,a ,
 

 






















 ae

ee
sup/,K

i

ddidi

,






 212
12

20

10  (23) 

and (22) holds. 

5)  10 ,a , 
 





















221

11
1

0
c

cac
,K

d


 (24) 

Then, there exists a globally asymptotically stable disease-free equilibrium point 

 T
dfdfdf NR,,,x  000  and   dfkk NN 


0 . 

Proof: The above assumptions 1 and 2 guarantee that   0
0




kkS , and that  
0kkS  

is bounded, from Theorem 1 and Theorem 2 for any given non-negative finite initial 

conditions. Note also that, from (2) and (3),   0
0




kkE and   0
0




kkI  since  10 ,  

and  10 , . 

In addition, any of the assumptions 3 or 4, together with the properties   0
0




kkE  

and   0
0




kkI  guarantees that   0
0




kkS , and  
0kkS  is bounded, for any given 

non-negative finite initial conditions from Theorem A1 [(i)–(ii)] and Corollary A1 of Ap-

pendix A. The same result also holds under the assumption 5 according to Theorem A3 

(i) of Appendix A. 

Thus, the disease-free equilibrium point  T
dfdfdf NR,,,x  000  exists under the 

joint assumptions 1 and 2 and under the assumption 1 jointly with one of the assump-

tions 3 to 5. Now, note that 

Since   0
0




 dfkkk SS  , Equations (2) and (3) can be compacted as follows: 







































k

kkkkk
e
k

k

k

I

ESS

I

E





1

1

1

1   

            
   




















 



























k

kdfkdf
e

k
e
k

k

kdfdf
e

I

ESSSS

I

ESS

001

1 




 

            










































k

kkk
e
k

k

k

I

ESS

I

E

001

01 




;  0Zk  

(25) 

Note that the spectral radius r  of the matrix 
















1

01
 is   111   ,max  

since  10 ,  and  10 ,  and the above matrix is a convergent matrix. Since there is 

some matrix norm of arbitrary close value to the spectral radius there exist some positive 
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real constants   ,min 10  and 10 r  such that 0
1

01


















. In addi-

tion, since   0
0




 dfkkk SS   and   e
k

e
k  


0  and a decreasing nonnegative real se-

quence   0
01 



kk  having a strictly decreasing subsequence   001 
kN

kn
  such that 

for any given
knN1 , there exists a non-negative integer 

knN such that 

kN
kk

e
k SS

1
00
















; 11 1 


kkk nnn N,,N,Nj   such that  

0knk
N  is strictly increas-

ing. Thus, one gets from (25) that: 






 




 























 1 1
010

1
11

1

1 k

k

k

k

kn

knknkn

kn

kn
n

nj

jn
N

N

NNN

N

N

I

E

I

E
 ;  0Zk  (26) 

so that 






























0k
N

N

kn

kn

I

E
 has a strictly decreasing subsequence which converges to zero for 

any given finite non-negative initial conditions. In view of (2)–(3), that property also im-

plies that   0
0




kkE  and   0
0




kkI  for any given non-negative finite initial condi-

tions and then (25) is globally asymptotically stable. Since it has been already proved 

that   0
0




kkS  then  T
dfdfdf NR,,,x  000  is globally asymptotically stable and 

  dfkk NN 

0 . □ 

The next result gets condition for which the stationary model has a stable infective 

substate, irrespective of the susceptible being zero at the equilibrium point or not. It is 

found that there exists a critical transmission rate under which the stationary substate of 

the infective model is globally asymptotically stable. Under the extra conditions from 

Theorem 3, the critical transmission rate becomes infinity since the susceptible subpopu-

lation is zero at the disease-free equilibrium point. As a result, the disease-free equilibri-

um point is globally asymptotically stable for any value of the transmission rate, and 

there is no endemic attractor. 

Theorem 4. Assume  10 ,  and  10 , . Then, the stationary infective substate (25) 

has stable characteristic roots if  c, 0 , where 
  df

ec
S





  so that it is globally as-

ymptotically stable. 

In addition, if the conditions of Theorem 2 hold with 
21  


a

K  then c . 

The stable solution sequence is guaranteed to be, furthermore, non-negative for any non-

negative finite initial conditions if all the conditions of Theorem 3 hold. 

Proof: If   sSS dfkkk 





0  and   e
k

e
k  


0 , then the characteristic Equation of 

(25) is: 

02  cb  (27) 

where 

 s)s(bb e  2  (28) 
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   ss)s(cc e   11  (29) 

Note that   020  b  and      0110  c . The coefficients of the poly-

nomial defining the characteristic equation for 0s , ordered in decreasing order, have 

two changes of sign. According to Descartes’ rule of signs, such a polynomial has either 

two or zero positive real roots. Note that by simple inspection or, equivalently, accord-

ing to the unforced part of (25), the characteristic Equation (27) has in fact two positive 
real characteristic roots for 0s  within the unit complex circle centered at zero which 

are l
1
=1-m  and l

2
=1-g . Now, by inspection,     00  sbsb e  for all 0s . It is 

now discussed a valid range of non-negative values of s which guarantees that 

      scsc e   10 remains to be positive. Write by convenience 



e

s




.Then,   0sc if and only if   0ĉ , where: 

             010   eee cscĉ  for any real   if    1/e  

with the eventual negative real values having no interest since 0s  and, if 

   1/e  then   0ĉ  if 

 

  
011

111

1

















 
























ee

e

e

e

  

for some real 00  . In both cases, that is, irrespective of e ,   0sc  if 



e

s


  and 

 10 , . Since there are two real positive characteristic roots for 0s from Descartes 

rule of signs (since   00 b  and   00 c ) and since the characteristic roots are continu-

ous functions of the argument s and   0sb  and   0sc  for 



e

s


  with  10 , , 

one concludes that the characteristic roots are real (and positive) if 





edfSs


 . It 

remains now to prove that those real positive roots are within the open unit circle. The 

two (real) within the complex open circle or radius unity centered at the origin of the 

complex plane if and only if both roots of (27), subject to (28)–(29), are within the open 

unit circle centered at zero in the complex plane, namely if and only if: 

     
1

2

11422
1

2

21 






ssss eee

,  (30) 

equivalently, if and only if, 

     ssss eee 244
222

 

                                               ssss eee   24
222

 

(31) 

equivalently, if and only if, 

      ss,sminsss eeeee   424
222

 (32) 

since the last equality follows directly since  10 ,,  . Taking the squares in both 

sides of (32) yields that it is equivalent to 

         sssss eeee 224
2222 22

 (33) 

and also equivalent to 
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         sss ee 224
22

 (34) 

and, furthermore, equivalent to 

   22
44   ss e  (35) 

which holds if and only if 






edfSs


  (36) 

Since 0 dfSs  , the constraint (36) implies that the characteristic Equation (27) 

of the stationary infective substate (25) has stable roots if  c, 0 , where 

  df
e

c
S





 . Now, assume that all the conditions of Theorem 2 hold. Since 

0dfS  if 
21  


a

K  then c  if 
21  


a

K  and the stationary infective substate 

(25) has stable roots if   ,0 . 

In addition, any solution is non-negative for all time if (15) and assumption 1 plus 

any of the four remaining assumptions 2 to 5 of Theorem 3 holds (according to Theorem 

3). Thus, the joint non-negativity and global asymptotic stability of the disease-free sta-

tionary solution, under any finite non-negative initial conditions, are guaranteed for 

  ,0  since 0dfS  (Theorem 3). □ 

Note that the Descartes rule of signs used in the proof of Theorem 4 is supported by 

the fact that for 0s  both characteristic roots are real, positive and stable, so that the 

possibility of having no positive root is excluded by such a value of the argument s , and 

the fact that the characteristic roots are continuous functions of s , so that they continue 

to be within the positive region of the unity circle centered at zero as the argument in-

creases. 

Note also that the proposed model is claimed for its usefulness for short-term pre-

dictions in the evolution phase when the disease is blowing up. It is neither considered 

that vaccination is available for use nor that there is immunity lost allowing to increase 

again the susceptible numbers after a certain delay. Therefore, the evolution of the sus-

ceptible subpopulation is given by a decreasing sequence. It is now proved that the pro-

posed model does not have an endemic equilibrium point. 

4. Nonexistence of Endemic Equilibrium Point 

It is now discussed under which reasonable conditions an endemic equilibrium 

point     Tendendendendend R,I,E,Sx 00   either exists or it does not exist. As a final 

result, it is concluded that the endemic equilibrium point cannot exist. 

Consider the following possible cases: 

Case 1 ( 0endS ). Combining (2) and (3) for stationary limiting model parameters 

for an assumed to exist endemic equilibrium point leads to provided that 0endE  and 

0endS : 

endend EI



  (37) 

 
0







eendS  (38) 
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which, replaced in (1) and after cancelling common factors with 0endS , results in the 

resulting constraint: 

     endend
e

endend SKEIaS 21    (39) 

leads to 

 
 





eend

Ka
E




 211

 (40) 

if 

   21   KEIa end
e

end  (41) 

so that 0endE  (and also 0endI  from (37)) if and only if 1
1

21









a
K  and

211 21  a . If 
21

1

 




a
K  and 2111   a then 0 endend IE  so that the 

equilibrium point is, in fact, a disease-free one. By considering also the stationary recov-

ered, one gets after cancelling the stationary recovered endkk RRR 1 in both sides of 

(4) that the subsequent constraint should hold: 

    02121  endendendend SKESKI   (42) 

which contradicts that 0endS  and 0endE . As a result, no endemic equilibrium point 

exists with 0endS . Since (42) can only hold with 0 endend SE  then, it only could 

eventually be true for the disease-free equilibrium point. Thus, Case 1 is unfeasible for 

the existence of an endemic equilibrium point. 

Case 2 S
end

³ 0( ) . Note that (40) holds with, which includes also S
end

> 0  of Case 1 if 

     2121 



 








 KEKEIa end

e
end

e
end  (43) 

provided that 

 
 





eend

Ka
E




 21  (44) 

provided that 

1
21







a
K  ; 21  a  (45) 

with 0endS , and 

 
 









eendend

Ka
EI




 21  (46) 

However, again, after cancelling endkk RRR 1  in both sides of (4), one gets that 

the subsequent constraint should hold: 

    02121  endendendend SKESKI   (47) 

which implies that 0 endendend IES  (which only holds if 
21  


a

K ), and it is in 

fact a disease- free equilibrium point. In this case, one also has that endend RN  . Thus, 

Case 2 is unfeasible for the existence of an endemic equilibrium point. 
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Remark 3 (basic reproduction number). In biological terms, it is possible to re-interpret the 

condition of asymptotic stability around the disease-free equilibrium point in terms of the basic 

reproduction number, which indicates the number of secondary infectious individuals generated 

from one primary infectious one, defined by 

 






 df
e

c

S
R


  (48) 

It turns out that 1R  is exactly identical to c  , that is, if the transmission rate is 

smaller than its critical value c  then, equivalently, the basic reproduction number is smaller 

than unity. That asymptotic stability condition, in the two mentioned equivalent forms, are relat-

ed to the asymptotic extinction of the disease. It can be commented that such a condition is not re-

lated to the transient disease evolution but to its steady-state which is the disease-free equilibrium 

in this case. We can also to define a sample-dependent effective reproduction number as follows: 

 


 k
e
k

k

S
R


 ;  0Zk  (49) 

whose meaning and evolution should not be confused with that of the basic reproduction number. 

This number can be greater than one at the beginning of the disease transmission (even if 1R ) 

but RRk   as k . Note also from (1) that kR  decreases faster (since kS  decreases faster) if 

vaccination is programmed than in the vaccination-free case. The effective reproduction number 

is usually periodically checked to elucidate the particular intervention measures to be taken de-

pending on the disease transmission evolution. It can be also pointed out that 1R  is related, in 

common situations associated with epidemic models, to the confluence of the disease-free equilib-

rium point with the endemic one while, for 1R , the disease-free equilibrium point is unstable 

and the endemic equilibrium point is an attractor for the solutions. According to the former dis-

cussion in this subsection, this model, which is proposed for short-term predictions, does not 

evaluate the influence possible endemic steady states of the disease so that the central discussion is 

related to the case when 1R . 

5. Simulation Results 

This section contains some simulation examples devoted to study the application of 

the two-doses vaccination to counteract the spread of the COVID-19 pandemic. To this 

end the case of Italy borrowed from [45], where the discrete-model dynamics is con-

fronted with actual data from Italy, will be considered. Thus, we have a discrete-time 

COVID-19 model serving as benchmark for the vaccination control. The model is pa-

rameterized by:  

040
6

1

31
20 .,,

.
,. e  


   

so that 7692.0e . The sampling time is one day so that the units of the parameters are 

in days−1. The initial conditions are 000001099990 0000  R,I,.E,.S  implying that 

the total population is normalized to unity, without loss of generality. Notice that almost 

all the population is susceptible and a small fraction of the population is exposed at the 

beginning. The parameters of the vaccination are 2121  dd  days and 72 d  days; 

therefore, separation between the two doses is of two weeks. The values of the doses ef-

fectiveness are given by 66.01   and 3.02   in such a way that the total effectiveness 

of the two doses 21   is 96%, in accordance with the average effectiveness of 

available vaccines. The natural recruitment rate is a = 1, since the natural growth of the 

population may be rejected when it comes to the epidemic spreading description due to 

the small number of children affected. The Figure 1 displays the dynamics of the model 

without vaccination. 
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Figure 1. Dynamics of the model for COVID-19 pandemic. 

It is remarkable in Figure 1 how the number of infectious reaches a peak at around 

the 50% of the total population. Now vaccination is applied with a gain of K = 0.01, cor-

responding to the 1% of the susceptible vaccinated every day. The vaccination is applied 

starting at different moments of the epidemic spreading in order to observe the effect of 

vaccination in the epidemic dynamics. Thus, Figure 2 displays the effect of vaccination 

when it is applied since the beginning of the spreading. 

 

Figure 2. Dynamics of the model when two-doses vaccination is applied from the beginning. 

It is observed from Figures 1 and 2 how the application of vaccination reduces the 

peak of the infectious while increasing the pace at which susceptible become immune, as 

expected. In addition, the Figure 3 illustrates the effect of starting the vaccination at dif-

ferent moments of the spreading ranging from the beginning, 29 days and 59 days after 

the first day of simulation. It can be seen in Figure 3 how the effect of vaccination in 

spreading is higher the sooner vaccination is applied when cases are detected. Thus, 

vaccination is useful for preventing new outbreaks and reducing their severity. If vac-

cination is applied when there is a relatively large number of cases among the popula-

tion, the peak is not reduced ostensibly. Figure 4 displays the values of vaccination ac-

tions 1V  and 2V  corresponding to this situation. It is deduced from Figure 4 that the 

feedback vaccination provides a lower number of vaccinated individuals when it starts 
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at advanced stages of the spread due to a smaller number of susceptible individuals. 

Therefore, this kind of action is especially recommendable when the spread is at its ini-

tial steps. Figure 4 also shows that vaccination 1V  has larger values than 2V  due to the 

differences in effectiveness defined by the parameters 1  and 2 . 

 

Figure 3. Effect of vaccination starting time on the infectious. 

  

Figure 4. Vaccination actions corresponding to different starting times. 

Finally, Figure 5 displays the dynamics of the model for different values of the vac-

cination gain. As it could have been expected, the larger the vaccination action is, the 

smaller peak is attained. Naturally, the reduction in the peak is achieved at the expense 

of a higher vaccination effort as Figure 6 shows. It can also be observed in Figures 4 and 

6 the effect of delay in the control action, where a value of zero vaccination is provided 

during the first days of simulation due to the delay. 
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Figure 5. Dynamics of the infectious for different values of the vaccination gain. 

 
 

Figure 6. Vaccination actions for different values of the control gain K. 

Figure 7 shows the effect of changing the interval of time between the application of 

the two doses. It is assumed that the effectivity does not change with the period in be-

tween them. The vaccination gain K = 0.01 is used while the initial conditions are those 

indicated at the beginning of this section. Moreover, d2 = 7 days and d1 + d2 range from 10 

to 21 days. It is observed in Figure 7 that if the second dose maintains effectivity regard-

less the dose sparing, it is better to administer it as soon as possible. However, in the real 

world, the effectivity of the second dose may depend on when this is applied. There are 

no data on how the effectivity depends on the dose sparing or these are scarce, [46]. 

Therefore a more accurate simulation on the effect of dose sparing is not carried out in 

this work. 
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Figure 7. Dynamics of the infectious for different time periods between the two doses. 

Moreover, Figure 8 compares the evolution of the infectious when two doses with a 

spacing of 14 days is applied (K = 0.1) in contrast of applying a single dose with a dou-

ble-vaccination gain (K = 2x0.01 = 0.02). The Figure 8 shows that with respect to the evo-

lution of the infectious the administration of a single dose to a broader population alle-

viates the peak of infectious in comparison to promptly applying the second dose in or-

der to increase the overall effectiveness of the vaccine. This behavior is behind the deci-

sion of the UK government of prioritizing the first dose to as many people as possible 

while delaying the second dose, [46]. 

 

Figure 8. Comparison in the evolution of the number of infectious between the administration of a 

double dose (K = 0.01) or a single dose to a broader population (K = 0.02). 
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rems 1 and 2 since  1,0,   and 

















k
e
kk

k

EI

a


 max66.12.0  is small enough; there-

fore, (15) holds, and the model trajectory solution is non-negative according to Theorem 

1 and converges to the disease-free equilibrium point according to Theorem 2 since 

21

04.1001.0
 


a

K . In addition, Theorem 3 also ensures that the disease-free equi-

librium point is globally stable since Condition 1 from Theorem 3 is satisfied, Condition 

2 also holds as 
21

04.1001.0
 


a

K  and Equation (13) holds as Figure 10 depicts. 

Therefore, the disease-free equilibrium point is concluded to be globally asymptotically 

stable. 

  

  

Figure 9. Dynamics of the model for different initial conditions and K = 0.001. 
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Figure 10. Satisfaction of Condition 3 from Theorem 3. 

It can be pointed out that different alternative theoretic methods for stability analy-

sis of dynamic systems in the presence of delays can be found, for instance, in [47–49] 

and some of the references therein. 

6. Concluding Remarks 

A new discrete SEIR model has been presented in this paper subject to two delayed 

doses of feedback vaccination controls on the susceptible. It is also assumed that there 

exists a transmission rate from the exposed to the susceptible and that the transmission 

rates exposed-susceptible and infectious-susceptible may eventually be distinct. The 

second idea is based on the knowledge that the later period in the asymptomatic incuba-

tion phase of the infection in the COVID-19 pandemic is also infective as it is the first 

phase of the infectious period. The first idea of using two vaccination doses is based on 

the administration mechanisms of some of the recently approved vaccines for COVID-

19. Such two doses are applied with a certain interval, and the immunity effect is de-

layed in respect to each current picked- up sample on the model, while it is also as-

sumed that both doses can have, in general, different effectiveness. It is assumed, in par-

ticular, that the second dose has an incremental benefit on the injection of the first single 

dose. The effectiveness degrees of both doses as well as the delays can be adjusted in the 

experimental tests since they are model parameters. The non-negativity properties of the 

solution under finite non-negative initial conditions, its boundedness and the disease-

free equilibrium point as well as its stability properties are also investigated. The non-

negativity of the solution can become lost for large-enough transmission rates, but it is 

kept for low and moderate values of the transmission rates. The proposed model has 

been numerically tested through numerical examples for COVID-19 parameterizations. 
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Appendix A 

A1. Some Auxiliary Technical Results 

Theorem A1. Consider the difference equation: 

  kddkdkkk uxxKxax   212 121  ;  0Zk  (A1) 

with R21  , , RR  K,a , nonnegative(integer) delays 01 d  and 121 ddd  , and ini-

tial conditions 0
221
  ddd xx  and R0x  and eventually subject to a bounded forcing se-

quence   R


0kku . Then, the following properties hold: 

(i) The unforced difference Equation (A1), i.e., if   00 

kku , is globally asymptotically stable, 

so that  
0kkx  is bounded and   0

0




kkx  for any given finite R0x , if 
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min,K,

a
maxK

2121

11


 and, in particular,  K,K 0  under the 

restriction  00   RRK , where: 
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a
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a
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2121 
 with   00: RRf  defined by: 
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(ii) The unforced difference Equation (A1) is globally asymptotically stable for any given finite 

R0x , so that  
0kkx  is bounded and   0

0




kkx for any finite R0x , if 1a  and 

 K,KK  , were 
 

 

ae

ee
sup/K

i

ddidi

, 













 212
12

20

1 . 

(iii) Assume that either the conditions of Property (i) or those of Property (ii) hold and that 

  00 

kku . Then,  

0kkx  is bounded and   00 

kkx  for any given finite initial condi-

tion 0x . 

(iv) Assume that either the conditions of Property (i) or those of Property (ii) hold and that 

 
0kku is bounded. Then,  

0kkx  is bounded for any given finite initial conditions. 

Proof: By using the one-step-ahead and the one-step-backward operators q  and 1q  de-

fined, respectively, by 1 kk xxq  and kk xxq 


1
1 , one can compactly rewrite (A1) as 

follows by defining 11 KK   and 22 KK  : 
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   kk
ddd

uxqKqKaq 
 212

12  (A2) 

The characteristic equation of the unforced system (A1) is derived from the left-

hand-side of (A2) by taking into account the formal analogy between the z-transform 

operator and the one-step-ahead one and also multiplying the result by the factor 21 dd
z

  

to avoid the concourse of mixed contributions of the forward and backward operators. 

As a result, the characteristic equation of (A2) becomes: 

    21221
12

ddddd
zKzKazzzṕ


  

               011 21221
1221 

 ddddd
zKzKKKazz  

(A3) 

The polynomial  zṕ  is stable if its zeros are within 1z  and the circle is centered 

at the origin of unity radius. In view of (A.3), since 21 dd
z

  has a zero of multiplicity 

21 dd   in the center 0z  of the open circle 1z , the stability condition holds if 

      11 212
1221 

 ddd
zKzKKKazzp  (A4) 

has all its zeros in the open complex circle 1z . Note that K/Kii   21,i   so that 

one gets from (A4) that: 

     zp~zpzp  0  (A5) 

   Kazzp 210    ;        11 212
12 

 ddd
zzKzp~   (A6) 

is stable if   11 21  Ka   and if, in addition,    zpzp~ 0  for any Cz  on the 

circumference 1z , i.e., on the boundary of the circle 1z : This follows from the Rou-

ché ś theorem of zeros [40–43], which establishes that if all the zeros of  zp0  lie in 1z

(i.e., they are stable) and    zpzp~ 0  on 1z , which is trivially a Jordan curve, then 

all the zeros of      zp~zpzq  0  are also in 1z  since  zq  has the same number of ze-

ros in 1z as  zp0 . The condition    zpzp~ 0  on 1z  is identical to the following 

implicit constraint: 

 

    
 Kae

ee
supK

i

ddidi

, 21

12

20

1 11 212








 









 (A7) 

after writing any complex number z  with  1z as iez   for some   20, . By in-

specting (A7), we note that, for 0 ,   00 p~  so that 0 may be removed from the 

test (A7) so that by using    coscos  and    sinsin  ;   20, , we get: 

 

             

   




22

21

2
21122

2
21122

20

11
1

sinKacos

ddsindsinddcosdcos
supK

, 






 (A8) 

Then, Property (i) follows from (A8) combined with   11 21  Ka  , which 

jointly ensure that the unforced difference Equation (A1) has the property that 

  0
0




kkx  for any finite 0x  by defining   00: RRf  by 

 
 

             
      



 cosyaya

ddsindsinddcosdcos
supyf

, 21
2

21

2
21122

2
21122

20 21

11








 (A9) 

and by noting that       yf/yysup 1:0R . The vaccination gain constraint is 

simplified to  K,K 0  in the particular case that  0RK since the general constraint 
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










































 K,

a
min,K,

a
maxK

2121

11


 implies that 

21

1

 




a
K , that is, 

21

1

 




a
K . Since, furthermore, 

21

1

 




a
K , it follows that KK,

a
min 













21

1


 and 

if  0RK  then the vaccination gain constraint is simplified to  K,K 0 . Moreover,

 
0kkx  is bounded since any convergent sequence is bounded. Since  

0kkx  is bounded 

and   0
0




kkx  for any finite 0x then the unforced difference Equation (A1) is globally 

asymptotically stable. 

To prove Property (ii), rewrite (A5) as      zp~zpzp 101   where 

  azzp 01  ;     212
121

ddd
zzKzp~


   (A10) 

By using the same arguments that those in the proof of Property (i), it is found that 

the zeros of  zp are in 1z if 11  a  and 

 

 

ae

ee
supK

i

ddidi

, 
















 212
12

20

1
 (A11) 

after the replacement of (A7) by (A11). As a result, the unforced difference Equation (A1) 

is globally asymptotically stable. 

To prove, Property (iii), we first obtain from (A1) the following extended dynamic 

system of dimension 121  dd : 

kkk ûx̂Âx̂ 1  (A12) 

subject to initial conditions 0ix  for 2121 dd,,...,i  , where 

 T
ddkdkkkk x,...,x,...,x,xx̂

2121   ;  T
kk ,...,,...,,uû 000  (A13) 

















 



01000

00001

0000 12



  KKa

Â  (A14) 

First note that all the eigenvalues of Â are stable under the conditions of either 

Property (i) or Property (ii) since if   0
0




kkx if   00 

kku  then   00 


kkx̂  if 

  00 

kkû  so that the unforced discrete dynamic system (A12) is globally asymptoti-

cally stable. Now, from recursive calculation using (A12), one gets: 

 





1 1Nk
ki i

iNk
k

N
Nk ûÂx̂Âx̂ ;  00   ZZN,k  (A15) 

If   0
0




kku  then, for any given R , there exists  NN   such that 

 ii uû ;   Ni  0Z . Then, for some  10,ˆ   such that the complex circle cen-

tered at 0z  of radius ̂ contains all the eigenvalues of Â , one gets: 






ˆ
Mx̂ˆMûˆMx̂ˆMx̂ k

k
N

ki
i

iNk
k

N
Nk

kkk

k 
 








1

1  (A16) 

for some (norm-dependent) real constant 1M , for any given  0Ζk  and any given 

strictly decreasing sequence   

  00 Rkk , with  0 , and some corresponding strict-

ly increasing sequence of integers  
0kkN  such that  kkk NN  . Since   00 


kk  
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and 0kN̂  as k  then there exists the limit 0


kNk
k

x̂lim , so that 0


kNk
k

xlim  

as well, if 0x  is finite, and then   00 

kkx  and, since this sequence is convergent, it is 

also bounded. Property (iii) has been proved. 

Property (iv) follows by noting that the first inequality of (A16) partially holds if 

 
0kku  is bounded in the weakened form: 







 











ˆ

C
x̂M

ˆ

M
x̂ˆMûˆMx̂ˆMx̂ k

i
i

ikk
k

11
00

0

1
0  ;  0Zk  (A17) 





 



ˆ

M
x̂suplim k

k 1
  (A18) 

for any given  0Ζk  and some real constant i
i

i
i

usupûsupC
00 

 . □ 

Corollary A1. Consider the difference equation: 

 
212 121 ddkdkkkkk xxKxax     ;  0Zk  (A19) 

subject to initial conditions R0x  and 0ix  for 2121 dd,,...,i   and assume that the limit-

ing difference equation: 

 
212 121 ddkdkkk xxKxax     (A20) 

resulting from (A19) as   aa
kk 


0  and   KK
kk 


0  satisfies the conditions of the unforced 

Equation of system (A1) of Theorem A1 (i) and Theorem A1 (ii). Assume also that 

 1 kk x̂oKK  ;  1 kk x̂oaa  (A21) 

Then,  
0kkx  is bounded and   00 


kkx  for any given finite initial conditions so that the 

difference Equation (A19) is globally asymptotically stable. 

Proof: Equation (A19) is of the form of Equation (A1) with 

    
212 12 ddkdkkkkk xxKKxaau     (A22) 

and   00 

kku  under (A21). Thus, the proof is direct from Theorem A1 (iii). □ 

Corollary A2. Consider the difference Equation (A19) with 00 x  and    10
0

,a
kk 


 , define 

kk a1  and assume that   0
0




kk , 


0k
k  and 

212 12 ddkdk

k
k

xx
KK

 






;  0Zk , with      



,Kxx ddkdkkk 212 120

  being subject to the subsequent con-

straints: 

   





0
12 212k

ddkdkk Kxx  ; 0k  if 0
212
 ddkdk xx , and 

  1
12 212


  ddkdkk xxo  . Then,  

0kkx  is bounded and   00 

kkx  for any given fi-

nite nonnegative initial conditions so that the difference Equation (A19) is globally asymptotical-

ly stable. 

Proof: The difference Equation (A19) is written equivalently as: 

   
212 121 1 ddkdkkkkk xxKxx     (A23) 
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with kk a1 ;  0Zk ,   1
0




kka  since   0
0




kk  and 0k , 0k ;  0Zk ,




0k
k  and 



0k
k  since   1

12 212


  ddkdkk xxo  . Thus, it follows 

from Venter theorem [44] that   00 

kkx , and the sequence boundedness follows as a 

consequence of its convergence. □ 

Theorem A2. Consider the difference equation: 

kkkk bxax 1  (A24) 

with 00 x , where the following constraints hold: 

kk a~a 1 , kk b
~

bb  ; 0b ;  0Zk  (A25) 

     



,a~,a~

jj 00
0

,    



,b

~
jj 0

0
 (A26) 

kkk

k
k

x/ba

a~
a~


1 ;  0Zk , 



0k
kb

~
 (A27) 

Thus, the following properties hold: 

(i) If 00 x  then  
0kkx  is unbounded. If 0b  and the remaining above conditions hold, 

then  
0kkx  is bounded. 

(ii) If 00 x ,    01
0

,a~
jj 



, 

kkk

k
k

x/ba

a~

a~


1 , 0b ,    




,b

~
jj 0

0
 and 




0k
kb

~
 then a necessary condition for   0

0




kkx  is  

k

j
ja~

0
. The result 

still holds if    0
0





xx

kk . 

Proof: One gets recursively from (A24) and (A25) that 

    
 

k

j
jjjk b

~
xa~bkxx

0
01 1  (A28) 

From the first inequality of (A27), (A24) and D Álembert criterion for convergence 

of series on non-negative terms, one gets: 




 


 kkk
k

kk
k

kkk

kk
kk xa~x

x

xa~
x

bxa

xa~
xa~ 1

1
111  

j

k

j
j xa~

0
;  0Zk  (A29) 

so that 0kk xa~  as k . Now, (A29) together with the second condition of (A27) and 

(A28) leads to: 

    bkxxk 10 01 ;  0Zk  (A30) 

the non-negative lower-bound in (A30) arising from the non-negativity of the right-

hand-side of the equality (A28). The relations (A30) lead to 

    


bkxxsuplim k
k

10 01  (A31) 

and also (A24) subject to (A26) and 00 x  implies that     


 000
RRclx

kk . 

This concludes that 


k
k

xsuplim  from (A31) and 0b , which implies that there 

exists the limit 


k
k

xlim  (otherwise, k
k

xsuplim


would be finite) and then the sequence 

 
0kkx  is unbounded. If 0b  and the remaining constraints (A25)–(A27) hold then 
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(A31) is modified to    


010 xxsuplim k
k

 implying that  


10 k
k

xsuplimx  

which concludes that  
0kkx  is bounded. Property (i) has been proved. To prove Prop-

erty (ii), note that under the alternative given conditions, if   0
0




kkx , then one gets 

from (A28), by taking into account that 



b

k
k Cb

~

0
 and D Álembert’s criterion 

for divergence of series, that 

    









00
0

k
kkb

k
kkk

k
xa~Cb

~
xa~kbxlim 



0k
kk xa~  (A32) 

and also 












 k
k

k
k xsupa~

0
0

. Since  
0kkx  is still non-negative and convergent, then 

it is bounded, and 


k
k

xsup
0

0 if 


0k
ka~  and the result is easily seen to still 

hold if    0
0





xx

kk . The proof of Property (ii) is complete. □ 

A2. A More Detailed Expansion of the Squared Numerator of (A9) 

Note that Equation (A9) is of the form: 

 
 

 y,,,d,d,gsupyf
,

2121
20




  
(A33) 

for each given quadruple  2121  ,,d,d , where: 

 
 
 y,,,d

,,d,d,n
y,,,d,d,g

21

2121
2121




   (A34) 

whose squared right-hand-side numerator  2121  ,,d,d,n  is expanded as follows: 

 2121  ,,d,d,n   

                    221122
2

21122 11 ddsindsinddcosdcos     

        =    2
2
2

2
1

2
2 22 dcos           2122121

2
1 122 ddcosdcosddcos      

                      1212212122212 dsindsindcosdcosdcosdsindcosdcosdsindsin     

=                21212121
2
12

2
2 12112 ddcosdcosdcosddcosdcos    

(A35) 

which leads to the following nested particular cases: 

a) If 21 dd   then, one gets by using   2
2

2 221 dsindcos    that:  

         1
2

2112
2
22111 212 dsindcos,,d,d,n     

b) If 21 dd   and 21    then  

       2
22

12
2
11111 412 dsindcos,,d,d,n     

c) If 021  dd  or 021    then  

    00000 1111  ,,d,d,n,,,,n    

d) If 0  then   00 1111  ,,d,d,n  which is not evaluated in the supremum over 

 20 , in (A.33). Note that the constraint  yf/y 1  to calculate K  in Theorem A1 

always holds since   yf/1 for  20,  since   00 1111  ,,d,d,n  so that it 

has not to be accounted for in the supremum evaluation as Theorem A1 formally 

establishes. 
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A3. A Fast and Simple Delay-Dependent Stability Test Based on Rouché́s Theorem of Zeros 

Within Open Circles Contained in the Unit Circle 

Theorem A3. The following properties hold: 

(i) Let  10 ,a  and consider a circle z  of center z=0 and of radius    a,a  for 

some real 0 . Assume that 
 

1

21

21

0
d

dd
a

K











. Then, the unforced difference Equa-

tion (A1) has all its zeros in  za . As a result, if 1a and a 10   then the un-

forced difference Equation (A1) has all its zeros in 1 za  so that it is stable. 

(ii) Let    R21 d,dcc ii  for 21,i  , be chosen such that 21
1211 cca

dddd


   (im-

plying that 
 ln

cln
dd

ln

cln 2
12

1  . Then, the unforced difference Equation (A1) has its ze-

ros in z  if  

 
221

11
1

0
c

cac
K

d

 






.  

Proof: One has from the first identity of (A3) that: 

     zp~zpzṕ ´´  0  (A36) 

where: 

   azzzp
dd´ 

 21
0 ;    Kzzp~

d´
12

1    (A37) 

Consider a circle z  of center z = 0 and of radius    a,a  for some real 

0 . Any point of the circumference z , i.e., the boundary of the circle z , is 

given by  iez   for some   20 ,  with 1i  being the complex unity. It turns 

out that all the zeros of  zp´
0 , which are az   and 0z  (with multiplicity 21 dd  ), are 

in z . From Rouché ś theorem, all the zeros of  zṕ  are in  za  if 

     1
222

2
2

112
222 1121 dsindcosKsinacos

dddd


 ;  

  20 ,  

(A38) 

or, 

      121
22

2
2
1

2222 1121 22 dcosKcosaa
dddd


 ;   20 ,  (A39) 

The following cases can arise: 

Case a) If 1d  is even then for   20 , : 

  222 21 a
dd


 

 

     


cosamaxK
dddd

,

2111 2
21

22
2

2
1

20

2 2



  

        2111 2
21

22
2

2
1

2 2
dddd

aK


    

                                                           211 22

21
2 2

ddd
aK


   

(A40) 

or, equivalently, 

   aK
ddd


  211

21   

Case b) If 1d  is odd then for   20 , : 
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  222 21 a
dd


 

 

     


1
2

21
22

2
2
1

20

2 2111 2 dcosamaxK
dddd

,




   

      





 

 2111 2
21

22
2

2
1

2 2
dddd

aK   

(A41) 

which is still guaranteed under the above condition which is equivalent to 

 
1

21

21

0
d

dd
a

K











. The proof of Property (i) is complete. To prove Property (ii), note 

that if 21
121 cc

ddd


   then  1

11
d

c/a . Those constraints guarantee that 

 
221

12
1

0
c

cac
K

d

 






 implies that 
 

1

21

21

0
d

dd
a

K











 which proves Property (ii) as a di-

rect consequence of Property (i). □ 
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