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Abstract: The only currently available anti-tuberculosis vaccine, Bacillus Calmette–Guérin (BCG), 

has been reported to also protect against unrelated diseases, including inflammatory diseases such 

as allergic asthma. Recombinant BCG strains that produce IL-18 have been shown to enhance Th1 

responses over non-recombinant BCG and to reduce IL-5 production and bronchoalveolar eosino-

philia in mice. However, their ability to decrease the immune polarization of human Th2 cells is not 

known. Here, we show that BCG and recombinant BCG producing human IL-18 (rBCG-hIL-18) in-

duced the maturation of Der p 1-stimulated monocyte-derived dendritic cells (MD-DCs) from 

healthy controls and from patients allergic to house dust mites. After incubation with mycobacteria 

and Der p 1, MD-DCs produced significantly more IL-23 and IP-10 but had no effect on IL-12p70 or 

IL-10 production compared to Der p 1-pulsed MD-DCs in the absence of mycobacteria. In the pres-

ence of Der p 1, BCG- and rBCG-hIL-18-pulsed MD-DCs cocultured with naive, but not with 

memory T cells from allerhic patients, resulted in a decrease in IL-5 production compared to non-

pulsed MD-DCs cultured in the presence of Der p 1. BCG, and especially rBCG-hIL-18, may thus be 

potential therapeutic tools to reduce exacerbated Th2 responses in patients with allergic asthma. 
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1. Introduction 

Bacillus Calmette–Guérin (BCG), the only currently available vaccine against tuber-

culosis, has a number of beneficial off-target effects and is able to protect against various 

infectious and non-infectious diseases, including allergic asthma (for a review see [1]). 

Asthma is one of the most common forms of allergic disease in industrialized countries, 

and approximately 300 million people are affected by it. Although asthma is treatable, it 

continues to be a significant health burden and a major cause of disability-adjusted life 

span in adults and children [2]. Allergic asthma is characterized by excessive production 

Citation: Kowalewicz-Kulbat, M.; 

Szpakowski, P.; Krawczyk, K.T.; 

Kowalski, M.L.; Kosinski, S.; Biet, F.; 

Rudnicka, W.; Locht, C. Decrease of 

IL-5 Production by Naive T Cells  

Cocultured with IL-18-Producing 

BCG-Pulsed Dendritic Cells from 

Patients Allergic to House Dust 

Mite. Vaccines 2021, 9, 277. 

https://doi.org/10.3390/ 

vaccines9030277 

Academic Editor: Stephen Todryk 

Received: 2 February 2021 

Accepted: 16 March 2021 

Published: 18 March 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Vaccines 2021, 9, 277 2 of 14 
 

 

of Th2-related cytokines by allergen-specific CD4+ T cells [3,4]. In contrast, IFN-γ-produc-

ing Th1 cells or IL-10 production by regulatory T cells are associated with the establish-

ment of a healthy immune profile and tolerance induction in non-allergic subjects [4–6]. 

Allergen-specific CD4+ T cells exist in both allergic and non-allergic individuals, but they 

exhibit distinct cytokine profiles [6,7]. Cytokines produced by Th2 cells drive many fea-

tures of asthma, such as IgE class switch, airway remodeling, airway hyperresponsiveness 

and mucus overproduction. They also play a central role in initiating and orchestrating 

the inflammatory response. House dust mite (HDM) allergens are among the most clini-

cally significant allergens affecting humans. The medical outcomes upon exposure to 

HDM include the development and exacerbation of asthma, atopic dermatitis and allergic 

rhinitis. In humans, the group I antigens of Dermatophagoides pteronyssinus (Der p 1) are 

among the most common aeroallergens associated with atopic asthma [8]. Der p 1 is a 

cysteine protease, which degrades tight junctions in the respiratory epithelium and 

cleaves CD23 from activated B cells and CD25 from T cells [9]. Through its protease activ-

ity, it may therefore have a direct impact on immune polarization and act as a Th2 adju-

vant in allergic inflammation. 

In mice, BCG has been shown to suppress allergen-induced airway eosinophilia, a 

hallmark of allergic asthma, and airway hyper-responsiveness to metacholine [10]. This is 

accompanied by a decrease in Th-2-type cytokine production, such as IL-5, in broncho-

alveolar lavage fluids, shifting the immune balance towards a Th-1 profile. Independent 

studies have confirmed these observations and have suggested a mechanism involving 

BCG-induced upregulation of IL-12 and IFN-γ production by innate immune cells [1]. We 

have previously shown that administration of recombinant BCG producing murine IL-18 

(rBCG-mIL-18), which acts in synergy with IL-12 to induce IFN-γ production by T cells, 

further increases Th-1 cytokine production in mice [11]. Furthermore, this strain was 

found to protect better against allergen-induced eosinophilia and IL-5 production than 

non-recombinant BCG in a murine model of experimental ovalbumin-induced asthma 

[12]. Subsequently, we have shown that compared to non-recombinant BCG, a recombi-

nant BCG strain producing human IL-18 (rBCG-hIL-18) also induces stronger IFN-γ pro-

duction by T cells cocultured with dendritic cells (DCs) from human volunteers vac-

cinated with BCG [13]. However, it is not known whether BCG and rBCG-hIL-18 have 

differential effects on DCs and T cells of allergic patients compared to healthy subjects.  

Since DCs play a pivotal role in the orientation of T cells and the development of 

allergic responses [14], we compared here the DC phenotype and cytokine production of 

allergic patients with those of healthy donors upon stimulation with BCG or rBCG-hIL-18 

in the presence or absence of Der p 1. We also compared the naïve and memory T cell 

responses of allergic patients with those of healthy donors cocultured with BCG- or rBCG-

hIL-18-stimulated DC in the presence of Der p 1. 

2. Materials and Methods  

2.1. Ethics Statement 

The study was conducted according to the principles of the Declaration of Helsinki 

and was approved by the Ethics Committee of the Medical University in Lodz, Poland 

(number RNN/169/08/KE). Written informed consent from all study subjects was obtained 

before blood sampling. 

2.2. Human Donors 

Blood was collected from twenty-two 19–35 year old allergic patients, sensitive to 

Der p 1, and from 40 healthy non-allergic, non-asthmatic subjects. The healthy subjects 

were enrolled at the Faculty of Biology and Environmental Protection, University of Lodz, 

Poland. Patients were recruited from the University Hospital Allergy Clinic, Department 

of Immunology and Allergy, Medical University of Lodz. Allergic patients had a clini-

cian’s diagnosis of asthma and presented the features of HDM sensitization, including 
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positive skin prick tests (SPTs), and/or the presence of HDM-specific IgE in serum. SPTs 

were performed as detailed by the European Academy of Allergy and Clinical Immunol-

ogy [15,16]. All allergic donors refrained for 4 days before blood collection from oral anti-

histaminic drugs or leukotriene receptor antagonists but were maintained on routine in-

haled corticosteroids. No patient was undergoing allergen-specific immunotherapy or 

took oral corticosteroids at the time of the study. Healthy subjects did not display any 

allergic characteristics and had negative SPTs. Their total IgE levels were less than 20 

kU/L, and they had no specific serum IgE to D. pteronyssinus (<0.35 kU/L). All volunteers 

and allergic patients had received neonatal vaccination with BCG Moreau (2–5 doses). The 

subjects’ characteristics are shown in Table S1. Peripheral blood was drawn using vacu-

tainer tubes with spray-coated heparin (Becton Dickinson) to obtain CD14+ monocytes and 

CD4+ T cells.  

2.3. Human Monocyte-Derived Dendritic Cell (MD-DC) Preparation  

The MD-DCs were generated from peripheral mononuclear cells (PBMCs), prepared 

from blood collected on heparin, by positive selection using monoclonal anti-CD14 anti-

bodies coupled to magnetic microbeads (Miltenyi Biotech, Bergisch Gladbach, Germany), 

as described by Pochard et al. [17]. Cells were cultured at 1 × 106 cells/mL for 6 days in 

complete medium containing 25 ng/mL human granulocyte–macrophage colony stimu-

lating factor (GM-CSF) and 10 ng/mL human recombinant IL-4 (R&D Systems, Minneap-

olis, MN, USA) to obtain immature DCs. After 6 days of culture, the cells were harvested, 

pooled and counted. The mean percentages of DCs obtained from monocytes isolated 

from allergic patients and healthy donors were 35.4 ± 3.4 and 31.7 ± 5.2, respectively (p < 

0.05). 

2.4. Preparation of Bacteria 

M. bovis BCG strain 1173P2 (WHO Stockholm, Stockholm, Sweden) and rBCG-hIL-

18 were prepared as described [13]. Briefly, the mycobacteria were grown to the mid-log 

phase in stationary flasks at 37 °C in 7H9 Middlebrook liquid medium (Becton Dickinson, 

Warsaw, Poland) supplemented with 10% oleic acid–albumin–dextrose catalase (OADC) 

(Difco, BD Biosciences, Warsaw, Poland) and 0.05% Tween 80. For rBCG-hIL-18, 20μg/mL 

kanamycin was added to the culture. Production of IL-18 was verified by immunoblotting 

as described [13]. The bacteria were serially diluted in PBS + 0.05% Tween 80 and plated 

onto Middlebrook 7H11 agar supplemented with 10% OADC and 20μg/mL kanamycin 

where appropriate. After 3–4 weeks at 37 °C, colony-forming units were counted. 

2.5. Dendritic Cell Activation 

Immature DCs at a density of 1 × 106 cells/mL were incubated for 24 h at 37 °C and 

5% CO2 with live BCG or rBCG-hIL-18 at a multiplicity of infection of 1, according our 

previously established protocol [18]. Der p 1, kindly provided by G.A. Stewart (University 

of Western Australia) and Joël Pestel (Institut Pasteur de Lille), was used at 1 μg/mL 

[18,19]. This concentration had previously been determined as being optimal for the in-

duction of Th-2 cytokines in allergic patients [17]. As positive maturation controls, DCs 

were stimulated with 1μg/mL LPS (Escherichia coli LPS O55:B5, Sigma-Aldrich Chemical), 

while DCs in medium alone represented the negative controls. Supernatants of the cul-

tures were tested by ELISA (Eli-pair Diaclone test) for the presence of IL-10, IL-12p70 and 

IL-23 (detection sensitivity: 5 pg/mL for IL-10 and IL-12p70; 20 pg/mL for IL-23), IP-10 

(CXCL10) (R&D systems; detection sensitivity: 5 pg/mL), TARC (CCL17) and MDC 

(CCL22) (R&D systems; detection sensitivity:10 pg/mL). 

2.6. Dendritic Cell Surface Marker Analysis 

The stimulated and unstimulated MD-DCs were harvested from the 6-well plates us-

ing PBS/2 mM EDTA. They were then washed in PBS and stained for 30 min at 4 °C with 
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the following monoclonal antibodies (mAbs, Becton Dickinson, Warsaw, Poland): fluores-

cein isothiocyanate (FITC)-conjugated anti-CD86, anti-CD40, anti-HLA-DR, anti-CD40 

and anti-DC-SIGN mAbs; phycoerythrin (PE)-conjugated anti-CD80 mAb; or relevant iso-

type-matched mAbs as controls. Living cells were gated using forward and side scatter 

properties (FSC/SSC) and then using the specific markers indicated above. Data were an-

alyzed using the FACS LSRII (BD) and FlowJo software. Compensations were calculated 

using BD Compbeads with the automatic compensation program. Data were expressed as 

percentages of cells expressing the marker and the mean fluorescence intensities (MFI), 

representing the molecular densities on the cell surface for each marker for the considered 

population, after subtraction of the isotype control. 

2.7. Naive and Memory CD4+ T Cell Isolation 

Naïve CD45RA+CD4+ T cells and memory CD45RO+CD4+ T cells were isolated from 

the eluted CD14– cell fraction using a naïve CD4+ T-cell isolation kit and a memory CD4+ 

T cell isolation kit (Miltenyi Biotec), respectively, as described [18]. Both cell fractions (pu-

rity > 95%) were frozen at −80 °C in FCS containing 10% DMSO until used. 

2.8. DC-T Cell Cocultures 

The frozen naive and memory T lymphocytes at 1 × 107 cells/mL were thawed and 

cocultured for 96 h at 37 °C and 5% CO2 with BCG- or rBCG-hIL-18-primed autologous 

DCs, in the presence or absence of 1 μg/mL Der p 1, at a ratio of 10 lymphocytes per stim-

ulated DC. Collected supernatants were tested for IFN-γ, IL-10 and IL-5 secretion by 

ELISA using the Diaclone kit. The limit of detection was 5 pg/mL for all three cytokines. 

2.9. Statistical Analysis  

Statistical significance of differences was determined by using the Statistica 10.0 PL 

software (Statsoft). After verifying assumptions, including normality by using the Kolmo-

gorov–Smirnov test, homogeneity of variance with the Levene test, the type of data and 

the number of data, the non-parametric tests were used. The Kruskal–Wallis test was used 

to determine the differences between stimulation conditions. When statistical significance 

was observed, differences were analyzed by the non-parametric Mann–Whitney U test for 

unpaired data. p values < 0.05 were considered significant. 

3. Results 

3.1. rBCG-hIL-18 and BCG Induce the Maturation of MD-DCs in the Presence of Der p 1 

During maturation, DCs coordinately regulate antigen capturing, processing and 

presentation, as well as the expression of co-stimulatory molecules and cytokine produc-

tion [20]. To examine whether the allergic status affects the maturation of MD-DCs in-

duced in vitro with BCG or rBCG-hIL-18 in the presence of Der p 1, we analyzed by flow 

cytometry the DC-surface expression of various co-stimulatory molecules and surface re-

ceptors that play an important role in the DC–T cell interaction. MD-DCs from allergic 

patients and healthy donors were pulsed with BCG or rBCG-hIL-18, alone or in the pres-

ence of Der p 1. The characteristics of blood donors are presented in Table S1. A total of 

10,000 events were collected in the gates. The MFI of CD86, CD80, HLA-DR, CD40 and 

DC-SIGN, as well as the percentages of the cells gated on the FSC/SSC spectrum, were 

determined for allergic patients and healthy donors. The percentages of gated cells were 

similar in each experiment, and the values ranged from 82 to 90%. Both for allergic pa-

tients and healthy donors, BCG and rBCG-hIL-18, with or without (+/−) Der p 1, signifi-

cantly upregulated the expression of CD86 compared with unstimulated DCs or DC incu-

bated with Der p 1 alone (Figure 1a). In parallel, a significant decrease in DC-SIGN ex-

pression was observed upon incubation with BCG or rBCG-hIL-18, +/− Der p 1 compared 

to unstimulated DCs in allergic patients and in healthy donors (Figure 1b). No significant 

differences between healthy controls and allergic patients were noted for CD86 and DC-
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SIGN expression. This was unlike CD40, which was significantly less expressed on the 

surface of DCs from allergic patents compared to healthy controls, regardless of the pres-

ence of either BCG strain (Figure 1c). No significant alternation in CD80 and HLA-DR 

expression on MD-DCs stimulated with mycobacteria alone or in the presence of Der p 1 

was found in either group of donors. (Figure S1). There was no difference between BCG- 

and rBCG-hIL-18-stimulated cells for any of these markers.  

 

Figure 1. CD86 (a), DC-SIGN (b) and CD40 (c) surface expression on MD-DCs from healthy donors and allergic patients. 

Human MD-DCs were stimulated either with BCG (1:1), rBCG-hIL-18 (rBCG) (1:1), Der p 1 (1μg/mL), Derp1/BCG or Der 

p 1/rBCG-hIL-18 for 24 h or were left unstimulated (DC). Box plots represent the median MFI and interquartile range 

values for 22 allergic donors and 40 healthy donors. Fluorescence intensity was calculated by the MFI (once for each donor) 

of the receptor expression from which the MFI obtained with an isotype-matched antibody was subtracted. Statistical 

analyses were performed by using the Kruskal–Wallis non-parametric test. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; 

versus control (unstimulated DC), unless indicated by the horizontal bars; Δ p < 0.05; ΔΔ p < 0.01 versus Der p 1. 

3.2. Effect of BCG and rBCG-hIL-18 on Cytokine and Chemokine Production by DCs in the Pres-

ence of Der p 1 

As in mice, BCG and IL-18-producing recombinant BCG are strong Th1-inducers [11] 

and may reduce Th2-dependent inflammatory processes [10,12]. We measured the con-

centrations of IL-12p70, IL-23, IL-10 and IP-10 in the supernatants of the MD-DCs incu-

bated with BCG or rBCG-hIL-18 +/− Der p 1. While for all blood donors, LPS-stimulated 

MD-DCs produced significant levels of IL-12p70, BCG- and rBCG-hIL-18-pulsed MD-DCs 

+/− Der p 1 failed to secrete significant amounts of IL-12p70 in healthy donors and allergic 

patients (data not shown). In contrast to IL-12p70, the MD-DCs from healthy donors in-

cubated with BCG or rBCG-hIL-18 +/− Der p 1 resulted in significant IL-23 production 

compared to non-pulsed DCs. This was not seen for allergic patients. Baseline IL-23 pro-

duction, in the absence of BCG or rBCG-hIL-18 +/− Der p 1, was also lower in allergic 

patients than in healthy controls. Moreover, the rBCG-hIL-18-pulsed MD-DCs from 

healthy donors produced significantly more IL-23 than BCG-pulsed MD-DCs (Figure 2a).  

MD-DCs from healthy donors incubated with BCG or rBCG-hIL-18 +/− Der p 1 also 

produced significantly more IL-10 compared to unstimulated cells (Figure 2b). This trend 

was also seen for the allergic patients but did not reach statistical difference. There was 

no difference between BCG and rBCG-hIL-18. Furthermore, for allergic patients and for 

healthy donors, BCG and rBCG-hIL-18 increased the IP-10 (CXCL10) production by MD-

DCs, compared to unstimulated MD-DCs, in both the presence and absence of Der p 1. 

This was particularly striking and significant with rBCG-hIL-18 (Figure 2c). Finally, since 

CCL17/TARC and CCL22/MDC are associated with the induction of chemotaxis in Th2 
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cells, we also measured these chemokines produced by DCs from allergic patients and 

healthy controls cultured in the different conditions. TARC and MDC production was 

significantly increased in both allergic patients and in the controls after incubation of DCs 

with Der p 1, and there was a trend toward a decrease in the production of these cytokines 

when the DCs were incubated in addition with BCG or rBCG-hIL-18, which reached sta-

tistical significance for the allergic patient rBCG-hIL-18 group (Figure S2). 

 

Figure 2. IL-23 (a), IL-10 (b) and IP-10 (c) production by stimulated MD-DCs from allergic patients and healthy donors. 

Human MD-DCs were stimulated with BCG (1:1), rBCG-hIL-18 (rBCG) (1:1), Der p 1 (1μg/mL), Der p 1/BCG or Der p 

1/rBCG for 24 h or were left unstimulated (DC). The cytokine (IL-23, IL-10) and chemokine (IP-10) levels in culture super-

natants were measured in duplicate by ELISA. Data shown represent the medians ± SEM for 22 allergic patients and 40 

healthy donors. Statistical analyses were performed by using the Mann–Whitney U test for unpaired data. * p < 0.05;  

** p < 0.01; *** p < 0.001 versus control (unstimulated DC), unless indicated by the horizontal bars, Δ p < 0.05; ΔΔ p < 0.01;  
ΔΔΔ p < 0.001 versus Der p 1. 

3.3. IFN-γ Production by CD4+ Naive and Memory T Cells Cocultured with Der p 1-Treated 

DCs in the Presence of BCG or rBCG-hIL-18  

To investigate whether BCG- or rBCG-hIL-18-pulsed DCs can polarize T cells to-

wards the Th1 profile, despite the presence of Der p 1, in patients with asthma, we meas-

ured the Th1-type cytokine (IFN-γ) levels in the supernatants collected from DC-autolo-

gous naive and DC-autologous memory T cell 96-h cocultures (Figure 3). Naive T cells 

produced significantly more IFN-γ in response to BCG- or rBCG-hIL-18-pulsed DCs +/− 

Der p 1, as compared to T cells incubated with non-pulsed or Der p 1-pulsed DCs, in al-

lergic patients and in healthy donors (Figure 3a). However, in response to BCG- and Der 

p 1/BCG-pulsed DCs, naive T cells from allergic patients produced significantly more IFN-

γ than those from healthy donors, while the reverse was observed for rBCG-hIL-18- and 

for Der p 1/rBCG-hIL-18-pulsed DCs co-incubated with naive T cells. Strikingly, the IFN-

γ production of naive T cells from healthy donors was only marginally enhanced by BCG-

pulsed DCs but was much more strongly induced when the T cells were incubated with 

rBCG-hIL-18-pulsed DCs. For the allergic patients, there was no difference between the 

BCG and rBCG-hIL-18 groups, regardless of coincubation of the DCs with Der p 1. 

Coincubation of BCG- or rBCG-hIL-18-pulsed DCs +/− Der p 1 also induced the IFN-

γ production by memory T cells in allergic patients and healthy donors. However, in this 

case there was no significant difference in the IFN-γ production between allergic patients 

and healthy donors, nor was there a difference between BCG and rBCG-hIL-18, regardless 

of the presence of Der p 1 (Figure 3b).  
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Figure 3. Secretion of IFN-γ by human naive T cells (a) and memory T cells (b) following 96 h coculture with BCG- (1:1), 

rBCG-hIL-18 (rBCG)- (1:1), Der p 1- (1μg/mL), Der p 1/BCG- or Der p 1/rBCG-pulsed autologous MD-DCs (ratio MD-

DCs/T cells, 1:10). The cytokine levels in the cocultures were measured in duplicate by ELISA. Data shown are the medians 

± SEM for 22 allergic patients and 40 healthy donors. Statistical analyses were performed by using the Kruskal–Wallis test 

for unpaired data. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 versus control (unstimulated DC), unless indicated by 

the horizontal bars; Δ p < 0.05; ΔΔΔΔ p < 0.0001 versus Der p 1. 

3.4. Effect of BCG and rBCG-hIL-18 on IL-5 and IL-10 Production by CD4+ Naive and Memory 

T Cells Cocultured with Der p 1-Treated DCs  

As Th2 responses are considered a hallmark of allergic pulmonary inflammation, we 

compared the IL-5 production by autologous CD4+ naive and memory T cells upon coin-

cubation with DCs conditioned with BCG or rBCG-hIL-18 +/− Der p 1 between allergic 

patients and healthy donors. Naive T cells from healthy donors, but more so from allergic 

patients, produced significantly more IL-5 in response to BCG- or rBCG-hIL-18-stimulated 

DCs than unstimulated DCs (Figure 4a). The strongest IL-5 response was seen after co-

culturing naive T cells with Der p 1-conditioned DCs from allergic patients. This response 

was significantly lower for the healthy controls. Interestingly, BCG, and especially rBCG-

hIL-18, substantially diminished the IL-5 responses of the naive T cells from allergic pa-

tients. The Der p 1 effect was totally abolished by rBCG-hIL-18. The BCG and rBCG-hIL-

18 effects in the presence of Der p 1 were not seen for the healthy donors. BCG- or rBCG-

hIL-18-stimulated DC, especially in the presence of Der p 1, also induced the IL-5 produc-

tion of memory T cells form allergic patients, but not from healthy controls (Figure 4b). 

Again, coincubation of memory T cells with Der p 1-pulsed DCs induced the strongest  

IL-5 response. In this case the IL-5 response was not diminished by BCG or rBCG-hIL-18. 

The IL-10 production by naive T cells co-incubated with BCG- or rBCG-hIL-18-pulsed 

DCs +/− Der p 1 was also enhanced for allergic patients and for healthy controls. Coincu-

bation of naive T cells with rBCG-hIL-18-pulsed DCs from healthy donors induced signif-

icantly more IL-10 than coincubation with BCG-pulsed DCs, regardless of the addition of 

Der p 1. This was not the case for allergic patients, for which neither BCG nor rBCG-hIL-

18 modified the IL-10 response of naive T cells cocultured with Der p 1-pulsed DCs  

(Figure 5a). The IL-10 production by memory T cells from healthy donors was only mar-

ginally increased by coincubation with pulsed DCs. This increase was somewhat stronger 

for memory T cells from allergic patients, especially when they were cocultured with DCs 

pulsed with Der p 1 (Figure 5b). Like for the naive T cells, BCG or rBCG-hIL-18 did not 

modify the IL-10 response of memory T cells co-cultured with Der p 1-pulsed DCs. 
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Figure 4. Secretion of IL-5 by human naive T cells (a) and memory T cells (b) following 96 h coculture with BCG- (1:1), 

rBCG-hIL-18 (rBCG)- (1:1), Der p 1- (1μg/mL), Der p 1/BCG- or Der p 1/rBCG-pulsed autologous MD-DCs (ratio MD-

DCs/T cells, 1:10). The cytokine levels in the cocultures were measured in duplicate by ELISA. Data shown are the medians 

± SEM for 22 allergic patients and 40 healthy donors. Statistical analyses were performed by using the Kruskal–Wallis test 

for unpaired data. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 versus control (unstimulated DC), unless indicated by 

the horizontal bars; Δ p < 0.05 versus Der p 1. 

 

Figure 5. Secretion of IL-10 by human naive T cells (a) and memory T cells (b) following 96 h coculture with BCG- (1:1), 

rBCG-hIL-18 (rBCG)- (1:1), Der p 1- (1μg/mL), Der p 1/BCG- or Der p 1/rBCG-pulsed autologous MD-DCs (ratio MD-

DCs/T cells, 1:10). The cytokine levels in the cocultures were measured in duplicate by ELISA. Data shown are the medians 

± SEM for 22 allergic patients and 40 healthy donors. Statistical analyses were performed by using the Kruskal–Wallis test 

for unpaired data. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 versus control (unstimulated DC), unless indicated by 

the horizontal bars; ΔΔΔ p < 0.001 versus Der p 1. 

4. Discussion 

In order to explore the immunomodulatory effects of BCG and rBCG-hIL-18 in a Der 

p 1-induced allergic environment, we used a well-established in vitro model of DC-T cell 

cocultures, as professional antigen-presenting cells DCs play a key role in the initiation 

and development of allergic diseases. Although accumulating evidence suggests that DCs 
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can be sufficient to initiate Th2 responses, the signaling mechanism between DCs and T 

cells underlying the Th2 profile is still not well understood [21]. Immune responses in 

allergic individuals are characterized by excessive production of Th2-related cytokines by 

allergen-specific CD4+ T cells and a lower Th1-type immune response than healthy sub-

jects [3,4]. BCG is known to induce Th1 lymphocytes [10,22,23], suggesting that BCG could 

contribute to asthma prevention. In this study, we demonstrate in a model of HDM allergy 

that in the presence of Der p 1, the IL-5 production by naïve T cells from allergic patients 

was significantly decreased by BCG and even more by rBCG-hIL-18. This was not the case 

for healthy subjects. Memory T cells also produced IL-5 in response to Der p 1-pulsed 

DCs, but this was not decreased by BCG or rBCG-hIL-18. These observations are con-

sistent with previous studies showing a decrease of Th2 cytokines in Der p 1-pulsed DC-

T cell cocultures from allergic patients when BCG was used together with a D. farinae ex-

tract [24]. However, in this previous study no distinction was made between naive and 

memory T cells. In a murine model, BCG or rBCG-mIL-18, when administrated at the time 

of sensitization, prevented airway responses after ovalbumin challenge [12].  

As memory T cells of allergic patients have already been primed by the antigen, their 

triggering requirements are different from those of naive T cells. Memory T cells are more 

agile and migratory than naive T cells, which is consistent with their prime mission to 

survey tissues for pathogen antigens. Naive and memory T cells express different sets of 

chemokine receptors and cell adhesion molecules [25]. Naive T cells express large amounts 

of the chemokine receptor CCR7 and the cell adhesion molecule CD62L, which facilitate 

their migration and entrance into secondary lymphoid tissues. On the other hand, 

memory T cells express CCR9 and CXCR3, which promote trafficking to peripheral tis-

sues. Furthermore, memory T cells, but not naive T cells, preferentially home to the bone 

marrow, where they undergo expansion and homeostatic proliferation [26,27]. In addition 

to conventional Th2 memory T cells, a new subset of human proallergic memory Th2 cells, 

named Th2A (CD4+CD27−CD45RB−), has been identified [28]. This subset is confined to 

allergic individuals and exhibits distinct features. It was identified in allergic donors with 

different types of allergy, including allergy to HDM. It was also found to play a critical 

role in allergy pathogenesis. As in this study we have not examined the subtypes of 

memory T cells, we cannot exclude that BCG or rBCG-hIL-18 may have an effect on IL-5 

production in one of the subtypes. However, if BCG or rBCG-hIL-18 would have an effect 

on IL-5 secretion by one of the memory T cell subsets, one would expect to see at least a 

trend toward a decrease of IL-5 secretion, which we did not observe.  

Differences between naive and memory T cell responses to BCG or rBCG-hIL-18 have 

been noted before in healthy donors with respect to secretion of other cytokines, namely 

IFN-γ and IL-10. Both were increased, especially by rBCG-hIL-18 [18]. IL-18 together with 

IL-7 was shown to synergistically upregulate the expression of IL-18R genes in naive T 

cells but not in memory T cells, thereby enhancing IL-18 activity in naive T cells [29]. Naive 

T cells depend on IL-7 for survival and homeostatic proliferation [30]. Furthermore, naive 

and memory T cells have different survival requirements for cytokines, including IL-7 

[31]. The differences in cytokine requirements and IL-18R upregulation between naive 

and memory T cells may at least partly explain why naïve T cells from allergic patients 

responded to BCG and even more to rBCG-hIL-18 by decreasing IL-5 production, whereas 

memory T cells did not. 

IL-18, initially referred to as interferon IFN-γ-inducing factor, was first described for 

its ability to induce Th1 responses, resulting in the production of IFN-γ [32] and subse-

quently inhibiting Th2 responses [33–36]. However, in a ragweed murine model of allergic 

asthma, administration of IL-18 together with the allergen increased the production of IL-

5 by splenocytes cultured in the presence of ragweed. This suggests that IL-18 can pro-

mote a Th2 phenotype [37], which is in contradiction to our observations. On the other 

hand, when IL-12 was co-administered with IL-18 in a murine allergic asthma model, the 

appearance of Th2 cytokines was abolished. This was paralleled by the induction of Th1 

cytokines, suggesting a synergistic effect of IL-12 and IL-18 in the prevention of Th2-cell 
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differentiation [35]. BCG is known to induce IL-12 production [38]. Therefore, it is likely 

that in our model the IL-18 effect is the result of the recombinant IL-18 and IL-12 naturally 

induced by the BCG. Interestingly, the IL-5 response to Der p 1 in allergic patients already 

significantly decreased with non-recombinant BCG. However, the decrease was stronger 

in the presence of rBCG-hIL-18, consistent with the synergistic effect of BCG and IL-18. 

In parallel, BCG and rBCG-hIL-18 increased the production of the Th1 cytokine IFN-

γ by naïve and by memory T cells. Again, a synergistic effect of BCG and IL-18 was ob-

served for the IFN-γ production, but only in naïve T cells from healthy donors, as we have 

seen in a previous study [13]. This observation is also consistent with previous studies in 

mice showing that in response to rBCG-mIL-18 Th1, cytokine production was favored in 

a synergistic manner [12]. Here, we found that the effect of BCG and rBCG-hIL-18 on IFN-

γ production was observed for naïve and for memory T cells of healthy subjects and of 

allergic patients. This was in contrast to the effect of BCG and rBCG-hIL-18 on the decrease 

of IL-5 production, which was limited to the naive T cells from allergic donors. However, 

the synergistic effect of IL-18 and BCG on IFN-γ production was only observed for naive 

T cells from healthy subjects. Thus, the IL-5 decrease observed in naive T cells from aller-

gic patients after BCG- or rBCG-hIL-18-pulsed DC treatment was not directly linked to 

the IFN-γ production.  

We did not see a significant induction of IL-12p70 production by BCG- or rBCG-hIL-

18-pulsed MD-DCs +/− Der p 1. IL-12 is a heterodimeric cytokine composed of subunits 

p40 and p35, and the p40 subunit is shared with IL-23. We therefore determined the 

amount of secreted IL-23 in the supernatants of mycobacteria-stimulated DCs +/− Der p 1. 

We found that MD-DCs from healthy donors incubated with BCG or rBCG-hIL-18 +/− Der 

p 1 induced significant amounts of IL-23. This was not seen for the MD-DCs from allergic 

patients. Furthermore, a synergistic effect of IL-18 and BCG was observed for the healthy 

donors. Several murine studies have suggested a pathogenic role of IL-23 in allergic air-

way inflammation [39,40]. In an allergic model of murine asthma, IL-23 produced by DCs 

at the site of antigen sensitization facilitated eosinophilia and Th2 immune responses [41]. 

A potential role of IL-23 increase in asthma pathogenesis has also been proposed in the 

context of Der p 1 exposure [42]. In humans, a significant relationship between serum lev-

els of IL-23 and its gene expression and persistent asthma in children was suggested to be 

a biomarker of asthma [43]. Curiously, we found that IL-23 production, in the absence of 

BCG or rBCG-hIL-18, but in the presence of Der p 1 was lower in allergic patients than in 

healthy controls. BCG or rBCG-hIL-18 did not decrease IL-23 expression any further in 

the MD-DCs of asthma patients. A tendency of decreased IL-23 production by MD-DCs 

was already observed in unstimulated DCs from allergic patients compared to unstimu-

lated DCs from healthy subjects. Therefore, in our study the BCG- or rBCG-hIL-18-medi-

ated decrease of IL-5 production by naive T cells from allergic patients was not directly 

linked with the level of IL-23 production by MD-DCs. We did see a trend toward a de-

crease in the chemokine TARC and MDC production by BCG- or rBCG-hIL-18-treated 

DCs from allergic patients in the presence of Der p 1. This decrease was slight but signif-

icant for the rBCG-hIL-18-treated DCs from the allergic patients. As these chemokines are 

known to direct Th2 responses [44], the effect of BCG-, and especially rBCG-hIL-18-treated 

DCs, on the decrease of IL-5 production by naïve T cells from allergic donors may be re-

lated to the decrease in production of these chemokines.  

IP-10 production by MD-DCs was also increased by BCG and rBCG-hIL-18 +/− Der p 

1. This was observed for healthy donors, as previously reported [13], and for allergic pa-

tients, as shown here. For both, rBCG-hIL-18 had a tendency to induce stronger IP-10 se-

cretion than non-recombinant BCG, although this difference did not reach statistical sig-

nificance. IP-10 belongs to the CXC chemokine subfamily and interacts with the common 

receptor CXCR3 that is highly expressed on Th0, Th1 and NK lymphocytes and to a lesser 

extent on eosinophils. IP-10 plays an important role in Th1-mediated immune responses, 

and IP-10 produced by mycobacteria-stimulated DCs is involved in the attraction of Th1 

cells [45,46]. Some human studies suggest that IP-10 is a marker of asthma exacerbation 
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[47–49]. However, other studies show low serum IP-10 levels [50,51] and a decreased pro-

duction of IP-10 by PBMCs activated by mitogen, allergen or cytokines in asthmatic pa-

tients compared to healthy controls [51]. Similarly, in a murine model of asthma induced 

by Alternaria, the production of poly I:C-induced IP-10 by DCs was significantly reduced 

by incubation with the fungal extract [52]. In our study, we found that in allergic patients, 

increased IP-10 production by DCs upon stimulation with BCG or rBCG-hIL-18 was par-

alleled with decreased production of IL-5 by naive T cells when cocultured with Der p 1-

stimulated DCs, but not with unstimulated DCs. No relationship was found between IP-

10 production by mycobacteria-pulsed DCs and IL-5 production by naïve T cells from 

healthy donors, regardless of Der p 1 stimulation. These observations suggest that IP-10 

may exert its effect on antigen-specific T cells in asthmatic patients. 

In contrast to IP-10, IL-10 production by DCs was not strongly affected by BCG or 

rBCG-hIL-18 in the context of Der p 1 stimulation, neither for healthy controls, nor for 

asthmatic patients. Der p 1 alone appeared to stimulate IL-10 production by DCs from 

both groups, which was not modified by either BCG strain. However, in healthy controls, 

but not in allergic patients, rBCGh-IL-18-pulsed DCs induced significantly increased IL-

10 expression by naive T cells compared to DCs pulsed with non-recombinant BCG. BCG- 

or rBCG-hIL-18-pulsed DCs had no effect on IL-10 production by memory T cells. Alt-

hough IL-10 has been shown to prevent and even reverse the characteristic features of 

experimental asthma [53], we found no relationship between IL-10 production and de-

creased IL-5 production by naive T cells from asthmatic patients.  

By expressing specific costimulatory molecules, DCs play a crucial role in DC-T cell 

synapse signaling and can modulate the polarization of T cell responses. We found that 

both BCG and rBCG-hIL-18 stimulated the expression of CD86 on MD-DCs in allergic 

patients and in healthy controls. No difference with respect to CD86 expression was ob-

served between these two groups. IL-18 did not appear to further enhance CD86 expres-

sion on MD-DCs. In contrast, DC-SIGN expression was decreased by BCG and rBCG-hIL-

18 in both groups. However, this was also seen when the cells were stimulated with Der 

p 1 alone. BCG or rBCG-hIL-18 had no effect on the expression of CD80, CD40 or HLA-

DR. There was a significant decrease in CD40 expression by MD-DCs in allergic patients 

compared to healthy controls, independently of Der p 1, BCG or rBCG-hIL-18 stimulation. 

Lowered expression of CD40 by DCs in allergic patients compared to healthy controls has 

been seen previously, albeit in a different model of human cockroach allergy [54]. Since 

CD40 plays an important role for IL-23 production by DCs [55], the lower CD40 surface 

expression by DCs from allergic patients compared to healthy controls is therefore con-

sistent with a lower production of IL-23 by the DCs from allergic patients. However, this 

did not appear to have an impact on the observed BCG- and rBCG-hIL-18-mediated Der 

p 1 allergen-specific decrease in IL-5 production by naïve T cells from allergic patients. 

5. Conclusions 

We found that stimulation of DCs with BCG and more so with rBCG-hIL-18 in the 

presence of Der p 1 decreased IL-5 expression by naïve T cells from allergic patients but 

not by memory T cells. This effect was not related to an increase of the expression of cost-

imulatory molecules on DCs but may be linked to an effect of the mycobacteria on the 

production of TARC and MDC by the DCs. As increased Th2-type IL-5 production is a 

hallmark of allergy, the use of BCG or, better yet, rBCG-hIL-18 may be a potential thera-

peutic tool to redress the Th1/Th2 immune balance in allergic patients. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-

393X/9/3/277/s1, Figure S1: CD80 and HLA-DR surface expression of MD-DCs from healthy donors 

and allergic patients; Figure S2: TARC and MDC production by stimulated MD-DCs from allergic 

patients and healthy donors; Table S1: Characteristics of blood donors included into the study. 
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