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Abstract: SARS-CoV-2 and its variants caused the COVID-19 pandemic. Vaccines that target con-
served regions of SARS-CoV-2 and stimulate protective T-cell responses are important for reducing
symptoms and limiting the infection. Seven cytotoxic (CTL) and five helper T-cells (HTL) epitopes
from ORF1ab were identified using NetCTLpan and NetMHCIIpan algorithms, respectively. These
epitopes were generated from ORF1ab regions that are evolutionary stable as reflected by zero
Shannon’s entropy and are presented by 56 human leukocyte antigen (HLA) Class I and 22 HLA
Class II, ensuring good coverage for the Indonesian and world population. Having fulfilled other
criteria such as immunogenicity, IFNγ inducing ability, and non-homology to human and microbiome
peptides, the epitopes were assembled into a vaccine construct (VC) together with β-defensin as
adjuvant and appropriate linkers. The VC was shown to have good physicochemical characteristics
and capability of inducing CTL as well as HTL responses, which stem from the engagement of the
vaccine with toll-like receptor 4 (TLR4) as revealed by docking simulations. The most promiscuous
peptide 899WSMATYYLF907 was shown via docking simulation to interact well with HLA-A*24:07,
the most predominant allele in Indonesia. The data presented here will contribute to the in vitro
study of T-cell epitope mapping and vaccine design in Indonesia.

Keywords: SARS-CoV-2; immunoinformatics; T-cell epitopes; multi-epitope peptide-based vaccine;
cytotoxic T-cells; helper T-cells; human leukocyte antigen; HLA-A*24:07

1. Introduction

The COVID-19 disease caused by SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) has become a pandemic with dramatic socioeconomic consequences [1,2].
As of 21 September 2021, around 228 million people have been infected and approxi-
mately 4.6 million deaths have been reported worldwide (https://covid19.who.int/ ac-
cessed on 22 September 2021) [3]. In Indonesia alone, as of 26 September 2021, there have
been around 4.2 million confirmed cases with 141,381 deaths (https://covid19.go.id/peta-
sebaran accessed on 27 September 2021) [4]. The virus was first identified in Wuhan,
China, and based on the sequence similarity, was thought to have originated from BatCov
RaTG13 [5]. Like any other viral disease, individuals with COVID-19 might have varied
symptoms, such as fever or chills, cough, fatigue, muscle aches, headache, or diarrhea.
The severity of the symptoms is quite broad, and based on severity; the NIH has classified
COVID-19 into five distinct types, namely, asymptomatic, mild, moderate, severe, and
critical illness [6]. Patients with severe respiratory illness or acute respiratory distress
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syndrome might require intensive care and intubation, and this frequently may lead to
death. Age and the presence of underlying comorbidities seem to determine the course
and outcome of the diseases [7].

SARS-CoV-2 is a positive single-stranded RNA virus with a genome size of 30 kilobases
(kb) containing 10 open reading frames (ORFs) that encode for structural, non-structural,
and accessory proteins. The largest open reading frame of SARS-CoV-2 is called ORF1ab,
occupying the second third of the genome, and encodes a replicase polyprotein 1ab
(7096 amino acids). Polyprotein 1ab must undergo processing by the virally encoded
proteases known as the chymotrypsin-like protease (3CLpro, NSP5) and the papain-like
protease (PLpro, NSP3). Both proteases are initially part of the Polyprotein 1ab before they
were autocatalytically cleaved from the strand and released. The proteases then cleave the
other proteins from the Polyprotein 1ab into a total of 16 non-structural proteins, which
are involved in replication and transcription of viral genome [8,9]. The rest of the genome
(10 kb) encodes for five structural proteins, namely, nucleocapsid (N), membrane (M),
surface (S), and envelope (E) proteins and accessory proteins, namely, ORF3, ORF6, ORF7,
ORF8, and ORF10 [10].

Vaccines are one of the most important countermeasures against the dire consequences
of SARS-CoV-2 spread in the human population. Current vaccines are quite effective in
controlling mortality, morbidity, and hospitalization related to COVID-19. Many of the
vaccines are aiming to induce the response of antibodies against the spike glycoproteins,
which will lead to blockage of viral entry into the cells. However, the emergence of the new
variants raises concerns about the long-term effectiveness of the vaccines and escape from
antibody detection [11]. SARS-CoV-2 variants emerged due to the high mutation rates of
the RNA viruses pertaining to the low fidelity of the RNA-dependent RNA polymerase
(RdRp). In SARS-CoV-2, high mutation frequency was observed for the S protein. Some of
the variants have caused significantly higher fatality rates in some countries [12]. These
variants have a D614G mutation in the spike proteins which was hypothesized to increase
the infectivity of the SARS-CoV-2 virus [13]. As of 23 September 2021, the Centre for Disease
Control and Prevention (CDC) has designated these virus variants into four categories,
namely, Variant Being Monitored (VBM), which includes Alpha (B.1.1.7, Q.1-Q.8), Beta
(B.1.351, B.1.351.2, B.1.351.3), Gamma (P.1, P.1.1, P.1.2), Epsilon (B.1.427 and B.1.429), Eta
(B.1.525), Iota (B.1.526), Kappa (B.1.617.1, B.1.617.3), Mu (B.1.621, B.1.621.1), and Zeta (P.2);
Variant of Concern (VOC) which include Delta (B.1.617.2 and AY.1 sub-lineages); Variant
of Interest (VOI); and Variant of High Consequence (VOHC). At present, no SARS-CoV-2
variants are categorized as VOI and VOHC (https://www.cdc.gov/coronavirus/2019
-ncov/variants/variant-info.html accessed on 24 September 2021) [14].

In a situation where antibodies failed to block viral entry into the cells, the other arm
of adaptive immunity, namely cell-mediated immunity mediated by CTL, is needed to
curb the infection and control the diseases to subclinical level. Inside the infected cells,
viral proteins will undergo HLA Class I pathway, where they will be firstly tagged by
ubiquitin and then digested into short peptides by the proteasome. These short peptides
(8–10 amino acids long) are then translocated with the help of transporter associated with
antigen processing (TAP) into the endoplasmic reticulum (ER) where HLA proteins are
translated. Peptide binds to the HLA molecule and complex is presented on the surface
of the infected cell to be scrutinized by T-cells. Upon recognizing the complex, T-cells kill
the infected cells. The peptides, termed T-cell epitopes, are 8–10 amino acids long and can
originate from any viral proteins, not only the spike glycoprotein. Because T-cell recognizes
an antigen as a complex with HLA molecules, T-cell immunity, therefore, depends on the
HLA molecules that an individual has. In humans, HLA proteins are encoded by the HLA
gene, which is considered the most variable gene within the human genome. In light of the
situation where we expect that the new SARS-CoV-2 variants might occur, identification of
T-cell epitopes that originate from conserved regions of the virus, and utilizing them for
vaccines, should be a priority.

https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html


Vaccines 2021, 9, 1459 3 of 39

A peptide-based vaccine that induces cell-mediated immunity is a likely choice for
emerging virus vaccines, including vaccines for SARS-CoV-2. Viral spike protein is more
likely to mutate, and vaccines against it might not be able to prevent the infection. In that
situation, having a good T-cell memory that can identify and eliminate infected cells will be
beneficial and could potentially save lives. There have been several peptide-based vaccines
for COVID-19 in the pipeline undergoing pre-clinical and clinical trials (https://www.who.
int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines accessed on
25 September 2021) [15]. Several peptides-based vaccines are composed of epitope peptide
pool from the spike receptor binding domain (NCT04545749, NCT04683224), spike, and nu-
cleoprotein (NCT04780035), and all proteins of SARS-CoV-2 (NCT04954469, NCT04885361).

ORF1ab, being the largest ORF in the SARS-CoV-2 genome could become the main
source of T-cell epitopes. ORF1ab is the first protein to be translated by the infected cell
making ORF1ab a good source of early T-cell responses. ORF1ab is also quite stable
genetically, with only a small number of mutations in the protein sequences detected when
compared to the ancestral sequence of Wuhan Hu-1 [16]. Therefore, in this study, we
focused on the identification of conserved and promiscuous CTL and HTL epitopes from
ORF1ab to design a multi-epitope peptide-based vaccine that will cover a large portion of
human population and be effective against any SARS-CoV-2 variants.

2. Materials and Methods

The overall methodology and protocol for the identification of CTL and HTL epitopes
from SARS-CoV-2 ORF1ab is illustrated in Figure 1.
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2.1. SARS-CoV-2 ORF1ab Sequence Retrieval

ORF1ab protein sequence of SARS-CoV-2 Wuhan Hu-1 was retrieved from the ref-
erence sequence in NCBI (YP_009724389.1). The reference sequence was used in the
prediction of T-cell epitopes. The other SARS-CoV-2 ORF1ab sequences were retrieved
from NCBI Virus SARS-CoV-2 Data Hub (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
#/SARS-CoV-2) accessed on 22 September 2021. All sequences were retrieved in FASTA
format and used for the epitope conservancy analysis. ORF1ab sequences were selected
using predefined filters: sequence length 7093–7096 amino acids, the maximum number
of ambiguous characters set to 0, human for the host, Pango lineages chosen were Alpha
(B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), Eta (B.1.525), Gamma (P.1), Iota (B.1.526), Kappa
(B.1.617.1), Lambda (C.7), and Mu (B.1.621), and the completeness option for sequences
was set to complete. Due to the large number of delta sequences available in the database,
only the isolates from 31 July to 22 September 2021 were included.

2.2. Entropy Analysis of 9-Mer Peptide Sequences

To assess the degree of conservation and variability of 9-mer sequences representing
T-cell epitopes within ORF1ab, we calculated Shannon’s entropy according to the methods
described in Khan et al. (2017) [17]. Following retrieval of SARS-CoV-2 ORF1ab protein
sequences, duplicates were removed using AliView [18] to avoid bias in the calculation
of entropy. We then conducted multiple sequence alignment of the remaining sequences
using MAFFT v.7.144 (10.1093/molbev/mst010) available on CIPRES portal (https://www.
phylo.org/ accessed on 28 October 2021) [19], with default alignment setting. The finished
alignment was used as input for entropy analysis using AVANA [20], with sample size set
to 9 for 9-mers, entropy values extrapolated to infinite sets with 100 random subalignment
sampling to correct for size bias, and highly gapped positions were defined as positions
where gaps are 50% of the symbols. The statistics for variability were then imported and
processed in Microsoft excel, where the entropy values were plotted against the 9-mer
center positions.

2.3. Retrieval of HLA Alleles Type in INDONESIAN Population as the Bases for Prediction

The HLA allele types of Indonesian population were retrieved from The Allele Fre-
quency Net Database (AFND) (http://www.allelefrequencies.net accessed on 21 September
2021) [21]. Most of the HLA alleles data for the Indonesian population listed in AFND came
from one study conducted in the Javanese and Sundanese Javanese populations [22]. The
data can be considered representative of the Indonesian population, as among 300 distinct
ethnic and linguistic groups that exist in Indonesia, Javanese, and Sundanese Javanese are
the largest ethnic population, accounting for 40% and 15.5%, respectively (world popula-
tion review, accessed on 1 October 2021) (https://worldpopulationreview.com/countries/
indonesia-population, accessed on 21 September 2021) [23].

2.4. Retrieval of the Number of Experimentally Validated ORF1ab Epitopes Associated with
Predominant Indonesian HLA Alleles

Cell-mediated immunity to SARS-CoV-2 has been a topic of interest for many re-
searchers in the last 18 months since the pandemic arose, and hence several identified T-cell
epitopes are already available in the Immune Epitope Database (IEDB) [24]. For each HLA
allele (with allele frequency > 5%) that the Indonesian population has, we retrieved the
information about how many positive T-cell epitopes associated with the alleles are already
reported in IEDB (IEDB accessed on 18 September 2021) either by T-cell assay or HLA
assay. We then further noted whether the HLA allele is specific to Indonesia or shared with
Germany, as representative of the Caucasian population and Thailand as representative of
other Southeast Asia population. The HLA alleles for Germany were retrieved from the
SARS-CoV-2 T-cell epitopes identification study [25] and HLA alleles of the Thai population
were retrieved from a large-scale HLA typing study [26–28] focusing only the HLA alleles
with a minimum 5% frequency in the Thai population.

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/SARS-CoV-2
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/SARS-CoV-2
https://www.phylo.org/
https://www.phylo.org/
http://www.allelefrequencies.net
https://worldpopulationreview.com/countries/indonesia-population
https://worldpopulationreview.com/countries/indonesia-population
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2.5. Prediction of CTL Epitopes from ORF1ab

The 9-mer peptides from ORF1ab were analyzed for their capacity to enter the HLA
Class I presentation pathway and become T-cell epitopes that will be recognized by CTL.
Immunoinformatics server NetCTLpan 1.1 was used in the analysis (https://services.
healthtech.dtu.dk/service.php?NetCTLpan-1.1, accessed on 21 September 2021) [29]. The
server calculated all steps involved in the HLA Class I antigen processing and presentation
pathways, such as the efficiency of proteasomal cleavage, efficiency of the transporter
associated with antigen processing (TAP) to translocate peptides from the cytosol into the
endoplasmic reticulum (ER) lumen, and finally predict the binding affinity of peptide to
HLA molecules. The parameters for the weight placed on C-terminal cleavage and the
antigen transport efficiency were set to the default values of 0.225 and 0.025, respectively.
Stringent selection criteria were applied, where only the top 1% rank peptides were con-
sidered as CD8+ T-cell epitopes and subjected to further analysis. The percentile rank is
proportionally related to the binding affinity of the peptide to the HLA molecule. Therefore,
the low percentile rank applied here will ensure that only peptides with a higher likelihood
to become the real CTL epitopes will be selected. NetCTLpan is the sole prediction server
used, as it was developed based on the NetMHCpan method, which was shown to be the
best predictor for peptide–HLA binding [30], and it can predict peptide binding to HLA
molecules even though the experimental data are not available.

2.6. Prediction of HTL Epitopes from ORF1ab

Immunoinformatics server NetMHCIIpan 4.0 (https://services.healthtech.dtu.dk/
service.php?NetMHCIIpan-4.0, accessed on 21 September 2021) [31] was used to predict
the binding affinity of the 15-mer peptides to HLA Class II alleles. HLA class II molecules,
due to the open conformation of the peptide-binding groove, can accommodate longer
peptides, with additional 3 residues on each flank. The binding core of the interaction,
however, consists of the 9-mer peptide. Both 15-mer and 9-mer binding core were curated.
In this analysis, strong and weak binding is defined by the percentile rank thresholds of
1% and 5%, respectively. The peptides that belong to the strong binders were selected and
subjected to further analysis.

2.7. Immunogenicity Analysis of Predicted CTL Epitopes

Binding affinity of peptide to HLA molecule does not determine immunogenicity.
Immunogenicity of peptides is determined by the presence of T-cells having T-cell receptor
recognizing the peptide-HLA complex [32]. CD8+ T-cells recognize peptide antigens as
a complex with HLA Class I molecules. Some residues of the peptides (positions 1, 2,
and 9) bind to the peptide-binding groove of HLA molecules, and some other residues
(positions 3–8) bind to the T-cell receptor. Immunogenicity analysis was conducted us-
ing the IEDB immunogenicity tool (http://tools.iedb.org/immunogenicity/, accessed on
21 September 2021) [33]. The higher the score generated by the tool, the more immuno-
genic the peptide is. In general, the presence of large and aromatic residues is associated
with immunogenicity, and residues number 4–6 of the presented peptides was shown to
have a large effect on immunogenicity [33]. In this study, all CTL epitopes from ORF1ab
peptides chosen in the preceding step were subjected to immunogenicity analysis applying
the parameters where residue no. 1, 2, and C-terminal were masked. The peptides with
positive immunogenicity scores were selected for further analysis.

2.8. Interferon-Gamma (IFNγ)-Inducing Ability of Predicted HTL Epitopes

The HTL is important for the generation of the cytokines that drive appropriate im-
mune responses. For intracellular pathogens such as viruses, IFNγ is a very important
cytokine for CD8+ T-cell differentiation into a full effector CTL and memory CTL. HTL
come in different subsets, and the subsets that will produce IFNγ were named Th1. There-
fore, the ability of HTL epitopes to induce the production of IFNγ was analyzed using
the IFNepitope server (http://crdd.osdd.net/raghava/ifnepitope/scan.php, accessed on

https://services.healthtech.dtu.dk/service.php?NetCTLpan-1.1
https://services.healthtech.dtu.dk/service.php?NetCTLpan-1.1
https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0
https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0
http://tools.iedb.org/immunogenicity/
http://crdd.osdd.net/raghava/ifnepitope/scan.php
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21 September 2021) [34]. The parameter for prediction was set as default using the sup-
portive vector machine approach, which will calculate the score for each peptide likelihood
to induce IFNγ. The peptides having positive IFNγ scores were selected to be included in
the next analysis step.

2.9. Conservancy Analysis of the Predicted Epitopes against SARS-CoV-2 Variants

Both selected CTL and HTL epitopes were subjected to conservancy analysis using
the IEDB epitope conservancy analysis tool (http://tools.iedb.org/conservancy/, accessed
on 21 September 2021) [35] against SARS-CoV-2 variants. The duplicated sequences were
removed before the analysis to avoid bias. Epitopes having conservancy level 100% across
SARS-CoV-2 variants were short-listed to be included in the next step analysis.

2.10. Validation of Predicted Epitopes in IEDB Epitopes List

IEDB contains the experimentally known epitopes from the ORF1ab SARS-CoV-2
as well as the entire proteome as depicted in Table 1. The list of experimentally known
epitopes can serve as a means to partially validate the T-cell epitope prediction. The
ORF1ab peptides were curated using epitope search tools in the Immune Epitope Database
(www.IEDB.org, accessed on 21 September 2021) [24], specifying the name of the pathogen
(SARS-CoV-2), antigen (ORF1ab), and the host (human). The predicted peptides that
matched with the experimentally validated peptides were prioritized to be included in
the VC.

Table 1. The number of ORF1ab from SARS-CoV-2 variants included in the study. The sequences
were retrieved from NCBI Virus SARS-CoV-2 Data Hub on 22 September 2021 in FASTA format. All
sequences were of complete length between 7093 and 7096 amino acids and contained no ambiguous
amino acid characters. The delta sequences were selected only from isolates collected between 31 July
and 22 September 2021.

SARS-CoV-2 Variants Number of Isolates

Alpha (B.1.1.7) 158
Beta (B.1.351) 374

Delta (B.1.617.2) 1157
Eta (B.1.525) 436
Gamma (P.1) 9
Iota (B.1.526) 24

Kappa (B.1.617.1) 148
Lambda (C.7) 286
Mu (B.1.621) 18

2.11. Cross-Reactivity of Predicted Epitopes with Human Peptides

The viral peptides having sequences that match with the sequence of the human
self-peptides might induce either autoreactive T-cells or tolerogenic T-cells. The first
one will cause an autoimmune response while the latter will reduce the immunogenic-
ity of the vaccine. BlastP analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
21 September 2021) was conducted to find 9-mer peptide sequences within the human
(taxid: 9606) proteome that match with the 9-mer sequences derived from SARS-CoV2,
since both HLA Class I and Class II have peptide-binding core regions that can accom-
modate peptides with a 9 amino acid length. The BlastP algorithm parameter was set
as follows: expect threshold 30,000, word size 2, matrix PAM30, gap cost was set to
existence = 9 and extension = 1, the compositional parameter was set to no adjustment,
and the low complexity filter was disabled and automatically adjusted for short input
sequences. The results from BlastP analysis were transferred into Microsoft Excel and were
screened for the peptides that shared at least contiguously 7 identical amino acid residues
with the human peptides with no gap and no mismatches residue.

http://tools.iedb.org/conservancy/
www.IEDB.org
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.12. Epitope Selection and Vaccine Construction

Selection of the epitopes to be included in the VC followed several criteria: (1) Epitopes
should be promiscuous so that they can be presented by many HLA alleles and hence
generate a high-population coverage of the vaccine. (2) Epitopes presented by HLA Class
I should be immunogenic so that there will be T-cells within the repertoire that will be
able to respond to the peptides. (3) Epitope presented by HLA Class II should be able to
induce IFNγ responses so that vaccine will be able to activate the Th1 responses that are
needed for antiviral immune responses. (4) Epitopes should not have homology with the
human peptides so that autoimmune responses triggered by the vaccine can be avoided
while ensuring the immunogenicity of the VC.

The vaccine was designed by joining individual epitopes into a polypeptide.
β-defensin was used as an adjuvant and will serve as a ligand for the TLR4 that is needed
for dendritic cell maturation and successful T-cell activation in the lymph node. β-defensin,
HTL, and CTL epitopes were connected using linkers EAAAK, GPGPG, and AAG, respec-
tively [36].

2.13. Evaluation of VC Properties: Antigenicity, Allergenicity, Toxicity, and
Physicochemical Characteristics

Antigenicity prediction was conducted using Vaxijen (http://www.ddg-pharmfac.
net/vaxijen/VaxiJen/VaxiJen.html, accessed on 21 September 2021) [37] with the chosen
parameter as follows: virus as target organism and score 0.4 as the antigenicity threshold.

Allergenicity analysis of the VC was conducted using two servers, namely Allertop
1.0 (http://www.pharmfac.net/allertop/, accessed on 21 September 2021) [38] and Aller-
genFP v.1.0 (https://ddg-pharmfac.net/AllergenFP/index.html, accessed on 21 September
2021) [39]. Allertop 1.0 method was trained using a set of equal number of known allergens
(2210) and non-allergens (2210) from the match species. AllergenFP v.1.0 was trained
using a set of 2427 allergens and 2427 non-allergens which are assembled into a matrix
for prediction.

Physicochemical characteristics of the VC such as amino acid composition, molecular
weight, pI, half-life, stability, and grand average of hydropathicity (GRAVY) were evaluated
using Protparam tools (https://web.expasy.org/cgi-bin/protparam/protparam, accessed
on 21 September 2021). The tools deduced these properties from a protein sequence [40].
These properties need to be considered for successful manufacturing process of the VC.

The possibility that the VC will generate toxic peptides was evaluated using Toxin-
pred (https://webs.iiitd.edu.in/raghava/toxinpred/index.html, accessed on 21 September
2021) [41]. The module Protein Scanning was used to generate all possible overlapping
10-mer peptides and predict the toxicity of the peptides using the SVM (Swiss-Prot)-based
method with the threshold set to 0.0.

2.14. Re-Analyze the VC for Epitopes Generation and Homology with Human Proteins and
Human Microbiome

The VC was analyzed to recheck that the CTL and HTL epitopes, which were put
into the construct, will be generated, and that the other 9-mer peptides that might be
generated do not have homology with human peptides and human microbiomes. CTL
and HTL epitopes prediction were conducted using NetCTLpan1.1 and NetMHCIIpan4.0,
respectively. BlastP was used to check for the peptide homology with human peptides.

The similarity of T-cell epitopes with the human microbiome might either dampen
or increase immunogenicity [42]; therefore, it is important to validate that the vaccine
will not disrupt immune homeostasis in the gut. A possibility that vaccine construct
might generate epitopes that are homologous to the epitopes from the human micro-
biome was checked using Pipeline Builder for Identification of drug Targets (PBIT) server
(http://www.pbit.bicnirrh.res.in/index.php, accessed on 21 September 2021) [43]. Pre-
dicted peptides were submitted as FASTA files to the PBIT server to check for sequence

http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.pharmfac.net/allertop/
https://ddg-pharmfac.net/AllergenFP/index.html
https://web.expasy.org/cgi-bin/protparam/protparam
https://webs.iiitd.edu.in/raghava/toxinpred/index.html
http://www.pbit.bicnirrh.res.in/index.php
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identity with the peptide from human microbiome. The peptides would be considered as
non-homologous if the sequence identity was <50% and e-value was >0.005.

2.15. Immune Simulation of the VC

Immunological responses generated by the VC were assessed in silico using C-
ImmSim online server (https://kraken.iac.rm.cnr.it/C-IMMSIM/, accessed on 21 Septem-
ber 2021) [44]. The simulation was conducted for the highest frequency of HLA haplotype
found in the Indonesian population namely haplotype HLA-A*3401, HLA-B*1521, HLA-
DRB1*1502 (4.6%), and HLA-A*2407, HLA-B*3505, HLA-DRB1*1202 (4.3%) [22]. In order
to simulate prime-boost-boost vaccination, the simulation was run for a total of 1000 phases
with three injections of 1000 units of vaccine that were given at an interval of four weeks
apart (day 0, 28, and 56) that correlated with 1, 84, and 168 time-steps parameters in the
simulation server. Note that 1 time-step is equal to 8 h and the injections were administered
four weeks apart [45].

2.16. Population Coverage of the VC

The population coverage of the VC was evaluated using the population coverage
analysis tool housed in IEDB (http://tools.iedb.org/population/, accessed on 21 September
2021) [35]. The population coverage analysis was conducted to ensure that the T-cell
epitope-based vaccine will cover a large population. T-cell recognizes peptides presented
by HLA molecules, and different ethnicities will express HLA types at different frequencies.
The predicted population coverage represents the percentage of individuals that will
respond to the VC and generate an immune response.

2.17. Secondary Structure and Tertiary Structure Prediction of the VC

The secondary structure of the VC was predicted using SOPMA (https://npsa-
prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html, accessed on 21
September 2021) [46], which is one of the automated methods of protein secondary
structure prediction from multiply aligned protein sequences. RAPTOR X was used
to validate the secondary structure and predict the tertiary structure of the VC (http:
//raptorx.uchicago.edu/ContactMap/, accessed on 21 September 2021) [47,48]. RAP-
TOR X predicts the tertiary structure based on the inter-residue distance distribution
of a protein by the deep learning method. The server works best for predicting pro-
tein structures that do not have many sequences homology, and it has proven to be
the best server for contact prediction that can be run using a personal computer [49].
Tertiary structure generated by RAPTOR X was then validated by using ProSA-web
(https://prosa.services.came.sbg.ac.at/prosa.php, accessed on 21 September 2021) [50].
The PDB structure generated by RAPTOR X was used as an input file for ProSA-web,
which will compare the predicted 3D model of the VC with the existing proteins structure
in PDB database that were generated experimentally either by X-ray crystallography or
NMR. ProSA-web then calculated the z-score, which represents the quality index of the
model. Graphically, the z-score value is displayed in a plot that contains the z-scores
of all experimentally determined protein chains in the PDB database, where dark blue
and light blue area represents NMR and x-ray structures, respectively. The z-score value
of the predicted model is displayed as a black dot in the graph, and the model quality
is acceptable if it falls within the range of scores typically found for native proteins of
similar size.

2.18. Molecular Docking of the VC with TLR4

The interaction between the vaccine and TLR4 (PDB ID: 3FXI) was modeled us-
ing HDOCK (http://hdock.phys.hust.edu.cn/, accessed on 21 September 2021) [51,52].
HDOCK generates information about the interacting residues between TLR4 and the vac-
cine. The PDB file of TLR4 (3FXI) and PDB file of the VC that was generated by RAPTOR X
was used as input files for prediction. The complex interaction was also analyzed using

https://kraken.iac.rm.cnr.it/C-IMMSIM/
http://tools.iedb.org/population/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
http://raptorx.uchicago.edu/ContactMap/
http://raptorx.uchicago.edu/ContactMap/
https://prosa.services.came.sbg.ac.at/prosa.php
http://hdock.phys.hust.edu.cn/
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ClusPro protein–protein docking server (https://cluspro.bu.edu/home.php, accessed on
21 September 2021) [53]. Similar to HDOCK, the PDB of the receptor was 3FXI, and the PDB
file of the VC that was generated by RAPTOR X was used as the ligand. The model with
the lowest binding energy was chosen and the interacting residues were visualized using
PDBsum (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html, ac-
cessed on 21 September 2021) [54]. The PROCHECK tool that was integrated into PDBsum
calculated the number of residues in the favored region as an indication of a good model.

2.19. Molecular Docking of Peptide WSMATYYLF with HLA-A*24:02 and HLA-A*24:07

As a means to validate the T-cell epitope prediction, we docked the peptide to the
HLA molecules and analyzed the interaction. There were two steps to perform the analysis.
The first step involved determination of HLA structure and generation of the PDB file. PDB
structure of HLA-A*24:02 and HLA-A*24:07 were inferred from their residues. The different
between HLA-A*24:02 and HLA-A*24:07 was only one residue number 70 in HLA-A*24:02
is histidine, and in HLA-A*24:07 is glutamine. The protein sequences were submitted to
I-TASSER server (https://zhanggroup.org/I-TASSER/, accessed on 21 September 2021) to
predict the structure. The PDB file of the best protein structure model of HLA-A*24:02 and
HLA-A*24:07 was then downloaded from I-Tasser online server after the computation was
finished. The best PDB model was defined as the one having the highest C-score. The pdb
data were used as the input for the molecular docking analysis. The second step was the
molecular docking of peptide WSMATYYLF to the HLA molecule, which was computed
through CABS-dock web server (http://biocomp.chem.uw.edu.pl/CABSdock accessed on
26 October 2021) [55–57]. The analysis was run with the default CABS-dock mode and the
model of the protein–peptide complex with the highest score was considered.

3. Results
3.1. SARS-CoV-2 ORF1ab Polyprotein Contains Evolutionary Stable Regions with Low Entropy

One important factor that needs to be considered in the vaccine formulation is the
conservancy of the epitopes. Therefore, the sequences of ORF1ab from the SARS-CoV-2
Wuhan Hu-1 isolate (NCBI Reference Sequence YP_009724389.1) and its variants including
the VOC and VOI were obtained (Table 1) and checked for sequences conservancy.

As T-cells receptors recognize antigen in the form of 9-mer peptide presented by
HLA molecule, we checked for the conservancy of the 9-mers using the AVANA tool. The
AVANA tool generates Shannon’s entropy, which is a parameter to infer evolutionary
stabilities of any given 9-mer sequences within a complete protein. Low entropy values
(zero or close to zero) suggest highly conserved positions. The AVANA results showed that
the entropy values of SARS-CoV-2 ORF1ab 9-mers range from 0.00 to 1.44. As displayed
in Figure 2, the vast majority of 9-mer sequences from ORF1ab were of very low entropy,
which suggests that the protein has low variability, high conservancy, and evolutionarily
stable. Theoretically, the highest possible 9-mer entropy value is 39 [17]; however, the
values are much lower when comparing closely related viral variants. For instance, a
similar entropy analysis of SARS-CoV-2 spike protein yielded high occurrence of positions
with high entropy (>0.800), identified as mutation hotspots [58].

3.2. SARS-CoV-2 ORF1ab Contributes a Large Number of Experimentally Known Immunogenic
Epitopes in IEDB

IEDB contains the information about T-cell epitopes that were proven experimentally
to be recognized by T-cells in assays such as IFNγ ELISPOT and intracellular cytokine
staining flow cytometry. The presence of T-cells recognizing the epitopes indicates that the
epitopes are immunogenic. Applying the assumption that the epitopes are mostly 9-mers,
the percentage of immunogenic epitopes over the possible number of epitopes generated
per protein was calculated (Table 2).

https://cluspro.bu.edu/home.php
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
https://zhanggroup.org/I-TASSER/
http://biocomp.chem.uw.edu.pl/CABSdock
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Table 2. The number of SARS-CoV-2 immunogenic epitopes (T-cell assay positive) as reported in IEDB. The percentage of
immunogenic epitopes over the possible number of 9-mer peptides generated by a protein was calculated. The number
in bold indicates the percentage of the immunogenic epitopes over the total number of epitopes. IEDB is accessed on
16 September 2021.

Protein Size (aa)
Number of Immunogenic Epitopes

Reported in IEDB
(T-Cell Assay Positive)

% Immunogenic
Epitopes Per Protein

% Immunogenic Epitopes Per
Total Reported in IEDB

ORF1ab 7096 678 9.6 38.4
Spike 1273 578 4.5 32.7

ORF3a 275 88 32.0 5
Envelope 75 13 17.3 0.7

Membrane 222 131 59.0 7.4
ORF6 61 18 29.5 1.0

ORF7a 121 28 23.1 1.6
ORF7b 43 3 7.0 0.2
ORF8 121 37 30.6 2.1

Nucleocapsid 419 185 44.2 0.5
ORF10 38 8 21.0 0.5

Total epitopes 1767

Although only 10% of the possible ORF1ab T-cell epitopes were reported to be im-
munogenic, ORF1ab contributed significantly (38.5%) to the total number of SARS-CoV-2
T-cell epitopes reported in IEDB. Table 2 shows all proteins of SARS-CoV-2 could poten-
tially be the source of immunogenic T-cell epitopes, as these epitopes were experimentally
proven by T-cell assay. A large proportion of epitopes per protein are generated from
the spike, membrane, and nucleocapsid protein, with the percentages of 45.4, 59.0, and
44.2%, respectively. Despite only 9.6% of the ORF1ab polyprotein being T-cell epitopes, the
number of these immunogenic epitopes contributes 38.4% of the total reported epitopes
due to the large size of the protein. A large number of potential epitopes would allow more
flexibility in finding peptides that are immunogenic and conserved among SARS-CoV-2
variants. Therefore, peptides from SARS-CoV-2 ORF1ab polyprotein would be useful in
the pan-universal SARS-CoV-2 vaccines development.

3.3. HLA Allele Frequencies of the Indonesian, Thai, and German Population

In order to see the diversity of HLA alleles in different populations, the HLA alleles
of the Indonesian, Thai, and German population and their frequencies were plotted in
Figure 3. The most predominant HLA Class I alleles in Indonesian population were HLA-
A*24:07 (20.7%), HLA-A*33:03 (16.9%), HLA-A*11:01 (16.4%), HLA-A*24:02 (14.4%), HLA-
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B*15:13 (11.0%), and HLA-B*15:02 (10.7%), while the most predominant HLA Class II alleles
were HLA-DRB1*12:02 (36.8%), HLA-DRB1*15:02 (24.1%), and HLA-DRB1*07:01 (13.7%).
Comparing the allele frequency of Indonesia with Thailand and Germany (Figure 3) clearly
shows that allele frequency is characteristic for each population. While HLA-A*24:07 had
the highest frequency in the Indonesian population (21%), it is much lower in Thailand (5%),
and almost none in Germany (0.03%). On the other hand, HLA-A*02:01 was predominant
in Germany (27%), but much lower in both Indonesia (7.5%) and Thailand (1.8%). The
differences in the allele frequency between populations need to be considered to avoid bias
in the formulation of T-cell epitope-based vaccine.
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Figure 3. Indonesian HLA alleles and frequency. There were 56 HLA Class I and 22 HLA Class II alleles included in the
study. The allele frequency in the Indonesian population (red bar) was compared to those in Thailand (Green bar) and
Germany (Blue bar).
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3.4. Asian HLA Alleles Are Less Studied as Compared to the HLA Alleles Predominant in the
European Population

Table 3 shows the number of SARS-CoV-2 T-cell epitopes that are associated with
HLA alleles of the Indonesian, Thai, and German populations. Comparing the number of
reported T-cell epitopes presented by HLA alleles revealed that there was no information
about epitopes associated with some of the HLA alleles significant for the Asian population
such as HLA-A*24:07, A*33:03, and B*15:13. This indicates that these HLA alleles are
less studied as compared to the HLA alleles predominant in the European population
and stresses the need for more T-cell assays conducted using samples from convalescent
individuals from Indonesia and Thailand.

Table 3. The number of experimentally known T-cell epitopes associated with HLA alleles of Indonesia (INA), Thailand
(THA), and Germany (GER). The HLA alleles listed are predominant in the Indonesian and Thai populations (allele
frequency ≥ 5%). The HLA alleles of the German population are the ones included in a study of T-cell responses to
SARS-CoV-2 [25]. The number of immunogenic T-cell epitopes associated with the alleles were extracted from IEDB
(accessed on 16 September 2021).

HLA
Alleles

Populations
ORF1ab T-Cell Epitopes SARS-CoV-2 T-Cell Epitopes % ORF1ab/SARS-

CoV-2 Epitopes in
T-Cell AssayTotal T-Cell

Assay HLA Assay Total T-Cell
Assay HLA Assay

A*01:01 GER 54 48 12 96 85 21 56.47

A*02:01 GER INA 138 82 86 224 156 126 52.56

A*02:03 INA THA 0 0 0 0 0 0

A*02:07 THA 0 0 0 0 0 0

A*03:01 GER 42 17 33 69 37 45 45.95

A*11:01 GER INA THA 49 19 39 69 33 48 57.58

A*24:02 GER INA THA 64 45 29 129 100 47 45.00

A*24:07 INA THA 0 0 0 0 0 0

A*33:03 INA THA 0 0 0 0 0 0

A*34:01 INA 0 0 0 0 0 0

B*07:02 GER 38 34 4 81 72 13 47.22

B*08:01 GER 26 25 1 56 52 4 48.08

B*13:01 THA 0 0 0 1 1 0 0.00

B*15:01 GER 34 29 5 56 44 12 65.91

B*15:02 INA THA 0 0 0 0 0 0

B*15:13 INA 0 0 0 0 0 0

B*15:21 INA 0 0 0 0 0 0

B*18:01 INA THA 1 0 1 3 0 3

B*35:05 INA n.a. n.a. n.a. n.a. n.a. n.a.

B*38:02 INA 0 0 0 0 0 0

B*40:01 GER THA 41 18 28 67 33 41 54.55

B*44:03 INA THA 11 11 0 25 25 0 44.00

B*46:01 THA 0 0 0 0 0 0

B*58:01 INA THA 6 0 6 14 0 14

DRB1*01:01 GER 8 4 7 61 8 59 50.00

DRB1*03:01 GER THA 1 0 1 28 20 15 0.00

DRB1*04:01 GER 24 2 24 156 5 156 40.00



Vaccines 2021, 9, 1459 13 of 39

Table 3. Cont.

HLA
Alleles

Populations
ORF1ab T-Cell Epitopes SARS-CoV-2 T-Cell Epitopes % ORF1ab/SARS-

CoV-2 Epitopes in
T-Cell AssayTotal T-Cell

Assay HLA Assay Total T-Cell
Assay HLA Assay

DRB1*04:05 THA 1 0 1 39 0 39

DRB1*07:01 GER INA THA 9 9 1 63 34 40 26.47

DRB1*09:01 THA 1 0 1 38 0 38

DRB1*11:01 GER INA 1 0 1 42 12 32 0.00

DRB1*12:02 INA THA 0 0 0 3 3 0 0.00

DRB1*14:54 THA 0 0 0 0 0 0

DRB1*15:01 GER INA THA 17 14 7 83 50 58 28.00

DRB1*15:02 INA THA 2 2 0 10 10 0 20.00

DRB1*16:02 INA THA 0 0 0 8 8 0 0.00

3.5. Prediction of CTL Epitopes and Evaluation of Immunogenicity

CTL epitopes from ORF1ab were predicted using NetCTLpan 1.1 against a panel
of 56 HLA Class I alleles as shown in Figure 2. NetCTLpan 1.1 analysis generated, in
total, 1132 9-mer peptides with the percentile rank less than 1% for the HLA Class I allele.
The number of peptides that bind per HLA allele is shown in Figure 4. HLA-A*29:01
(allele frequency of 0.008) binds to the highest number of peptides (126), while HLA-
B*13:01 (allele frequency of 0.015) binds the lowest number of peptides (19). The top
five most predominant HLA Class I alleles in the Indonesian population HLA-A*24:07
(allele frequency of 0.207), HLA-A*33:03 (0.169), HLA-A*11:01 (0.164), HLA-A*24:02 (0.144),
and HLA-B*15:13 (0.11) bind 83, 72, 111, 82, and 71 peptides, respectively. Up to this
stage, we were able to identify in silico the peptides that could potentially bind to the
understudied HLA alleles (no data in IEDB, as shown in Table 3) such as HLA-A*24:07,
A*33:03, and B*15:13.
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A total of 1132 peptides were shortlisted further. Peptides bound to only one allele
of HLA Class I were removed from the list since they were not preferable due to the
possibility of having low population coverage if these peptides were used in a VC. The
selected peptides were then evaluated using the IEDB Immunogenicity analysis tool and
revealed that 410 peptides were shown to have a positive immunogenicity score. The 9-mer
peptides were further screened for the possibility to bind to at least one HLA Class II allele,
because binding to both Class I and Class II could be beneficial to invoke more robust
immune responses. In the end, only 65 peptides fulfilled the criteria (Table 4) and were
therefore selected for further evaluation.

Table 4. List of 9-mer peptides from ORF1ab predicted as promiscuous CTL epitopes.

Start
Residue Peptide HLA Class I Alleles Immunogenicity

Score

295 FMGRIRSVY
HLA-A*01:01, HLA-A*29:01, HLA-B*15:01, HLA-B*15:02, HLA-B*15:12,
HLA-B*15:13, HLA-B*15:21, HLA-B*15:25, HLA-B*15:32, HLA-B*35:01,
HLA-B*35:05, HLA-B*35:30, HLA-B*46:01

0.1259

541 RVVRSIFSR HLA-A*03:01, HLA-A*11:01, HLA-A*11:04, HLA-A*33:03, HLA-A*74:01 0.0318

611 WLTNIFGTV HLA-A*02:01, HLA-A*02:03 0.2972

806 MVTNNTFTL HLA-A*02:06, HLA-A*34:01, HLA-B*35:02, HLA-B*35:30, HLA-B*56:01,
HLA-B*56:02, HLA-B*46:01 0.1578

899 WSMATYYLF b

HLA-A*01:01, HLA-A*24:02, HLA-A*24:07, HLA-A*24:10, HLA-A*29:01,
HLA-A*32:01, HLA-B*13:01, HLA-B*15:02, HLA-B*15:12, HLA-B*15:13,
HLA-B*15:17, HLA-B*15:21, HLA-B*15:25, HLA-B*15:32, HLA-B*18:01,
HLA-B*18:02, HLA-B*35:01, HLA-B*35:05, HLA-B*35:30, HLA-B*52:01,
HLA-B*56:07, HLA-B*57:01, HLA-B*58:01, HLA-B*46:01

0.0071

1055 VVVNAANVY a HLA-A*26:01, HLA-B*15:01, HLA-B*15:02, HLA-B*15:12, HLA-B*15:21,
HLA-B*15:25, HLA-B*15:32, HLA-B*35:01, HLA-B*46:01 0.1005

1140 HEVLLAPLL c HLA-B*13:01, HLA-B*18:01, HLA-B*18:02, HLA-B*37:01, HLA-B*38:02,
HLA-B*40:01, HLA-B*40:02, HLA-B*40:06, HLA-B*41:01, HLA-B*44:03 0.0124

1247 FLTENLLLY b HLA-A*01:01, HLA-A*26:01, HLA-A*29:01 0.0808

1254 LYIDINGNL HLA-A*24:02, HLA-A*24:07, HLA-A*24:10 0.2138

1269 LVSDIDITF a
HLA-B*15:02, HLA-B*15:13, HLA-B*15:17, HLA-B*15:21, HLA-B*35:01,
HLA-B*35:02, HLA-B*35:05, HLA-B*35:30, HLA-B*57:01, HLA-B*58:01,
HLA-B*46:01

0.2541

1366 ILGTVSWNL b HLA-A*02:01, HLA-A*02:07 0.1177

1674 YLATALLTL a,b HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*02:07, HLA-B*46:01 0.0927

2175 LLQLCTFTR HLA-A*33:03, HLA-A*74:01 0.0568

2327 FLAYILFTR HLA-A*33:03, HLA-A*74:01 0.2496

2331 ILFTRFFYV a,b HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*74:01, HLA-B*08:01,
HLA-A*02:07 0.3343

2350 FSYFAVHFI HLA-B*51:01, HLA-B*51:02, HLA-B*52:01 0.2893

2597 FSSTFNVPM HLA-B*15:10, HLA-B*15:21, HLA-B*35:01, HLA-B*35:05, HLA-B*35:30,
HLA-B*56:02, HLA-B*46:01 0.1216

2629 LSTFISAAR HLA-A*33:03, HLA-A*34:01, HLA-A*74:01 0.1602

2784 AIFYLITPV b,c HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*34:01, HLA-A*02:07 0.1750

2786 FYLITPVHV a HLA-A*24:02, HLA-A*24:07, HLA-A*24:10 0.2114

2787 YLITPVHVM a
HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*26:01, HLA-B*15:01,
HLA-B*15:02, HLA-B*15:10, HLA-B*15:12, HLA-B*15:21, HLA-B*15:25,
HLA-B*15:32, HLA-B*35:01, HLA-A*02:07, HLA-B*46:01

0.1617

2883 FLPRVFSAV a,b HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-B*08:01, HLA-A*02:07 0.0821
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Start
Residue Peptide HLA Class I Alleles Immunogenicity

Score

3059 LAYYFMRFR a HLA-A*33:03, HLA-A*74:01 0.0559

3060 AYYFMRFRR HLA-A*33:03, HLA-A*74:01 0.1234

3076 VVAFNTLLF HLA-A*24:07, HLA-A*29:01 0.1449

3121 FLAHIQWMV a,b HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*02:07 0.1502

3137 FWITIAYII d HLA-A*24:02, HLA-A*24:07, HLA-A*24:10 0.3233

3152 FYWFFSNYL HLA-A*24:02, HLA-A*24:07, HLA-A*24:10 0.1404

3466 VLAWLYAAV a,b HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*02:07 0.2772

3481 FLNRFTTTL a,b HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-B*08:01, HLA-A*02:07,
HLA-B*46:01 0.2560

3582 LLLTILTSL b,c HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-B*08:01, HLA-A*02:07 0.0907

3605 LYENAFLPF HLA-A*24:02, HLA-A*24:07, HLA-A*24:10 0.1584

3652 VYMPASWVM a,b HLA-A*24:02, HLA-A*24:07, HLA-A*24:10 0.0253

3684 YASAVVLLI a,c HLA-B*51:01, HLA-B*51:02, HLA-B*52:01, HLA-B*56:07, HLA-B*58:01 0.0489

3692 ILMTARTVY a HLA-A*29:01, HLA-B*15:01, HLA-B*15:02, HLA-B*15:12, HLA-B*15:21,
HLA-B*15:25, HLA-B*15:32, HLA-B*35:05, HLA-B*35:30, HLA-B*46:01 0.1258

3752 FLARGIVFM a,b,c HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*02:07 0.3263

4030 TMLFTMLRK b HLA-A*03:01, HLA-A*11:01, HLA-A*11:04, HLA-A*74:01 0.0076

4265 VLSFCAFAV b HLA-A*02:01, HLA-A*02:07 0.1701

4513 YTMADLVYA b HLA-A*02:01, HLA-A*02:06, HLA-A*02:07 0.0262

4656 YIKWDLLKY HLA-A*01:01, HLA-A*26:01, HLA-A*29:01, HLA-B*15:02, HLA-B*15:12,
HLA-B*15:21, HLA-B*46:01 0.0287

4698 ILHCANFNV a HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*02:07 0.0833

4723 KIFVDGVPF HLA-A*32:01, HLA-B*15:01, HLA-B*15:02, HLA-B*15:25, HLA-B*15:32 0.1614

4846 YYRYNLPTM HLA-A*24:02, HLA-A*24:10 0.0097

4862 FVVEVVDKY a HLA-A*26:01, HLA-A*29:01, HLA-A*34:01, HLA-B*15:21, HLA-B*35:01,
HLA-B*35:30, HLA-B*46:01 0.0859

5024 MASLVLARK a HLA-A*03:01, HLA-A*11:01, HLA-A*11:04, HLA-A*30:01, HLA-A*33:03,
HLA-A*34:01, HLA-A*74:01 0.0282

5132 FVNEFYAYL a HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*26:01, HLA-A*34:01,
HLA-A*02:07, HLA-B*46:01 0.2400

5245 LMIERFVSL a

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*32:01, HLA-B*08:01,
HLA-B*15:01, HLA-B*15:02, HLA-B*15:10, HLA-B*15:12, HLA-B*15:21,
HLA-B*15:25, HLA-B*15:32, HLA-B*35:02, HLA-B*37:01, HLA-B*38:02,
HLA-B*48:01, HLA-A*02:07, HLA-B*46:01

0.2427

5247 IERFVSLAI HLA-B*13:01, HLA-B*37:01, HLA-B*40:01, HLA-B*40:02, HLA-B*40:06,
HLA-B*41:01, HLA-B*44:03, HLA-B*52:01 0.0326

5250 FVSLAIDAY HLA-A*01:01, HLA-A*26:01, HLA-A*29:01, HLA-A*34:01, HLA-B*15:02,
HLA-B*15:21, HLA-B*35:01, HLA-B*35:05, HLA-B*35:30, HLA-B*46:01 0.1401

5273 HLYLQYIRK b HLA-A*03:01, HLA-A*11:01, HLA-A*11:04, HLA-A*74:01 0.0139

5614 FAIGLALYY a,c HLA-A*01:01, HLA-A*26:01, HLA-A*29:01, HLA-B*15:13, HLA-B*15:21,
HLA-B*35:01, HLA-B*35:05, HLA-B*35:30, HLA-B*58:01, HLA-B*46:01 0.0918

5678 YVFCTVNAL a

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*26:01, HLA-A*34:01,
HLA-B*07:02, HLA-B*07:05, HLA-B*15:02, HLA-B*15:10, HLA-B*15:21,
HLA-B*35:01, HLA-B*35:02, HLA-B*35:05, HLA-B*35:30, HLA-B*38:02,
HLA-B*48:01, HLA-B*56:01, HLA-B*56:02, HLA-A*02:07, HLA-B*46:01

0.0778
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6070 FKHLIPLMY HLA-A*29:01, HLA-B*18:02 0.0065

6108 VLWAHGFEL a HLA-A*02:01, HLA-A*02:06, HLA-A*02:07 0.3320

6506 FELWAKRNI HLA-B*40:01, HLA-B*40:02, HLA-B*40:06, HLA-B*41:01 0.0943

6585 FRNARNGVL HLA-B*15:10, HLA-B*27:06 0.1343

6700 HLLIGLAKR HLA-A*33:03, HLA-A*74:01 0.0599

6714 FELEDFIPM b
HLA-B*13:01, HLA-B*15:10, HLA-B*18:01, HLA-B*18:02, HLA-B*37:01,
HLA-B*38:02, HLA-B*40:01, HLA-B*40:02, HLA-B*40:06, HLA-B*41:01,
HLA-B*44:03, HLA-B*48:01

0.3348

6748 LLLDDFVEI a,b,c HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-B*52:01, HLA-A*02:07 0.2439

6848 CQYLNTLTL HLA-B*13:01, HLA-B*15:10, HLA-B*27:06, HLA-B*37:01, HLA-B*38:02,
HLA-B*48:01, HLA-B*52:01 0.0312

6850 YLNTLTLAV a,b HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*02:07 0.0762

6885 WLPTGTLLV HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*02:07 0.0892

6978 YKLMGHFAW HLA-B*18:01, HLA-B*18:02 0.0048

7019 YVMHANYIF a HLA-A*24:02, HLA-A*24:07, HLA-B*15:02, HLA-B*15:13, HLA-B*15:21,
HLA-B*35:01, HLA-B*35:05, HLA-B*35:30, HLA-B*56:02, HLA-B*46:01 0.0822

7026 IFWRNTNPI HLA-A*24:02, HLA-A*24:07, HLA-A*24:10 0.1423
a The peptide has been experimentally proven by T-cell assay and reported in IEDB; b The peptide has been experimentally proven by HLA
binding and reported in IEDB; c Peptide has some degree of homology with human self-peptide; d The peptide existed only in 9.61% of
delta variant isolates, whereas the rest had the mutant peptide 3137SWITIAYII3145.

Looking into detail about the immunogenicity score of the 65 peptides, the lowest score
was 0.0048 (6978YKLMGHFAW6986) and the highest was 0.3348 (6714FELEDFIPM6722). The
most immunogenic peptide was already reported in IEDB as binder for HLA-B*40:01. In our
prediction, 6714FELEDFIPM6722 binds to 13 HLA Class I alleles (HLA-B*13:01, HLA-B*15:10,
HLA-B*18:01, HLA-B*18:02, HLA-B*37:01, HLA-B*38:02, HLA-B*40:01, HLA-B*40:02, HLA-
B*40:06, HLA-B*41:01, HLA-B*44:03, and HLA-B*48:01). The number of HLA alleles that
bind to the peptides range from 2 (6978YKLMGHFAW6986 binds to HLA-B*18:01 and HLA-
B*18:02) to 24 (899WSMATYYLF907 binds to HLA-A*01:01, HLA-A*24:02, HLA-A*24:07,
HLA-A*24:10, HLA-A*29:01, HLA-A*32:01, HLA-B*13:01, HLA-B*15:02, HLA-B*15:12,
HLA-B*15:13, HLA-B*15:17, HLA-B*15:21, HLA-B*15:25, HLA-B*15:32, HLA-B*18:01, HLA-
B*18:02, HLA-B*35:01, HLA-B*35:05, HLA-B*35:30, HLA-B*52:01, HLA-B*56:07, HLA-
B*57:01, HLA-B*58:01, and HLA-B*46:01). 899WSMATYYLF907, the most promiscuous
peptide in our list, had also been reported in IEDB as an HLA binder, in particular to
HLA-A*24:02.

3.6. Prediction of HTL Epitopes and Evaluation of IFNγ Induction Capability

HTL epitopes from ORF1ab were predicted using netHLAIIpan 4.0 against a panel of
22 HLA Class II alleles as shown in Figure 3. As HLA Class II can accommodate longer
peptides, the prediction was made for 15-mer peptides. The server generated 792 15-mer
peptides as strong binders (≤1% percentile rank) for HLA Class II as shown in Figure 5.
HLA-DRB1*15:02 (allele frequency of 0.2410), binds to the highest number of peptides (129),
while HLA-DRB1*04:03 and DRB1*04:06 (allele frequency of 0.021 and 0.005, respectively)
bind the lowest number of peptides (52). The top three most predominant HLA Class II
alleles in the Indonesian population were HLA-DRB1*12:02 (allele frequency of 0.3680),
HLA-DRB1*15:02 (0.2410), and HLA-DRB1*07:01 (0.1370). HLA-DRB1*12:02 binds 88
peptides and DRB1*07:01 binds 101 peptides.
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Figure 5. The number of predicted HTL epitopes that are presented by the HLA-DRB1 allele. NetHLAIIpan4.0 predicted
792 peptides bind to at least 1 HLA Class II with a strong binding affinity (≤1% percentile rank).

Peptide promiscuity (bind to many HLA alleles) is an essential criterion to be fulfilled
for a successful vaccine design that can cover as large a population as possible. Out of
792 15-mer peptides, 102 of them bind to at least 5 alleles of HLA Class II and therefore were
selected for further evaluation. Production of IFNγ by HTL is important for generation
and differentiation of the CD8+ T-cell into a cell that has a full effector function, and for the
induction of T-cell memory. Out of 102 peptides that were analyzed by the IFNγ prediction
server, only 40 peptides have positive scores and are therefore short-listed for further
downstream analysis (Table 5).

Table 5. List of 15-mer peptides predicted as promiscuous HTL epitopes and their IFNγ score.

Start
Residue Epitope Sequence HLA DRB1 Alleles IFNγ Score

447 NDNLLEILQKEKVNI DRB1*12:02, DRB1*14:01, DRB1*14:04, DRB1*14:05, DRB1*14:54, 0.1311

448 DNLLEILQKEKVNIN DRB1*12:02, DRB1*14:01, DRB1*14:04, DRB1*14:05, DRB1*14:54, 0.0556

554 TAQNSVRVLQKAAIT DRB1*12:02, DRB1*14:01, DRB1*14:04, DRB1*14:05, DRB1*14:54, 0.0684

736 PKEIIFLEGETLPTE DRB1*01:01, DRB1*12:02, DRB1*15:01, DRB1*15:02, DRB1*16:02, 0.0771

1054 PTVVVNAANVYLKHG DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:54, DRB1*15:01,
DRB1*15:02, DRB1*16:02 0.0917

1187 VSSFLEMKSEKQVEQ DRB1*04:01, DRB1*04:03, DRB1*04:05, DRB1*04:06, DRB1*10:01, 0.0899

1211 VKPFITESKPSVEQR DRB1*08:03, DRB1*11:01, DRB1*13:02, DRB1*14:05, DRB1*14:07, 0.3157

1349 CKSAFYILPSIISNE DRB1*01:01, DRB1*04:01, DRB1*04:05, DRB1*08:03, DRB1*10:01,
DRB1*11:01, DRB1*15:02, DRB1*16:02, 0.2898

1350 KSAFYILPSIISNEK a
DRB1*01:01, DRB1*04:01, DRB1*04:03, DRB1*04:05, DRB1*04:06,
DRB1*08:03, DRB1*10:01, DRB1*11:01, DRB1*12:02, DRB1*15:02,
DRB1*16:02,

0.3378

1355 ILPSIISNEKQEILG DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:05, DRB1*14:07,
DRB1*14:54, 0.4244

1356 LPSIISNEKQEILGT DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:05, DRB1*14:07,
DRB1*14:54, 0.3025

1357 PSIISNEKQEILGTV DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:05, DRB1*14:54, 0.5074

2944 AYESLRPDTRYVLMD DRB1*03:01, DRB1*14:01, DRB1*14:04, DRB1*14:05, DRB1*14:54, 0.3078

2945 YESLRPDTRYVLMDG DRB1*03:01, DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:05,
DRB1*14:07, DRB1*14:54, 0.1649
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Start
Residue Epitope Sequence HLA DRB1 Alleles IFNγ Score

2958 DGSIIQFPNTYLEGS DRB1*04:02, DRB1*13:02, DRB1*15:01, DRB1*15:02, DRB1*16:02, 0.2103

3815 VSTQEFRYMNSQGLL DRB1*01:01, DRB1*07:01, DRB1*09:01, DRB1*15:02, DRB1*16:02, 0.0976

3944 IASEFSSLPSYAAFA DRB1*01:01, DRB1*04:01, DRB1*10:01, DRB1*15:02, DRB1*16:02, 0.0754

3945 ASEFSSLPSYAAFAT DRB1*01:01, DRB1*04:01, DRB1*10:01, DRB1*15:02, DRB1*16:02, 0.3973

3951 LPSYAAFATAQEAYE DRB1*04:01, DRB1*04:03, DRB1*04:05, DRB1*04:06, DRB1*08:03, 0.0518

4457 LIDSYFVVKRHTFSN DRB1*08:03, DRB1*11:01, DRB1*13:02, DRB1*14:01, DRB1*14:04,
DRB1*14:07, DRB1*14:54, 0.1304

4458 IDSYFVVKRHTFSNY DRB1*08:03, DRB1*11:01, DRB1*13:02, DRB1*14:01, DRB1*14:04,
DRB1*14:07, DRB1*14:54, 0.1870

4560 NPDILRVYANLGERV DRB1*04:02, DRB1*08:03, DRB1*12:02, DRB1*15:01, DRB1*15:02,
DRB1*16:02, 0.2299

4561 PDILRVYANLGERVR a DRB1*04:02, DRB1*08:03, DRB1*13:02, DRB1*15:01, DRB1*15:02,
DRB1*16:02, 0.2616

4761 KELLVYAADPAMHAA DRB1*04:01, DRB1*04:02, DRB1*15:01, DRB1*15:02, DRB1*16:02, 0.2258

4830 KHFFFAQDGNAAISD DRB1*01:01, DRB1*04:01, DRB1*10:01, DRB1*14:07, DRB1*16:02, 0.4401

4933 QMNLKYAISAKNRAR DRB1*08:03, DRB1*10:01, DRB1*11:01, DRB1*13:02, DRB1*14:05,
DRB1*14:07, 0.4044

4934 MNLKYAISAKNRART DRB1*08:03, DRB1*10:01, DRB1*11:01, DRB1*13:02, DRB1*14:05,
DRB1*14:07, 0.4019

4935 NLKYAISAKNRARTV DRB1*08:03, DRB1*11:01, DRB1*13:02, DRB1*14:05, DRB1*14:07, 0.5938

5019 PNMLRIMASLVLARK a DRB1*01:01, DRB1*12:02, DRB1*14:04, DRB1*15:01, DRB1*15:02,
DRB1*16:02, 0.3914

5717 AKHYVYIGDPAQLPA DRB1*04:01, DRB1*04:03, DRB1*04:05, DRB1*04:06, DRB1*08:03,
DRB1*10:01, DRB1*16:02, 0.1673

5775 TVSALVYDNKLKAHK DRB1*03:01, DRB1*11:01, DRB1*13:02, DRB1*14:01, DRB1*14:04,
DRB1*14:05, DRB1*14:07, DRB1*14:54, 0.3517

5776 VSALVYDNKLKAHKD a DRB1*03:01, DRB1*08:03, DRB1*11:01, DRB1*13:02, DRB1*14:01,
DRB1*14:04, DRB1*14:05, DRB1*14:07, DRB1*14:54, 0.2560

5777 SALVYDNKLKAHKDK DRB1*03:01, DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:05,
DRB1*14:07, DRB1*14:54, 0.4910

5834 VFISPYNSQNAVASK DRB1*01:01, DRB1*04:01, DRB1*04:02, DRB1*10:01, DRB1*15:01,
DRB1*15:02, 0.2236

6046 PTGYVDTPNNTDFSR DRB1*04:01, DRB1*04:03, DRB1*04:05, DRB1*04:06, DRB1*08:03, 0.0690

6454 LENVAFNVVNKGHFD DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:05, DRB1*14:07,
DRB1*14:54, 0.0787

6726 TVKNYFITDAQTGSS DRB1*01:01, DRB1*04:01, DRB1*07:01, DRB1*09:01, DRB1*10:01,
DRB1*16:02, 0.0871

7075 KGRLIIRENNRVVIS DRB1*04:02, DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:05,
DRB1*14:54, DRB1*15:01, DRB1*15:02 0.7895

7076 GRLIIRENNRVVISS DRB1*04:02, DRB1*13:02, DRB1*14:01, DRB1*14:04, DRB1*14:05,
DRB1*14:54, DRB1*15:01, DRB1*15:02 0.7985

7077 RLIIRENNRVVISSD DRB1*13:02, DRB1*14:01, DRB1*14:05, DRB1*14:07, DRB1*14:54, 0.8026
a The peptide has been experimentally proven by T-cell assay and reported in IEDB.
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3.7. Conservancy Analysis

Epitopes conservancy among SARS-CoV-2 variants was the next criteria applied to
the predicted 65 CTL and 40 HTL epitopes. The conservancy analysis was carried out
using the IEDB epitope conservancy analysis tool against ORF1ab sequences from SARS-
CoV-2 variants listed in Table 1. The duplicated sequences were removed before the
analysis to avoid bias. The goal of the conservancy analysis was to identify epitopes having
conservancy levels near to 100% across SARS-CoV-2 variants to be included in the VC.

IEDB T-cell epitope conservancy analysis revealed that the majority of the HTL and
CTL epitopes were conserved. Out of 40 HTL epitopes, 26 of them had at least 95%
conservancy within the variant and among different variants (Table S2). These 26 peptides
were short-listed for downstream analysis. CTL peptides were conserved within each
variant and across all variants, with the level of conservancy mostly above 97% (Table S1).

One of the exceptions is peptide 3137FWITIAYII3145 (binds to HLA-A*24:02, HLA-
A*24:07, and HLA-A*24:10), which had heterogeneity in its sequence due to mutation
F3137S. 3137FWITIAYII3145 was present only in 9.61% of the ORF1ab sequences of the delta
variant B.1.617.2, while the rest of the sequences were 3137SWITIAYII3145. The changes in
amino acid F3137S, however, did not result in the abrogation of the binding of the peptide
into HLA molecules; instead, our analysis showed that mutant peptide had a stronger
binding affinity (Table 6) toward HLA molecules. The peptide 3137FWITIAYII3145 is part
of the NSP4 (size 500 amino acids) protein of SARS-CoV-2, which is a membrane protein
that contains four transmembrane domains. The 375FWITIAYII383 peptide is located in
the fourth transmembrane region of NSP4 [59]. Together with NSP3 and NSP6, NSP4
forms double-membrane vesicles that are needed for viral replication and transcription
as well as for protecting the viral RNA from innate immune recognition [59–61]. NSP4
demonstrated high conservancy among the other coronaviruses, indicating its importance
for viral replication, and during the pandemic of 2020 only one mutation (M324) was
detected [16]. However, as the delta variant emerged and diverged into several clades,
more mutations in NSP4 were detected including the F375S mutation, which is specific for
clade E of the delta variant [62]. Comparing the binding affinity of the ancestral peptide
versus the mutant peptide, one might argue that this mutation might not be beneficial for
the virus as it can be easily recognized by T-cells. However, this would only happen if
the population had the correct HLA alleles. Thus, the F3137S mutation might benefit viral
replication, but since it occurred in clade E, it is assumed that the variant delta subclade E
occurred in populations lacking HLA-A*24:02, A*24:07, and A*24:10.

Table 6. Comparison of binding affinity between the ancestral (FWITIAYII) and mutant (SWITI-
AYII) peptide. The calculation was made using NetCTLpan 1.1., which also predicted the peptide
processing (proteasomal cleavage and TAP transport efficiency) inside the cell.

Peptide Allele HLA TAP Cle Comb Aff(nM) %Rank

FWITIAYII HLA-A*24:02 0.604 0.566 0.463 0.722 250.54 0.8
SWITIAYII HLA-A*24:02 0.65 0.884 0.617 0.811 35.49 0.3
FWITIAYII HLA-A*24:07 0.497 0.566 0.463 0.615 220.88 0.8
SWITIAYII HLA-A*24:07 0.591 0.884 0.617 0.752 40.82 0.15
FWITIAYII HLA-A*24:10 0.8 0.566 0.463 0.918 61.69 0.8
SWITIAYII HLA-A*24:10 0.848 0.884 0.617 1.009 14.15 0.4

3.8. Comparison of Predicted Epitopes and Experimentally Proven Epitopes from IEDB

As a means to partially validate the prediction, the in silico identified epitopes were
compared with the experimentally proven epitopes that are curated in IEDB. Out of
65 predicted CTL epitopes (9-mer), 26 matched with experimentally proven 9-mer epi-
topes by T-cell assay, 20 by HLA assay, and 10 by both T-cell and HLA assays (Table 4).
Many of the experimentally proven epitopes are presented by only one HLA allele, such
as HLA-A*02:01 or A*24:02. However, in our in-silico analysis, the peptides were pre-
dicted to bind to many other HLA alleles with strong binding affinity. Out of 40 predicted
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15-mer HTL epitopes, 4 (5776VSALVYDNKLKAHKD5790, 5019PNMLRIMASLVLARK5033,
4561PDILRVYANLGERVR4575, and 1350KSAFYILPSIISNEK1364) matched with experimen-
tally proven 15-mer epitopes by T-cell assay. All four HTL epitopes were reported in
IEDB as positive for IFNγ ELISPOT assay, which confirmed the IFNγ prediction that was
conducted in our in silico study.

3.9. Homology with Human Peptides

Homology of 40 HTL epitopes (15-mer peptides) with human peptides was conducted
by analyzing the 9-mer peptide core component. That is because 9-mer (residue 4–12 of
the 15-mer) is the core component of the peptide whose side chains interact with the HLA
molecule and interact with the T-cell receptor. BlastP analysis showed that none of the HTL
9-mers were homologous with the 9-mer from the human protein. Therefore, we did not
analyze the HTL 9-mers further but focused on the CTL 9-mer peptides, only.

Homology analysis of the 65 CTL epitopes revealed that none have 100% homologies
(9/9) with human peptides. However, one epitope has eight contiguous amino acids that
matched 100% with the human peptides and six epitopes have seven contiguous amino
acids that matched with the human peptides as shown in Table 7. NetCTLpan analysis of
these human peptides showed that these self-peptides were predicted as T-cell epitopes
with similar binding affinity to the HLA molecules that present the corresponding SARS-
CoV-2 peptide (Table 7 compare with Table 4). SARS-CoV-2 peptides having high similarity
to several human proteins have also been reported by other [63].

Table 7. SARS-CoV-2 peptides with sequence homologous with human peptides (underlined). The HLA alleles presenting
the human peptides as revealed by NetCTLpan analysis are indicated. Some of these peptides were curated in IEDB and
had been confirmed by T-cell assay, HLA assay, or both.

Start SARS-CoV-2
Peptide Human Peptides Human Proteins HLA Allele Presenting the

Human Peptide

IEDB
Confirmation

Assay

1140 HEVLLAPLL AEVLLAPLL HSVI binding protein
(AAF76892.1)

HLA-B*37:01, HLA-B*38:02,
HLA-B*40:01, HLA-B*40:02,
HLA-B*40:06, HLA-B*41:01,
HLA-B*44:03, HLA-B*13:01

n.a.

2784 AIFYLITPV AIFYLITLV

olfactory receptor,
family 2, subfamily W,
member 1, isoform
CRA_b (EAX03180.1)

HLA-A*02:01, HLA-A*02:03,
HLA-A*02:06

T-cell assay and
HLA assay

3582 LLLTILTSL LLLTILTRP hCG2023968
(EAW49626.1) non binder HLA assay

3684 YASAVVLLI VASAVVLLG

molybdenum cofactor
biosynthesis protein 1
isoform 7
(NP_001345459.1)

non-binder T-cell assay

3752 FLARGIVFM XCARGIVFM
immunoglobulin heavy
chain junction region
(MOL38621.1)

cannot generate a similar
peptide, since the sequence
is at the N-terminal end of
the protein.

T-cell assay and
HLA assay

5614 FAIGLALYY SYIGLALYY
immunoglobulin heavy
chain junction region
(MOJ91547.1)

HLA-A*29:01 T cell assay

6748 LLLDDFVEI IALDDFVEI
Wolfram syndrome 1
(wolframin), isoform
CRA_a (EAW82396.1)

HLA-A*02:06, HLA-B*52:01 T-cell assay and
HLA assay
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Interesting to note is the ORF1ab peptide 2784AIFYLITPV2792 matched with human
peptide AIFYLITLV, which is derived from the olfactory receptor (EAX03180.1). Human
peptide AIFYLITLV was predicted to be presented by HLA-A*02:01, HLA-A*02:03, HLA-
A*02:06, similarly to the SARS-CoV-2 peptide counterpart. It is possible that high homology
will result in the activation of cross-reactive T-cells recognizing SARS-CoV-2 peptides
to attack olfactory cells and cause of anosmia in some COVID-19 patients. The recent
publication confirmed experimentally that epitope 2784AIFYLITPV2792 was recognized by
T-cells from SARS-CoV-2 convalescent individuals having HLA-A*02:01 allotype [64]. It
would be interesting to check the patient’s history of anosmia symptoms and whether the
symptoms disappeared or persisted, due to the activation of self-reactive T-cells.

3.10. Epitope Cross-Reactivity with Human Peptides, Human Common Cold Coronaviruses
(HCCs), or Other Ubiquitous Antigens

As shown in Table 7, seven SARS-CoV-2 ORF1ab peptides shared sequence similarities
with human peptides. Cross-checking with the IEDB data, it was revealed that six out of
seven SARS-CoV-2 ORF1ab peptides that were similar to human peptides were already
experimentally confirmed and reported in IEDB (Table 7). One peptide was experimentally
confirmed by HLA binding assay, two peptides were confirmed by T-cell assay, and three
were confirmed by both T-cell and HLA binding assay. Here, we focused our analysis
on the epitopes that had been confirmed by T-cell assay and checked whether or not the
epitopes were recognized by SARS-CoV-2 convalescent individuals or healthy subjects
who never experienced SARS-CoV-2 infection. Four ORF1ab peptides (5614FAIGLALYY5622,
3684YASAVVLLI3692, 6748LLLDDFVEI6756, and 3752FLARGIVFM3760) that matched with
human peptides were recognized by T-cell from healthy individuals who have not been
infected by SARS-CoV-2 (Table S3). As a comparison (Table S4), from 23 IEDB ORF1ab
peptides that did not match with human peptides, only 7 were confirmed by T-cell assay
using samples from healthy individuals who never experienced SARS-CoV-2 infection
while the rest were detected in individuals previously infected by SARS-CoV-2. Several
studies reported the presence of cross-reactive T-cells recognizing epitopes from SARS-
CoV-2 in individuals that were never exposed to SARS-CoV-2 [25,65–69]. We then checked
for the degree of homology between SARS-CoV-2 peptides versus human peptides and
HCCs. In some instances, SARS-CoV-2 peptides shared greater homology with human
peptides rather than with HCC peptides (Table S3).

The fact that the epitopes are similar to human self-peptides and the T-cells recognizing
these peptides were mostly found in the healthy individuals without prior exposure to
SARS-CoV-2, raises three possibilities. The first possibility is that T-cells responding to
these peptides were primed by exposure to HCCs. The second possibility is that the assay
picked up the signal and detected the presence of self-reactive T-cells in the circulation.
Although the presence of highly self-reactive T-cells in the circulation is highly unlikely
due to negative selection in the thymus, positive selection will permit T-cells to be slightly
reactive toward self-antigens. One study reported that SARS-CoV-2 proteomes contain
peptides similar to human proteomes and might able to trigger autoimmunity [70].

Table S4 shows SARS-CoV-2 peptides that did not have homology with human pep-
tides. Some of these SARS-CoV-2 peptides (i.e., 1674YLATALLTL1682, 2787YLITPVHVM2795,
2786FYLITPVHV2794, and 3121FLAHIQWMV3129,) also did not have homology with HCC.
Interestingly, these peptides were recognized by healthy individuals. These data suggest
the third possibility by which the T-cells, recognizing the epitopes, are primed by the expo-
sure to other ubiquitous antigens. A recent report suggested that such sequence homology
exists between SARS-CoV-2 peptides and peptides from allergen proteins [71], malaria
proteins [72], and antigenic proteins in BCG, OPV, MMR, and some other vaccines [73].
Perhaps sequence homology, in the context of 9-mer T-cell epitopes, between pathogens is
more common than what was originally thought.

Sequence homology between SARS-CoV-2 peptides and HCC peptides (Tables S3 and S4)
strongly supports the hypothesis that T-cells primed by previous HCC infection can recog-
nize SARS-CoV-2. Whether having such cross-reactive T-cells in the circulation is beneficial
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and leads to better disease outcomes, or detrimental and leads to severe disease, is yet
to be determined. In some individuals, the previous infection with HCC might protect
them from severe disease, or even lead to asymptomatic infection. Our sequence analysis
and cross-checking with IEDB data showed that peptide 2883FLPRVFSAV2891, which shares
homology with OC43 FLRVVFSQV, was recognized by an individual with documented
exposure to SARS-CoV2 but without evidence for disease (Table S4) [74]. Although the evi-
dence that the individual had prior OC43 infection remains to be established, it suggested
the potential protection from pre-existing T-cells primed by HCC infection.

3.11. Epitope Selection

Based on the criteria, such as highest percentile rank (<1%) in the prediction, epitopes
promiscuity, immunogenicity, IFNγ induction ability, high conservancy across all variants,
low entropy value, and the absence of homology with human peptides, seven CTL and
five HTL epitopes were chosen to be included in the VC (Table 8). The epitopes were
chosen so that a minimum number of epitopes could cover the largest population possible
(accommodate all HLA alleles in the population).

Table 8. Seven CTL and five HTL epitopes chosen for the VC and the population coverage. Epitopes fulfilled the criteria
such as highest percentile rank, high promiscuity, high immunogenicity, high IFNγ induction ability, conservancy across all
variants, low entropy value, and the absence of homology with human peptides.

Start
Residue

Peptide and
Entropy * HLA Alleles Bind to the Peptides

Population Coverage

Indonesia Thailand Germany World

899 WSMATYYLF
(0.083)

HLA-A*01:01, HLA-A*24:02, HLA-A*24:07,
HLA-A*24:10, HLA-A*29:01, HLA-A*32:01,
HLA-B*13:02, HLA-B*15:02, HLA-B*15:12,
HLA-B*15:13, HLA-B*15:17, HLA-B*15:21,
HLA-B*15:25, HLA-B*15:32, HLA-B*18:01,
HLA-B*18:02, HLA-B*35:01, HLA-B*35:05,
HLA-B*35:30, HLA-B*52:01, HLA-B*56:07,
HLA-B*57:01, HLA-B*58:01, HLA-B*46:01

94.80 77.44; 66.25; 64.13

5678 YVFCTVNAL
(0.026)

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*26:01, HLA-A*34:01, HLA-B*07:02,
HLA-B*07:05, HLA-B*15:02, HLA-B*15:10,
HLA-B*15:21, HLA-B*35:01, HLA-B*35:02,
HLA-B*35:05, HLA-B*35:30, HLA-B*38:02,
HLA-B*48:01, HLA-B*56:01, HLA-B*56:02,
HLA-A*02:07, HLA-B*46:01

77.39 75.05 72.07 65.66

5245 LMIERFVSL
(0.000)

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*32:01, HLA-B*08:01, HLA-B*15:01,
HLA-B*15:02, HLA-B*15:10, HLA-B*15:12,
HLA-B*15:21, HLA-B*15:25, HLA-B*15:32,
HLA-B*35:02, HLA-B*37:01, HLA-B*38:02,
HLA-B*48:01, HLA-A*02:07, HLA-B*46:01

63.65 74.26 71.42 63.19

6714 FELEDFIPM
(0.037)

HLA-B*13:01, HLA-B*13:02, HLA-B*15:10,
HLA-B*18:01, HLA-B*18:02, HLA-B*37:01,
HLA-B*38:02, HLA-B*40:01, HLA-B*40:02,
HLA-B*40:06, HLA-B*41:01, HLA-B*44:03,
HLA-B*48:01

51.64 46.46 35.87 35.59

5024 MASLVLARK
(0.000)

HLA-A*03:01, HLA-A*11:01, HLA-A*11:04,
HLA-A*30:01, HLA-A*33:03, HLA-A*34:01,
HLA-A*74:01

67.42 55.82 40.12 40.42

6848 CQYLNTLTL
(0.000)

HLA-B*13:02, HLA-B*15:10, HLA-B*27:06,
HLA-B*37:01, HLA-B*38:02, HLA-B*48:01,
HLA-B*52:01

21.20 20.90 10.15 13.16
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Table 8. Cont.

Start
Residue

Peptide and
Entropy * HLA Alleles Bind to the Peptides

Population Coverage

Indonesia Thailand Germany World

2350 FSYFAVHFI
(0.027) HLA-B*51:01, HLA-B*52:01 8.29 13.51 12.13 10.26

1350
KSAFYILPSIISNEK

(0.0283; 0.027; 0.023; 0.015;
0.015; 0.013; 0.013)

DRB1*01:01, DRB1*04:01, DRB1*04:03,
DRB1*04:05, DRB1*04:06, DRB1*08:03,
DRB1*10:01, DRB1*11:01, DRB1*12:02,
DRB1*15:02, DRB1*16:02

91.13 74.99 47.87 47.60

7076
GRLIIRENNRVVISS

(0.000; 0.000; 0.000; 0.000;
0.000; 0.000; 0.000)

DRB1*04:02, DRB1*13:02, DRB1*14:01,
DRB1*14:04, DRB1*14:05, DRB1*14:54,
DRB1*15:01, DRB1*15:02

53.28 50.97 40.57 37.72

7077
RLIIRENNRVVISSD

(0.000; 0.000; 0.000; 0.000;
0.000; 0.000; 0.000)

DRB1*13:02, DRB1*14:01, DRB1*14:05,
DRB1*14:07, DRB1*14:54 4.18 11.27 13.43 16.78

2944
AYESLRPDTRYVLMD

(0.068; 0.045; 0.039; 0.0505;
0.027; 0.028; 0.026)

DRB1*03:01, DRB1*14:01, DRB1*14:04,
DRB1*14:05, DRB1*14:54 10.59 23.69 25.46 27.58

3815
VSTQEFRYMNSQGLL

(0.000; 0.000; 0.000; 0.000;
0.000; 0.000; 0.129)

DRB1*01:01, DRB1*07:01, DRB1*09:01,
DRB1*15:02, DRB1*16:02 63.57 63.45 41.63 38.08

Epitope set 100.00 100.00 99.98 99.88

* The entropy value in the bracket. For HTL epitopes the entropy values are for seven possible 9-mer core-peptides.

3.12. Population Coverage

Multi-epitope peptide-based vaccines that induce cell-mediated immunity need to be
constructed from promiscuous epitopes to cover a large population since T-cells recognize
antigen in the form of peptide complex with HLA molecules, and HLA is the most poly-
morphic genes in humans with allele frequency varying by ethnic groups. We used the
IEDB population coverage analysis tool to calculate the coverage of each chosen epitope
and the epitope set for Indonesia, Thailand, Germany, and the world population as shown
in Table 8. Table 9 shows the population coverage for 12 chosen T-cell epitopes presented by
HLA class I, class II, and class combined. The majority of the epitopes would be responded
by the Indonesian people, which would recognize 8–9 epitopes hits/HLA combinations
and 90% of the population would recognize a minimum of 6 epitopes/HLA combinations.
A combination of these 12 chosen epitopes was shown to have good coverage not only for
Indonesia (100%) but also for Thailand (100%), Germany (99.98%), and the world (99.88%).
Hence these 12 epitopes were chosen as candidates for vaccine design.

Table 9. Population coverage of the 12 chosen epitopes. A projected population coverage, average number of epitope
hits/HLA combinations recognized by the population, and minimum number of epitope hits/HLA combinations recognized
by 90% of the population.

Population
/Area

Class I Class II Class Combined

Coverage a Average
_Hit b pc90 c Coverage a Average

_Hit b pc90 c Coverage a Average
_Hit b pc90 c

Germany 99.75% 3.89 2.54 93.25% 1.81 1.09 99.98% 5.7 4.03

Indonesia 100.0% 5.66 4.1 99.68% 2.68 1.46 100.0% 8.35 6.19

Thailand 99.76% 4.82 2.9 98.69% 2.63 1.48 100.0% 7.45 5.08

World 98.77% 3.65 2.08 90.66% 1.82 1.02 99.88% 5.47 3.38

Average 99.57 4.5 2.9 95.57 2.23 1.26 99.97 6.74 4.67
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Table 9. Cont.

Population
/Area

Class I Class II Class Combined

Coverage a Average
_Hit b pc90 c Coverage a Average

_Hit b pc90 c Coverage a Average
_Hit b pc90 c

Standard
deviation 0.47 0.8 0.75 3.75 0.42 0.21 0.05 1.2 1.07

a Projected population coverage; b average number of epitope hits/HLA combinations recognized by the population; c minimum number
of epitope hits/HLA combinations recognized by 90% of the population.

3.13. Vaccine Design

The vaccine (Figure 6) was constructed by combining five HTL and seven CTL epitopes
using linkers such as GPGPG and AAG, respectively [36]. Linkers were used to facilitate the
antigen processing inside the cells and to ensure that individual epitopes will be generated
by the cell. β-defensin was incorporated using EAAAK linker at the N-terminal to increase
the antigenicity and immunogenicity of the peptide-based vaccine. β-defensin will also
act as a TLR4 ligand that will induce the maturation of antigen-presenting cells and the
successful activation of T-cells in the lymph nodes.
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3.14. Vaccine Antigenicity, Allergenicity, Toxicity, and Physicochemical Characteristics

The VC was predicted to be a probable antigen as the antigenicity score was calculated
to be 0.4369 by VaxiJen 2.0 and non-allergenic as predicted by AllergenFP v.1.0. Expasy Prot-
Param tool calculated the physicochemical properties of the VC, composing of 212 amino
acids and a molecular weight of 22.993 kDa. The theoretical pI was 9.39, which indicated
that the VC is slightly basic. The estimated half-life of the VC in Escherichia coli in vivo,
yeast in vivo, and mammalian red blood cells in vitro, is 10, 20, and 30 h, respectively.
This indicated that the VC could be synthesized using these cell systems. The VC was
predicted to be stable as the instability index was computed to be 32.23, thermostable as
indicated by the aliphatic index of 84.34, and slightly hydrophobic as the GRAVY score was
computed to be 0.065. The VC was evaluated for toxicity using Toxinpred that generated
fragments of 10 amino acid lengths and predicted their toxicity (Table S5). All CTL and
HTL epitopes components of the vaccine were non-toxic. Toxic peptides were predicted
from the β-defensin part (residue 29–48), which is expected given the fact that β-defensin
acts as an adjuvant.

3.15. Re-Analyze the VC for Epitopes Generation and Homology with Human Proteins
and Microbiomes

The VC was re-analyzed using NetCTLpan1.1 and NetMHCIIpan4.0 to check that
the CTL and HTL epitopes used to design the vaccine will be processed and generated by
the antigen-presenting cells. Further analysis was conducted to check that the new CTL
and HTL epitopes that were generated did not have similarities with the human peptides
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and peptides from human microbiomes, which will induce autoimmunity, reduce vaccine
immunogenicity, and disrupt immune homeostasis.

NetCTLpan1.1. analysis of the VC against 56 HLA Class I alleles revealed that 43 of
9-mer CTL epitopes can be generated from the vaccine (Table S6). All seven CTL epitopes
that were used to construct the vaccine were generated, albeit not all of them were presented
by the HLA alleles that were initially predicted to bind. However, this is mainly due to
the protein size rather than the changes in binding affinity. The smaller the protein size,
the lower the possibility that the epitopes will have a score <1% percentile rank. BlastP
analysis against the human proteome showed some of the new epitopes are homologous
(100% match) to human self-peptides; in particular, the epitopes from the β-defensin region.
The other epitopes are only partially homologous (7/7 amino acid).

NetMHCIIpan4.0 analysis of the VC (Table S7) showed that all five HTL epitopes were
generated (marked with *) along with extra new epitopes. The 9-mer peptide-binding core
of all HTL epitopes was evaluated for sequence similarity with the human peptides. None
of the HTL 9-mer peptides were homologous (100% match) with human peptides, and
only two 9-mer peptides were partially homologous (7/7 amino acid) (marked with ** in
Table S7). Peptide FVSLAAGFE contains residue that matches with heptamer VSLAAGF
from human protein hCG2019424 (sequence ID EAX10398.1). Peptide VVISSDGPG contains
residues that match with heptamer VVISSDG from guanine nucleotide-binding protein
(G protein) (sequence ID EAW53700.1).

None of the CTL and HTL 9-mers have sequence similarities with the peptides from
human microbiomes as revealed by the analysis using PBIT (Table S8). It means that the
vaccine construct should not disrupt host immune homeostasis.

3.16. In Silico Immune Simulation of the VC

The VC was analyzed using CimmSim for the ability to generate cell-mediated immu-
nity CD8+ CTL and CD4+ HTL. As shown in Figure 7A, the level of the HTL population
increased to around 4000 (cells/mm3) after the first dose of vaccine was administered. The
number of HTL increased to 10,200 after the second dose of vaccine was given, and 9800
after the third dose. The increase in the number of HTL was accompanied by an increase
in the level of HTL memory cells, where the level remains high at 600 after 300 days. The
HTLs induced by the vaccine are all in the active, duplicating, and resting state, with no
formation of an anergic state (Figure 7B). The absence of anergic T-cells is a good sign
that the VC provides enough signal for the TLR and other PRR to sufficiently activate and
induce the maturation of dendritic cells.

The level of CTL increased up to 1150 cells/mm3 upon administration of vaccine’s
first dose (Figure 7C) and then fluctuated between 1055 cells/mm3 at the lowest and
1130 cells/mm3 at the highest. Administration of the first dose of vaccine increased the
level of active state CTL to 1050 cells/mm3, which plateaued for 100 days before eventually
declining and shifting into the resting state (Figure 7D). The fact that all CTL were found as
active, duplicating, and resting-state cells, with no detectable level of anergic cells, indicated
that the vaccine can induce dendritic cells maturation and expression of costimulatory
molecules, which are needed for successful T-cell activation.

The vaccine did not induce any changes in the number of NK cells population as shown
in Figure 7E where the number of NK cells fluctuated between 310 and 380 cells/mm3.
Each vaccine dose administration induced an increase in the number of dendritic cells that
internalize and present the antigen on both HLA Class I and II (Figure 7F). However, the
vaccine did not increase the number of active dendritic cells as the population remains
constant at 25 cells/mm3 throughout the simulated period (350 days). Aside from dendritic
cells, the number of macrophages that internalized and presented the antigen on HLA
Class II also increased at each dose of vaccine administration (Figure 7G). The number of
active and resting macrophages increased concomitantly until the antigens are no longer
be detected; at which time, the number of active macrophages declined, and resting
macrophages increased.
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At each vaccine dose administration, the level of cytokines, notably IFNγ, is significant
(410,000 ng/mL, 400,000 ng/mL, and 375,000 ng/mL at the first, second, and third dose,
respectively) (Figure 7H). The production of IFNγ confirmed that the selected epitopes in
the VC were able to induce Th1 cells, which are needed for the immune responses against
viral infection. IL-2 was also produced as a response to the vaccine dose administration.
IL-2 is an autocrine signaling protein produced by activated T-cell and acts as a T-cell
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growth factor. The presence of IL-2 is a good indication that the vaccine will induce T-cell
clonal expansion.

3.17. Secondary Structure and Tertiary Structure of Vaccine Construct

The secondary structure of the VC was predicted based on its amino acid sequences
(Figure 8A) by SOPMA and the tertiary structure was predicted by RAPTOR X. SOPMA
server predicts the secondary structure based on the multiple alignments of protein se-
quences of known structures. The VC had 212 residues of which mainly 95 residues were
predicted to adopt the α-helix (44.81%), followed by 59 residues as a random coil (27.83%),
47 residues as an extended strand (22.17%), and only 11 residues were observed in β-turn
(5.19%) (Figure 8B). The location and propensity of the secondary structure are shown
in Figure 8C,D. A different method was employed to predict the tertiary structure of
the VC (Figure 8E). RAPTOR X employed a deep learning method to predict the tertiary
structure based on the inter-residue distance distribution of a protein, which worked best
for predicting a protein structure that does not have many sequences homology. Overall
model quality, indicated by z-score, was generated by ProSA-web, which is a web-based
protein structure analysis. Since the size of the VC is 212 amino acids, the z-score should
fall between −1 and −10, according to the plot. The z-score of the VC is −7.25, which fell
within the range of conformational parameters of native proteins.

3.18. Molecular Docking of the VC with TLR4

The association of the antigen molecule with the immune receptor is an essential
step for the appropriate activation of the immune responses. Toll-like receptor (TLR) is a
pathogen recognition receptor on the surface of the immune cells such as dendritic cells
that are important for their respective maturation process. Upon maturation, dendritic cells
will be able to migrate from the tissue to the lymph nodes and present the peptide-HLA
complex along with costimulatory molecules to activate naïve T-cells. Therefore, molecular
docking analysis was performed to analyze the interaction between TLR4 and the VC.
HDOCK was employed to generate information about the interacting residues on TLR4
and the VC. The PDB files of TLR4 (3FXI) and the VC generated by RAPTOR X was used
as input files for prediction. HDOCK docking simulation generated several models with
the top 10 models are listed in Table S9. The best model was model 1 with a docking score
of −283.87, which reflected good interactions between the VCs and TLR4 (Table S10).

The interaction between the VC and TLR4 was also simulated using ClusPRO by
generating a PDB file of the complex for both the TLR (receptor) and the vaccine (ligand).
The input files for ClusPRO were the PDB ID of the TLR4 (3FXI) and the PDB file of the VC,
which was generated previously by RAPTOR X. The PDB model of the complex between
TLR4 and the VC generated from ClusPRO was then used as input for the PDBsum to
generate the model and calculate the protein–protein interaction parameters. The model of
the complex between TLR4 and the VC is shown in Figure 9. TLR4 is shown in the purple
color, while the VC is shown in the red color, as shown in Figure 9A. The complex was
formed via the interaction of 27 residues of TLR4 and 24 residues of the VC (Figure 9B).
As expected, 16 out of 24 residues in the VC were from the β-defensin, as TLR4 ligand
(Figure 9C). The interface area was 1192 Å2 and 1233 Å2 for TLR4 and the VC, respectively.
It was observed that the interaction between residues was composed of 12 hydrogen bonds
and 8 salt bridges, indicating good docking interaction, which corroborated the docking
score generated previously by HDOCK (Table S9). Ramachandran plot and Procheck
results for the complex between TLR4 and the VC showed 70.9% amino acids were in the
most favored region and 26.7% in the additional allowed region, 0.5% in the generously
allowed region, and only 1.8% in a disallowed region (Figure 9D). Even though less than
90% amino acids were in the most favored region, it is predicted that the complex between
the VC and TLR4 would still be generated and that immune responses to the VC will still
be induced, as shown by the CimmSim analysis results.



Vaccines 2021, 9, 1459 28 of 39Vaccines 2021, 9, x FOR PEER REVIEW 29 of 41 
 

 

 
Figure 8. The secondary and tertiary structure of the VC: (A) Amino acid sequence and position of 
the secondary structure. (B) The global composition of the secondary structure of the VC. (C) 
Position of secondary structure within the protein sequence. The secondary structure is color-coded 
with blue—α-helix, red—extended strand, green—β-turn, and purple—random coil. (D) The 
propensity of each residue in adopting the secondary structure. (E) Tertiary structure as predicted 
by RAPTOR X (3D model) of the VC. (F) z-score value of the 3D model of the VC as calculated by 
ProSAweb is −7.25 (indicated by a black dot), which falls within the range of the z-score for the 
native proteins of similar size (212 aa). 

3.18. Molecular Docking of the VC with TLR4 
The association of the antigen molecule with the immune receptor is an essential step 

for the appropriate activation of the immune responses. Toll-like receptor (TLR) is a 
pathogen recognition receptor on the surface of the immune cells such as dendritic cells 
that are important for their respective maturation process. Upon maturation, dendritic 
cells will be able to migrate from the tissue to the lymph nodes and present the peptide-

Figure 8. The secondary and tertiary structure of the VC: (A) Amino acid sequence and position of
the secondary structure. (B) The global composition of the secondary structure of the VC. (C) Position
of secondary structure within the protein sequence. The secondary structure is color-coded with
blue—α-helix, red—extended strand, green—β-turn, and purple—random coil. (D) The propensity
of each residue in adopting the secondary structure. (E) Tertiary structure as predicted by RAPTOR
X (3D model) of the VC. (F) z-score value of the 3D model of the VC as calculated by ProSAweb is
−7.25 (indicated by a black dot), which falls within the range of the z-score for the native proteins of
similar size (212 aa).

3.19. Molecular Docking Simulation of Peptide Binding to HLA-A*24:02 and HLA-A*24:07

WSMATYYLF has been reported in IEDB [24] and experimentally proven as an HLA-
A*24:02 binder [75], and immunogenic, in the T-cell assay [64]. However, in this study,
we predicted that WSMATYYLF is highly promiscuous and has high population cover-
age as shown in Table 8. WSMATYYLF binds to 23 other HLA Class I alleles including
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HLA-A*24:07. Since HLA-A*24:07 is very important for Indonesian and other Southeast
Asia populations, we conducted a molecular docking analysis to confirm that peptide
WSMATYYLF will bind to HLA-A*24:07. The results show that in principle, WSMATYYLF
binds equally well to both HLA-A*24:02 and HLA-A*24:07 (Figure 10A,B), albeit with a
slightly different binding mode as reflected in the amino acid residues involved in the
binding (Figure 10C,D).
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Figure 9. Interaction analysis of the VC and TLR4. (A) The tertiary structure model of the complex between TLR4 (purple)
and the VC (red). (B) Diagram of interaction between the VC and TLR4 (red = salt bridges, blue = H-bonds, striped
line = non-bonded contacts). (C) Residues involved in forming the complex. (D) Ramachandran plot of the interaction
model showing the number of residues in the most favored region and less favored region.
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Figure 10. The best CABS-dock Modeling with default settings for peptide WSMATYYLF (stick structure in red color) with
HLA-A*24:07 (A) and HLA-A*24:02 (B). The contact map between peptide and receptor for HLA-A*24:02 (C) and HLA-
A*24:07 (D). CABS-dock server returns 10 top scored models of the protein-peptide complex. The best model prediction had
high accuracy with average RMSD of 0.94 Å and 1.64 Å for HLA-A*24:07 and HLA-A*24:02, respectively. Moreover, the best
model also had the highest cluster density score. HLA-A*24:07–WSMATYYLF complex had a higher accuracy compare to
the HLA-A*24:02–WSMATYYLF complex.

4. Discussion

Adaptive immune responses, both humoral and cellular are important to combat viral
infection. Humoral immunity, mediated by antibodies produced by B-cells will bind to the
virus and hence prevent virus entry into the cells. Cellular immunity mediated by T-cells
will kill the infected cells, and hence remove the viral reservoir so that the infection to other
cells will be prevented.

In SARS-CoV-2 infection, however, available reports generally suggest a rapid decrease
in the SARS-CoV-2-specific antibodies [76–79]. Confirmed by a longitudinal study showing
the level of neutralizing antibodies declines over time after infection [80]. Moreover, a
high virus mutation rate resulting in the emergence of SARS-CoV-2 variants, which have
different antigenic profiles compared to the ancestral virus, could lead to viral escape from
neutralizing antibodies elicited previously by vaccination (vaccine breakthrough) or natural
infection (re-infection) [81]. On the other hand, T-cell responses could last up to 10 months
after infection [82]. On top of that, intriguing data shows that host protection against
COVID-19 could be mediated solely by T-cells. This is evident in some COVID-19 patients
who have hematological malignancy comorbidity and therefore need to receive anti-CD20
therapy. Anti-CD20 therapy is part of the treatment for hematological malignancy [83] and
autoimmune disorders like multiple sclerosis [84], which results in the depletion of B-cells,
and hence these patients can not mount an antibody response. However, despite the lower
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level of IgG in these patients, SARS-CoV-2 specific T-cell responses were detected, and the
level was associated with good clinical outcomes [85]. The data suggests that T-cells play a
significant role in protection in the situation where the neutralizing antibody is not present.

Preexisting T-cell immunity could ameliorate progression to severe COVID-19 as the
early and robust T-cell responses to SARS-CoV-2 have been associated with less severe
diseases [86]. In addition, patients with mild COVID-19 have been shown to have enriched
CD8+ T cells specific for conserved epitopes across HCCs [87]. Altogether, these advocate
for a T-cell oriented strategy for COVID-19 vaccines [88]. Knowledge and experiences
from the other two zoonotic coronaviruses (CoV)-SARS-CoV-1 and MERS-CoV have con-
firmed the importance of T-cell immunity in the recovery and long-term protection from
coronavirus infections [89–91]. Moreover, data from studies on humoral immunity to SARS-
CoV-1 demonstrated that antibody responses were short-lived, whereas memory T-cell
responses were long-lasting that could be detected at least 17 years after infection [68].

T-cells recognize peptides, derived from the pathogen, which are presented as a
complex with the HLA molecule. The peptide, termed epitope, is usually 8–10 amino
acids long for presentation by HLA Class I, and 15–20 amino acid long for HLA Class II.
Each of the peptide–HLA Class I and –Class II complex is recognized by CD8+ and CD4+

T-cells, respectively. The HLA molecule, also known as HLA (human leukocyte antigen)
in humans, is polymorphic. This polymorphism resulted in many different HLA alleles
existing within the human population [92] and each population can be characterized by the
different frequencies in the HLA allotypes. As an example, HLA-A*02:01 is predominant
in the Caucasian population with allele frequency up to 40%, but only around 6% in the
Indonesian population. On the other hand, HLA-A*24:07 is very common in the Indonesian
population with an allele frequency of around 26%, but less than 1% in the Caucasian
population. As the HLA molecule presents peptide antigen to T-cells, the type of peptide
and strength of peptide–HLA association differs among distinct populations, as well as
among racial and/or ethnic groups. Thus, each population might have preferences toward
specific peptide epitopes to invoke T-cell mediated immunity.

Several CD4+ and CD8+ T-cell epitopes have been identified for SARS-CoV-2 and the
data are curated in IEDB. Most of the identified T-cell epitopes were limited to several HLA
allotypes that are predominant in the Caucasian population, such as HLA-A*02:01, whereas
there were no data about peptides that were presented by HLA-A*24:07. Therefore, in this
study, we aimed to identify the most promiscuous T-cell epitopes from SARS-CoV-2 to
be used in the vaccine formulation for the world population while still considering the
HLA alleles predominant in Indonesia that are not yet well studied. An in silico study
identifying T-cell epitopes presented in the South American population has also been
conducted by reviewing the HLA alleles frequencies in those countries [93].

There have been several reports employing immunoinformatics to identify T-cell
epitopes and formulate a vaccine for SARS-CoV-2 infection. PubMed search using key-
words ‘peptide-based vaccine’, ‘SARS-CoV-2’, and ‘immunoinformatics’ conducted on
14 October 2021 resulted in 15 research articles [94–108]. In this study, we made a predic-
tion based on the HLA alleles that are present with at least 5% frequency in the Indonesian
population. The majority of these HLA alleles have not been well studied, not only for the
SARS-CoV-2 T-cell epitopes but also for other infectious agents, and hence no experimental
data were available. In this analysis, we included some HLA alleles of the Thai population
as well as HLA alleles included in the study of SARS-CoV-2 T-cell epitopes conducted in
Germany [25]. In total, 56 HLA Class I and 22 HLA Class II alleles were covered in this
study. Given that one individual can have 6 types of HLA class I and 2 types of HLA DRB1,
by selecting these 78 alleles, it is estimated that 99% of people in the world have at least one
HLA class I allele and 90% have one HLA Class II allele listed here; therefore, the vaccine
construct could cover a large proportion of the world’s population.

We focused our search on promiscuous T-cell epitopes in the ORF1ab polyproteins
since they would be beneficial for vaccine population coverage. Several studies support
the utilization of ORF1ab as a vaccine target. A study by Gangaev et al. (2021) showed
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that ORF1ab contains an immunodominant epitope restricted by HLA-A*01:01 and the
epitope-specific CD8+ T-cellwas detectable up to 5 months after recovery from critical
and severe COVID-19 diseases [109]. Other studies [69,110] also confirmed that ORF1ab
is the most immunogenic region of SARS-CoV-2 and contains the majority of the highly
conserved immunodominant epitopes. Looking at the number of ORF1ab T-cell epitopes
in the IEDB data (Table 2), it is evident that ORF1ab contains immunogenic epitopes that
could be used for vaccine development.

ORF1ab is quite conserved as shown by entropy analysis. The high conservancy could
be due to the function of ORF1ab as replicase enzymes that are needed for the virus to
successfully replicate inside the host cells. ORF1ab is also the first protein to be synthesized
by the infected cells [10], therefore having T-cells that are primed to recognize epitopes
from ORF1ab will be beneficial for early viral clearance. Since ORF1ab contributes the
highest numbers of the experimentally confirmed immunodominant epitopes, a detailed
evaluation of these T cell epitopes for promiscuity and conservancy, which is important for
vaccine design, will thus be possible. Our immunoinformatics analysis using NetCTLpan
predicted 1132 CTL peptides and NetMHCIIpan predicted 792 HTL peptides that bind,
respectively, to at least 1 HLA Class I and 1 HLA Class II allele with the percentile rank
less than 1%, minimizing the false-positive results.

The predicted peptides were evaluated further using several criteria such as immuno-
genicity, IFNγ inducing ability, promiscuity in binding to HLA alleles, conservancy across
all SARS-CoV-2 variants, low entropy value, and non-homology with the human pep-
tides and human microbiome peptides. In the end, seven CTL and five HTL epitopes
were chosen to be incorporated in the VC. The VC covers the entire Indonesian and Thai
population (100.00%) and a little less than 100.00% for Germany and the entire world
population (>99.9%). In this study, the VC was evaluated further and fulfilled criteria, such
as good antigenicity, non-allergenicity, and non-toxicity, and had good physicochemical
characteristics, such as pI, stability, half-life, and GRAVY score. Similar approaches have
already been used by previous studies to obtain peptides as vaccine candidates and for
evaluation of vaccine physicochemical properties, as reported in the review by Sohail et al.
(2021) [111].

The vaccine should not disrupt immune homeostasis or induce autoimmunity; there-
fore, in this study, we evaluated the VC for similarity with human peptides and human
microbiomes. We used the VC sequences as input for NetCTLpan and NetMHCIIpan
and obtained the list of potential peptides to be generated with percentile rank <1%. The
results showed that all SARS-CoV-2 CTL and HTL epitopes that were used to construct the
vaccines were indeed generated. However, other new extra CTL and HTL epitopes were
also generated. These epitopes encompassed the peptide linkers at the junctional region
between the original HTL and CTL epitopes. The generation of these extra epitopes has not
previously been reported by others. While the generation of these extra epitopes cannot be
avoided, we need to check whether the sequence of extra epitopes is homologous with the
human peptides or human microbiomes. The BlastP analysis and PBIT analysis of these
new CTL and HTL epitopes showed no similarity with the human peptides and human
microbiomes, which confirmed the safety profile of the VC.

The safety profile is not the only requirement for a vaccine. The vaccine component
should be able to interact with the receptor on the surface of the immune cells to generate
appropriate immune responses. The interaction between the vaccine and the TLR4 was
evaluated in this study. Engagement of TLR on the surface of dendritic cells with the ligand
will ensure the proper maturation of the dendritic cell. Mature dendritic cell will be able to
process the vaccine antigen, and then present the peptide–HLA complex to be recognized
by T-cells as the signal1. Mature DC will also upregulate the CD80/CD86 molecules that
will engage CD28 on the T-cell, which constitutes the required signal 2 for T-cell activation.
The molecular docking simulation of the VC and TLR4 revealed that there are sufficient
interactions between the two molecules to induce robust immune responses (Figure 9). This
corroborated the immune simulation analysis results (Figure 7), which show the generation



Vaccines 2021, 9, 1459 33 of 39

of CTL and HTL responses upon vaccine administration along with the production of
cytokines such as IFNγ and IL-2.

Within our VC, 899WSMATYYLF907 is the most promiscuous peptide that binds to
24 HLA Class I alleles, covering 94.80%, 77.44%, 66.25%, and 64.13% of Indonesia, Thai-
land, Germany, and the world population, respectively. 899WSMATYYLF907 has been
reported in IEDB by HLA binding assay to HLA-A*24:02 [75] and T-cell assay using sam-
ples from an A*24:02 positive individual [64]. We performed the docking between peptide
899WSMATYYLF907 with HLA-A*24:07, which is the most predominant allele in the In-
donesian population. So far, there are no experimental data of SARS-CoV-2 peptide that
is represented by HLA-A*24:07. Despite its importance for the Indonesian and Southeast
Asian populations, the HLA-A*24:07 is less studied as compared to HLA-A*24:02. In
IEDB, there is only one pathogen peptide reported to be presented by HLA-A*24:07 [112].
Therefore, it is interesting to analyze the interaction between HLA-A*24:07 with the im-
munogenic peptide of SARS-CoV-2 (899WSMATYYLF907). From the docking analysis it is
shown that the best model of HLA-A*24:07 with peptide 899WSMATYYLF907 has a more
accuracy compared with HLA-A*24:02, suggesting that the peptide can potentially be
presented by HLA-A*24:07, thus confirming our CTL epitope prediction.

5. Conclusions

T-cells recognize infected cells based on the complex of a pathogenic peptide and
a HLA molecule. High polymorphism of the HLA gene ensures that any antigens can
be presented to the immune system. However, the difference in HLA allotypes among
different populations greatly affects the characters of adaptive immune responses against
viral diseases and vaccines. These differences are evident between the Southeast Asian and
European populations. Thus, regarding the COVID-19 pandemic, the identification and
characterization of conserved SARS-CoV-2 T-cell epitopes across different HLA allotypes
provide wide-ranging applications for diagnostic, prophylactic, and therapeutic develop-
ments. A vaccine applying conserved SARS-CoV-2 epitopes that induce both memory
CD8+ and CD4+ T-cell responses across different populations with various HLA allotypes
might represent a promising tool to end the public health and economic burdens due to
the COVID-19 pandemic.

The current study generated data about SARS-CoV-2 ORF1ab T-cell epitopes and their
characteristics, such as the epitopes conservancy; HLA-binding promiscuity; and the level
of homology with peptides from human common cold coronaviruses, human self-proteins,
and microbiomes. Those characteristics are important for the development of a peptide-
based vaccine that induce T-cell responses. T-cells target the antigens originating from all
proteins of SARS-CoV-2, including ORF1ab. ORF1ab is intrinsically conserved because
it is important for virus replication, and therefore not easily mutated. Vaccines based on
the evolutionarily stable protein is beneficial because it will work against all variants of
SARS-CoV-2. The current study nominated 12 conserved and promiscuous epitopes to be
used in the vaccine development that will cover the majority of the Indonesian and the
world population. One epitope in particular, 899WSMATYYLF907, was predicted to bind to
HLA-A*24:07, which is the HLA allele predominant in the Indonesian population.

We highlighted Indonesia in this study since the HLA background of the population
is different to that of the Caucasian population, as shown in Figure 3. HLA-A*24:07 is not
very well studied and no data are available about SARS-CoV-2 T-cell epitopes associated
with this HLA. The in silico data generated in this study should be followed by wet-lab
experiments to map T-cell epitopes that will be recognized by COVID-19 convalescent
individuals from Indonesia. Such a study has not previously been conducted, even though
the allele frequency for HLA-A*24:07 is significantly high (0.26) and Indonesian (popula-
tion of 277 million) is the fourth largest population in the world, and is also affected by
the pandemic.

The study also generated other interesting findings related to the cross-reactive epi-
topes between SARS-CoV-2 and human proteins. Epitope 2784AIFYLITPV2792 matched
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with the human peptide AIFYLITLV, which is derived from the olfactory receptor. We
hypothesized that epitope similarity might contribute to the anosmia symptoms in some
COVID-19 patients. Experimental validation is needed to test the epitopes and the char-
acteristics of T-cells recognizing the epitopes. The data generated might entangle the
molecular mechanism of anosmia in some patients.

Taken together, the peptides reported here will provide more insight into the cellular-
mediated immune responses against SARS-CoV-2 in populations with different genetic
backgrounds and environments that could bring novel ideas for the development of
COVID-19 vaccines and immune monitoring, which could be effective across different
populations worldwide.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9121459/s1. Table S1: Conservancy of predicted CTL epitopes among the SARS-CoV-2
variants. Row 1 contains information about the name of the variants according to the WHO, the
Pango lineage of the variants, and the number of retrieved sequences in the bracket. The duplicated
sequences were removed before the analysis and the percentage of the conservation was calculated
based on the number of the unique sequences only, in which the proportion was shown in the
bracket. Table S2: Conservancy of predicted HTL epitopes among the SARS-CoV-2 variants. Row 1
contains information about the name of the variants according to the WHO, the Pango lineage of
the variants, and the number of retrieved sequences in the bracket. The duplicated sequences were
removed before the analysis and the percentage of the conservation was calculated based on the
number of the unique sequences only, in which the proportion was shown in the bracket. Table S3:
Five out of 7 SARS-CoV-2 peptides that match with the human peptides were reported in IEDB as
experimentally confirmed by T-cell assay. However, 4 peptides were recognized by T-cells from
healthy individuals who have not been infected by SARS-CoV-2. This table shows the comparison of
the degree of homology of SARS-CoV-2 peptides versus peptides from human proteomes and versus
peptides from HCCs (229E, HKU, NL63, and OC43). For homology with HCC, only homology of
> 60% was considered. Table S4: SARS-CoV-2 peptides that do not have homology match with the
human peptides were reported in IEDB as experimentally confirmed by T-cell assay. The majority
of these peptides were recognized by T-cells from individuals who were infected by SARS-CoV-2.
Table S5: Toxicity of the VC. ToxinPred scans for fragments of 10 amino acid length and predicts their
toxicity. Only residue 29–48 which is part of the β-defensin adjuvant that contains toxic fragments
of 10-mer peptides. Table S6: VC evaluation for possible CTL epitopes that will be generated and
homology of new epitopes with human peptides. Table S7: VC evaluation for possible HTL epitopes
that will be generated and the possibility of new epitopes homology with human peptides. Table S8:
Non-homology analysis of VC peptides against gut microbiota proteomes using PBIT server. All 43
of 9-mer CTL epitopes (left panel) and 17 of 9-mer core peptides of HTL epitopes (right panel) that
were generated from the VC were input into the PBIT server, which will calculate the similarity of
peptide sequences with the sequences from the gut microbiomes. Table S9: Summary of the Top 10
models generated by HDOCK for interaction between TLR4 and the VC. Table S10: Receptor–ligand
interface residues pair for Model 1.
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I Presented Peptides That Enhance Immunogenicity. PLoS Comput. Biol. 2013, 9, e1003266. [CrossRef]

34. Dhanda, S.K.; Vir, P.; Raghava, G.P. Designing of Interferon-Gamma Inducing MHC Class-II Binders. Biol. Direct 2013, 8, 30–44.
[CrossRef] [PubMed]

35. Bui, H.H.; Sidney, J.; Li, W.; Fusseder, N.; Sette, A. Development of an Epitope Conservancy Analysis Tool to Facilitate the Design
of Epitope-Based Diagnostics and Vaccines. BMC Bioinform. 2007, 8, 361–366. [CrossRef]

36. Cuspoca, A.F.; Díaz, L.L.; Acosta, A.F.; Peñaloza, M.K.; Méndez, Y.R.; Clavijo, D.C.; Reyes, J.Y. An Immunoinformatics Approach
for SARS-CoV-2 in Latam Populations and Multi-Epitope Vaccine Candidate Directed towards the World’s Population. Vaccines
2021, 9, 581. [CrossRef]

37. Doytchinova, I.A.; Flower, D.R. VaxiJen: A Server for Prediction of Protective Antigens, Tumour Antigens and Subunit Vaccines.
BMC Bioinform. 2007, 8, 4–10. [CrossRef]

38. Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP—A Server for in Silico Prediction of Allergens. BMC Bioinform.
2013, 14, S4–S12. [CrossRef] [PubMed]

39. Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I. AllergenFP: Allergenicity Prediction by Descriptor Fingerprints. Bioinformatics
2014, 30, 846–851. [CrossRef]

40. Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Analysis Tools on the ExPASy
Server 571 571 From: The Proteomics Protocols Handbook Protein Identification and Analysis Tools on the ExPASy Server. In The
Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press Inc.: Totowa, NJ, USA, 2005; pp. 571–607.

41. Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In Silico Approach for Predicting Toxicity of
Peptides and Proteins. PLoS ONE 2013, 8, e73957. [CrossRef] [PubMed]

42. Carrasco Pro, S.; Lindestam Arlehamn, C.S.; Dhanda, S.K.; Carpenter, C.; Lindvall, M.; Faruqi, A.A.; Santee, C.A.; Renz, H.;
Sidney, J.; Peters, B.; et al. Microbiota Epitope Similarity Either Dampens or Enhances the Immunogenicity of Disease-Associated
Antigenic Epitopes. PLoS ONE 2018, 13, e0196551. [CrossRef] [PubMed]

43. Shende, G.; Haldankar, H.; Barai, R.S.; Bharmal, M.H.; Shetty, V.; Idicula-Thomas, S. PBIT: Pipeline Builder for Identification of
Drug Targets for Infectious Diseases. Bioinformatics 2016, 33, 929–931. [CrossRef] [PubMed]

44. Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational Immunology Meets Bioinformatics: The Use of Prediction Tools
for Molecular Binding in the Simulation of the Immune System. PLoS ONE 2010, 5, e9862. [CrossRef]

45. Hossain, M.S.; Hossan, M.I.; Mizan, S.; Moin, A.T.; Yasmin, F.; Akash, A.-S.; Powshi, S.N.; Hasan, A.K.R.; Chowdhury, A.S.
Immunoinformatics Approach to Designing a Multi-Epitope Vaccine against Saint Louis Encephalitis Virus. Inform. Med. Unlocked
2021, 22, 100500. [CrossRef]

46. Geourjon, C.; Deléage, G. SOPMA: Significant Improvements in Protein Secondary Structure Prediction by Consensus Prediction
from Multiple Alignments. Bioinformatics 1995, 11, 681–684. [CrossRef]

47. Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
PLoS Comput. Biol. 2017, 13, e1005324. [CrossRef]

48. Xu, J. Distance-Based Protein Folding Powered by Deep Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 16856–16865. [CrossRef]
49. Sippl, M.J. Recognition of Errors in Three-Dimensional Structures of Proteins. Proteins Struct. Funct. Genet. 1993, 17, 355–362.

[CrossRef] [PubMed]
50. Wiederstein, M.; Sippl, M.J. ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of

Proteins. Nucleic Acids Res. 2007, 35, W407–W410. [CrossRef]
51. Yan, Y.; Tao, H.; He, J.; Huang, S.-Y. The HDOCK Server for Integrated Protein–Protein Docking. Nat. Protoc. 2020, 15, 1829–1852.

[CrossRef] [PubMed]

http://doi.org/10.1016/j.humimm.2018.09.005
http://doi.org/10.1007/s00251-014-0765-6
http://www.ncbi.nlm.nih.gov/pubmed/24682434
http://doi.org/10.1111/tan.12507
http://www.ncbi.nlm.nih.gov/pubmed/25626602
http://doi.org/10.1007/s00251-010-0441-4
http://www.ncbi.nlm.nih.gov/pubmed/20379710
http://doi.org/10.1186/s13073-015-0245-0
http://doi.org/10.1021/acs.jproteome.9b00874
http://www.ncbi.nlm.nih.gov/pubmed/32308001
http://doi.org/10.1371/journal.pcbi.1002412
http://doi.org/10.1371/journal.pcbi.1003266
http://doi.org/10.1186/1745-6150-8-30
http://www.ncbi.nlm.nih.gov/pubmed/24304645
http://doi.org/10.1186/1471-2105-8-361
http://doi.org/10.3390/vaccines9060581
http://doi.org/10.1186/1471-2105-8-4
http://doi.org/10.1186/1471-2105-14-S6-S4
http://www.ncbi.nlm.nih.gov/pubmed/23735058
http://doi.org/10.1093/bioinformatics/btt619
http://doi.org/10.1371/journal.pone.0073957
http://www.ncbi.nlm.nih.gov/pubmed/24058508
http://doi.org/10.1371/journal.pone.0196551
http://www.ncbi.nlm.nih.gov/pubmed/29734356
http://doi.org/10.1093/bioinformatics/btw760
http://www.ncbi.nlm.nih.gov/pubmed/28039165
http://doi.org/10.1371/journal.pone.0009862
http://doi.org/10.1016/j.imu.2020.100500
http://doi.org/10.1093/bioinformatics/11.6.681
http://doi.org/10.1371/journal.pcbi.1005324
http://doi.org/10.1073/pnas.1821309116
http://doi.org/10.1002/prot.340170404
http://www.ncbi.nlm.nih.gov/pubmed/8108378
http://doi.org/10.1093/nar/gkm290
http://doi.org/10.1038/s41596-020-0312-x
http://www.ncbi.nlm.nih.gov/pubmed/32269383


Vaccines 2021, 9, 1459 37 of 39

52. Yan, Y.; Zhang, D.; Zhou, P.; Li, B.; Huang, S.-Y. HDOCK: A Web Server for Protein–Protein and Protein–DNA/RNA Docking
Based on a Hybrid Strategy. Nucleic Acids Res. 2017, 45, W365–W373. [CrossRef] [PubMed]

53. Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro Web Server for Protein–
Protein Docking. Nat. Protoc. 2017, 12, 255–278. [CrossRef]

54. Laskowski, R.A. PDBsum New Things. Nucleic Acids Res. 2009, 37, D355–D359. [CrossRef]
55. Blaszczyk, M.; Ciemny, M.P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. Protein–Peptide Docking Using CABS-Dock and Contact

Information. Brief. Bioinform. 2019, 20, 2299–2305. [CrossRef] [PubMed]
56. Kurcinski, M.; Blaszczyk, M.; Ciemny, M.P.; Kolinski, A.; Kmiecik, S. A Protocol for CABS-Dock Protein–Peptide Docking Driven

by Side-Chain Contact Information. BioMedical Eng. Online 2017, 16, 73–82. [CrossRef] [PubMed]
57. Blaszczyk, M.; Kurcinski, M.; Kouza, M.; Wieteska, L.; Debinski, A.; Kolinski, A.; Kmiecik, S. Modeling of Protein–Peptide

Interactions Using the CABS-Dock Web Server for Binding Site Search and Flexible Docking. Methods 2016, 93, 72–83. [CrossRef]
[PubMed]

58. Mullick, B.; Magar, R.; Jhunjhunwala, A.; Barati Farimani, A. Understanding Mutation Hotspots for the SARS-CoV-2 Spike
Protein Using Shannon Entropy and K-Means Clustering. Comput. Biol. Med. 2021, 138, 104915. [CrossRef]

59. Thomas, S. Mapping the Nonstructural Transmembrane Proteins of Severe Acute Respiratory Syndrome Coronavirus 2. J. Comput.
Biol. 2021, 28, 909–921. [CrossRef] [PubMed]

60. Santerre, M.; Arjona, S.P.; Allen, C.N.; Shcherbik, N.; Sawaya, B.E. Why Do SARS-CoV-2 NSPs Rush to the ER? J. Neurol.
2021, 268, 2013–2022. [CrossRef] [PubMed]

61. Gorkhali, R.; Koirala, P.; Rijal, S.; Mainali, A.; Baral, A.; Bhattarai, H.K. Structure and Function of Major SARS-CoV-2 and
SARS-CoV Proteins. Bioinform. Biol. Insights 2021, 15, 11779322211025876. [CrossRef] [PubMed]

62. Stern, A.; Fleishon, S.; Kustin, T.; Dotan, E.; Mandelboim, M.; Erster, O.; Mendelson, E.; Mor, O.; Zuckerman, N.S.; Bucris, D.; et al.
The Unique Evolutionary Dynamics of the SARS-CoV-2 Delta Variant-2 Sequencing. medRxiv 2021. [CrossRef]

63. Buckley, P.R.; Lee, C.H.; Pereira Pinho, M.; Ottakandathil Babu, R.; Woo, J.; Antanaviciute, A.; Simmons, A.; Ogg, G. HLA-
Dependent Variation in SARS-CoV-2 CD8+ T Cell Cross-Reactivity with Human Coronaviruses. bioRxiv 2021. [CrossRef]

64. Zhang, H.; Deng, S.; Ren, L.; Zheng, P.; Hu, X.; Jin, T.; Tan, X. Profiling CD8+ T Cell Epitopes of COVID-19 Convalescents Reveals
Reduced Cellular Immune Responses to SARS-CoV-2 Variants. Cell Rep. 2021, 36, 109708. [CrossRef]

65. Mateus, J.; Grifoni, A.; Tarke, A.; Sidney, J.; Ramirez, S.I.; Dan, J.M.; Burger, Z.C.; Rawlings, S.A.; Smith, D.M.; Phillips, E.; et al.
Selective and Cross-Reactive SARS-CoV-2 T Cell Epitopes in Unexposed Humans. Science 2020, 370, 89–94. [CrossRef] [PubMed]

66. Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.;
Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed
Individuals. Cell 2020, 181, 1489–1501. [CrossRef] [PubMed]

67. Braun, J.; Loyal, L.; Frentsch, M.; Wendisch, D.; Georg, P.; Kurth, F.; Hippenstiel, S.; Dingeldey, M.; Kruse, B.; Fauchere, F.; et al.
SARS-CoV-2-Reactive T Cells in Healthy Donors and Patients with COVID-19. Nature 2020, 587, 270–274. [CrossRef] [PubMed]

68. le Bert, N.; Tan, A.T.; Kunasegaran, K.; Tham, C.Y.L.; Hafezi, M.; Chia, A.; Chng, M.H.Y.; Lin, M.; Tan, N.; Linster, M.; et al.
SARS-CoV-2-Specific T Cell Immunity in Cases of COVID-19 and SARS, and Uninfected Controls. Nature 2020, 584, 457–462.
[CrossRef] [PubMed]

69. Saini, S.K.; Hersby, D.S.; Tamhane, T.; Povlsen, H.R.; Amaya Hernandez, S.P.; Nielsen, M.; Gang, A.O.; Hadrup, S.R. SARS-CoV-2
Genome-Wide T Cell Epitope Mapping Reveals Immunodominance and Substantial CD8+ T Cell Activation in COVID-19
Patients. Sci. Immunol. 2021, 6, eabf7550. [CrossRef]

70. Karami Fath, M.; Jahangiri, A.; Ganji, M.; Sefid, F.; Payandeh, Z.; Hashemi, Z.S.; Pourzardosht, N.; Hessami, A.; Mard-Soltani, M.;
Zakeri, A.; et al. SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for
Infection, Vaccination, and Population Coverage. Front. Immunol. 2021, 12, 705772. [CrossRef] [PubMed]

71. Balz, K.; Kaushik, A.; Chen, M.; Cemic, F.; Heger, V.; Renz, H.; Nadeau, K.; Skevaki, C. Homologies between SARS-CoV-2 and
Allergen Proteins May Direct T Cell-Mediated Heterologous Immune Responses. Sci. Rep. 2021, 11, 4792–4798. [CrossRef]
[PubMed]

72. Hassan, M.M.; Sharmin, S.; Hong, J.; Lee, H.S.; Kim, H.J.; Hong, S.T. T Cell Epitopes of SARS-CoV-2 Spike Protein and Conserved
Surface Protein of Plasmodium Malariae Share Sequence Homology. Open Life Sci. 2021, 16, 630–640. [CrossRef] [PubMed]

73. Haddad-Boubaker, S.; Othman, H.; Touati, R.; Ayouni, K.; Lakhal, M.; ben Mustapha, I.; Ghedira, K.; Kharrat, M.; Triki, H. In
Silico Comparative Study of SARS-CoV-2 Proteins and Antigenic Proteins in BCG, OPV, MMR and Other Vaccines: Evidence of a
Possible Putative Protective Effect. BMC Bioinform. 2021, 22, 163–176. [CrossRef]

74. Snyder, T.M.; Gittelman, R.M.; Klinger, M.; May, D.H.; Osborne, E.J.; Taniguchi, R.; Zahid, H.J.; Kaplan, I.M.; Dines, J.N.; Noakes,
M.T.; et al. Magnitude and Dynamics of the T-Cell Response to SARS-CoV-2 Infection at Both Individual and Population Levels.
medRxiv 2020. [CrossRef]

75. Prachar, M.; Justesen, S.; Steen-Jensen, D.B.; Thorgrimsen, S.; Jurgons, E.; Winther, O.; Bagger, F.O. Identification and Validation
of 174 COVID-19 Vaccine Candidate Epitopes Reveals Low Performance of Common Epitope Prediction Tools. Sci. Rep.
2020, 10, 20465. [CrossRef]

76. Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A.; Ferbas, K.G.; Tobin, N.H.; Al-
drovandi, G.M.; Yang, O.O. Rapid Decay of Anti–SARS-CoV-2 Antibodies in Persons with Mild COVID-19. N. Engl. J. Med.
2020, 383, 1085–1087. [CrossRef]

http://doi.org/10.1093/nar/gkx407
http://www.ncbi.nlm.nih.gov/pubmed/28521030
http://doi.org/10.1038/nprot.2016.169
http://doi.org/10.1093/nar/gkn860
http://doi.org/10.1093/bib/bby080
http://www.ncbi.nlm.nih.gov/pubmed/30247502
http://doi.org/10.1186/s12938-017-0363-6
http://www.ncbi.nlm.nih.gov/pubmed/28830545
http://doi.org/10.1016/j.ymeth.2015.07.004
http://www.ncbi.nlm.nih.gov/pubmed/26165956
http://doi.org/10.1016/j.compbiomed.2021.104915
http://doi.org/10.1089/cmb.2020.0627
http://www.ncbi.nlm.nih.gov/pubmed/34182794
http://doi.org/10.1007/s00415-020-10197-8
http://www.ncbi.nlm.nih.gov/pubmed/32870373
http://doi.org/10.1177/11779322211025876
http://www.ncbi.nlm.nih.gov/pubmed/34220199
http://doi.org/10.1101/2021.08.05.21261642
http://doi.org/10.1101/2021.07.17.452778
http://doi.org/10.1016/j.celrep.2021.109708
http://doi.org/10.1126/science.abd3871
http://www.ncbi.nlm.nih.gov/pubmed/32753554
http://doi.org/10.1016/j.cell.2020.05.015
http://www.ncbi.nlm.nih.gov/pubmed/32473127
http://doi.org/10.1038/s41586-020-2598-9
http://www.ncbi.nlm.nih.gov/pubmed/32726801
http://doi.org/10.1038/s41586-020-2550-z
http://www.ncbi.nlm.nih.gov/pubmed/32668444
http://doi.org/10.1126/sciimmunol.abf7550
http://doi.org/10.3389/fimmu.2021.705772
http://www.ncbi.nlm.nih.gov/pubmed/34447375
http://doi.org/10.1038/s41598-021-84320-8
http://www.ncbi.nlm.nih.gov/pubmed/33637823
http://doi.org/10.1515/biol-2021-0062
http://www.ncbi.nlm.nih.gov/pubmed/34222663
http://doi.org/10.1186/s12859-021-04045-3
http://doi.org/10.1101/2020.07.31.20165647
http://doi.org/10.1038/s41598-020-77466-4
http://doi.org/10.1056/NEJMc2025179


Vaccines 2021, 9, 1459 38 of 39

77. Kreer, C.; Zehner, M.; Weber, T.; Ercanoglu, M.S.; Gieselmann, L.; Rohde, C.; Halwe, S.; Korenkov, M.; Schommers, P.; Vanshylla,
K.; et al. Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients. Cell
2020, 182, 843–854. [CrossRef] [PubMed]

78. Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody Responses to
SARS-CoV-2 in Patients with COVID-19. Nat. Med. 2020, 26, 845–848. [CrossRef]

79. Ripperger, T.J.; Uhrlaub, J.L.; Watanabe, M.; Wong, R.; Castaneda, Y.; Pizzato, H.A.; Thompson, M.R.; Bradshaw, C.; Weinkauf,
C.C.; Bime, C.; et al. Orthogonal SARS-CoV-2 Serological Assays Enable Surveillance of Low-Prevalence Communities and
Reveal Durable Humoral Immunity. Immunity 2020, 53, 925–933. [CrossRef] [PubMed]

80. Chia, W.N.; Zhu, F.; Ong, S.W.X.; Young, B.E.; Fong, S.-W.; le Bert, N.; Tan, C.W.; Tiu, C.; Zhang, J.; Tan, S.Y.; et al. Dy-
namics of SARS-CoV-2 Neutralising Antibody Responses and Duration of Immunity: A Longitudinal Study. Lancet Microbe
2021, 2, e240–e249. [CrossRef]

81. Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech,
J.; et al. Reduced Sensitivity of SARS-CoV-2 Variant Delta to Antibody Neutralization. Nature 2021, 596, 276–280. [CrossRef]

82. Jung, J.H.; Rha, M.-S.; Sa, M.; Choi, H.K.; Jeon, J.H.; Seok, H.; Park, D.W.; Park, S.-H.; Jeong, H.W.; Choi, W.S.; et al. SARS-CoV-2-
Specific T Cell Memory Is Sustained in COVID-19 Convalescent Patients for 10 Months with Successful Development of Stem
Cell-like Memory T Cells. Nat. Commun. 2021, 12, 4043. [CrossRef] [PubMed]

83. Shanehbandi, D.; Majidi, J.; Kazemi, T.; Baradaran, B.; Aghebati-Maleki, L. CD20-Based Immunotherapy of B-Cell Derived
Hematologic Malignancies. Curr. Cancer Drug Targets 2017, 17, 423–444. [CrossRef]

84. McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis. JAMA 2021, 325, 765–779.
[CrossRef]

85. Bange, E.M.; Han, N.A.; Wileyto, P.; Kim, J.Y.; Gouma, S.; Robinson, J.; Greenplate, A.R.; Hwee, M.A.; Porterfield, F.; Owoyemi,
O.; et al. CD8+ T Cells Contribute to Survival in Patients with COVID-19 and Hematologic Cancer. Nat. Med. 2021, 27, 1280–1289.
[CrossRef] [PubMed]

86. Rydyznski Moderbacher, C.; Ramirez, S.I.; Dan, J.M.; Grifoni, A.; Hastie, K.M.; Weiskopf, D.; Belanger, S.; Abbott, R.K.; Kim, C.;
Choi, J.; et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease
Severity. Cell 2020, 183, 996–1012. [CrossRef]

87. Mallajosyula, V.; Ganjavi, C.; Chakraborty, S.; McSween, A.M.; Pavlovitch-Bedzyk, A.J.; Wilhelmy, J.; Nau, A.; Manohar, M.;
Nadeau, K.C.; Davis, M.M. CD8+ T Cells Specific for Conserved Coronavirus Epitopes Correlate with Milder Disease in Patients
with COVID-19. Sci. Immunol. 2021, 6, eabg5669. [CrossRef]

88. Noh, J.Y.; Jeong, H.W.; Kim, J.H.; Shin, E.C. T Cell-Oriented Strategies for Controlling the COVID-19 Pandemic. Nat. Rev. Immunol.
2021, 21, 687–688. [CrossRef]

89. Channappanavar, R.; Fett, C.; Zhao, J.; Meyerholz, D.K.; Perlman, S. Virus-Specific Memory CD8 T Cells Provide Substantial
Protection from Lethal Severe Acute Respiratory Syndrome Coronavirus Infection. J. Virol. 2014, 88, 11034–11044. [CrossRef]
[PubMed]

90. Zhao, J.; Zhao, J.; Mangalam, A.K.; Channappanavar, R.; Fett, C.; Meyerholz, D.K.; Agnihothram, S.; Baric, R.S.; David, C.S.;
Perlman, S. Airway Memory CD4 + T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity
2016, 44, 1379–1391. [CrossRef] [PubMed]

91. Ng, O.-W.; Chia, A.; Tan, A.T.; Jadi, R.S.; Leong, H.N.; Bertoletti, A.; Tan, Y.-J. Memory T Cell Responses Targeting the SARS
Coronavirus Persist up to 11 Years Post-Infection. Vaccine 2016, 34, 2008–2014. [CrossRef]

92. Tumer, G.; Simpson, B.; Roberts, T.K. Genetics, Human Major Histocompatibility Complex (MHC). Available online: https:
//www.ncbi.nlm.nih.gov/books/NBK538218/ (accessed on 26 October 2021).

93. Requena, D.; Médico, A.; Chacón, R.D.; Ramírez, M.; Marín-Sánchez, O. Identification of Novel Candidate Epitopes on SARS-
CoV-2 Proteins for South America: A Review of HLA Frequencies by Country. Front. Immunol. 2020, 11, 2008–2023. [CrossRef]

94. Sarma, V.R.; Olotu, F.A.; Soliman, M.E.S. Integrative Immunoinformatics Paradigm for Predicting Potential B-Cell and T-Cell
Epitopes as Viable Candidates for Subunit Vaccine Design against COVID-19 Virulence. Biomed. J. 2021, 44, 447–460. [CrossRef]
[PubMed]

95. Murdocca, M.; Citro, G.; Romeo, I.; Lupia, A.; Miersch, S.; Amadio, B.; Bonomo, A.; Rossi, A.; Sidhu, S.S.; Pandolfi, P.P.; et al.
Peptide Platform as a Powerful Tool in the Fight against COVID-19. Viruses 2021, 13, 1667. [CrossRef]

96. Susithra Priyadarshni, M.; Isaac Kirubakaran, S.; Harish, M.C. In Silico Approach to Design a Multi-Epitopic Vaccine Candidate
Targeting the Non-Mutational Immunogenic Regions in Envelope Protein and Surface Glycoprotein of SARS-CoV-2. J. Biomol.
Struct. Dyn. 2021, 1–16. [CrossRef]

97. Chukwudozie, O.S.; Gray, C.M.; Fagbayi, T.A.; Chukwuanukwu, R.C.; Oyebanji, V.O.; Bankole, T.T.; Adewole, R.A.; Daniel, E.M.
Immuno-Informatics Design of a Multimeric Epitope Peptide Based Vaccine Targeting SARS-CoV-2 Spike Glycoprotein. PLoS
ONE 2021, 16, e0248061. [CrossRef]

98. Khan, M.T.; Islam, M.J.; Parihar, A.; Islam, R.; Jerin, T.J.; Dhote, R.; Ali, M.A.; Laura, F.K.; Halim, M.A. Immunoinformatics
and Molecular Modeling Approach to Design Universal Multi-Epitope Vaccine for SARS-CoV-2. Inform. Med. Unlocked
2021, 24, 100578. [CrossRef]

http://doi.org/10.1016/j.cell.2020.06.044
http://www.ncbi.nlm.nih.gov/pubmed/32673567
http://doi.org/10.1038/s41591-020-0897-1
http://doi.org/10.1016/j.immuni.2020.10.004
http://www.ncbi.nlm.nih.gov/pubmed/33129373
http://doi.org/10.1016/S2666-5247(21)00025-2
http://doi.org/10.1038/s41586-021-03777-9
http://doi.org/10.1038/s41467-021-24377-1
http://www.ncbi.nlm.nih.gov/pubmed/34193870
http://doi.org/10.2174/1568009617666170109151128
http://doi.org/10.1001/jama.2020.26858
http://doi.org/10.1038/s41591-021-01386-7
http://www.ncbi.nlm.nih.gov/pubmed/34017137
http://doi.org/10.1016/j.cell.2020.09.038
http://doi.org/10.1126/sciimmunol.abg5669
http://doi.org/10.1038/s41577-021-00625-9
http://doi.org/10.1128/JVI.01505-14
http://www.ncbi.nlm.nih.gov/pubmed/25056892
http://doi.org/10.1016/j.immuni.2016.05.006
http://www.ncbi.nlm.nih.gov/pubmed/27287409
http://doi.org/10.1016/j.vaccine.2016.02.063
https://www.ncbi.nlm.nih.gov/books/NBK538218/
https://www.ncbi.nlm.nih.gov/books/NBK538218/
http://doi.org/10.3389/fimmu.2020.02008
http://doi.org/10.1016/j.bj.2021.05.001
http://www.ncbi.nlm.nih.gov/pubmed/34489196
http://doi.org/10.3390/v13081667
http://doi.org/10.1080/07391102.2021.1977702
http://doi.org/10.1371/journal.pone.0248061
http://doi.org/10.1016/j.imu.2021.100578


Vaccines 2021, 9, 1459 39 of 39

99. Rakib, A.; Sami, S.A.; Islam, M.A.; Ahmed, S.; Faiz, F.B.; Khanam, B.H.; Marma, K.K.S.; Rahman, M.; Uddin, M.M.N.; Nainu, F.;
et al. Epitope-Based Immunoinformatics Approach on Nucleocapsid Protein of Severe Acute Respiratory Syndrome-Coronavirus-
2. Molecules 2020, 25, 5088. [CrossRef]

100. Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Sharma, G.; Lee, S.-S. Immunoinformatics Approach for the Identification
and Characterization of T Cell and B Cell Epitopes towards the Peptide-Based Vaccine against SARS-CoV-2. Arch. Med. Res.
2021, 52, 362–370. [CrossRef]

101. Bhattacharya, M.; Sharma, A.R.; Mallick, B.; Sharma, G.; Lee, S.-S.; Chakraborty, C. Immunoinformatics Approach to Understand
Molecular Interaction between Multi-Epitopic Regions of SARS-CoV-2 Spike-Protein with TLR4/MD-2 Complex. Infect. Genet.
Evol. 2020, 85, 104587. [CrossRef]

102. Jakhar, R.; Gakhar, S.K. An Immunoinformatics Study to Predict Epitopes in the Envelope Protein of SARS-CoV-2. Can. J. Infect.
Dis. Med. Microbiol. 2020, 2020, 7079356. [CrossRef]

103. Qiao, L.; Chen, M.; Li, S.; Hu, J.; Gong, C.; Zhang, Z.; Cao, X. A Peptide-Based Subunit Candidate Vaccine against SARS-CoV-2
Delivered by Biodegradable Mesoporous Silica Nanoparticles Induced High Humoral and Cellular Immunity in Mice. Biomater.
Sci. 2021, 9, 7287–7296. [CrossRef]

104. Rahman, N.; Ali, F.; Basharat, Z.; Shehroz, M.; Khan, M.K.; Jeandet, P.; Nepovimova, E.; Kuca, K.; Khan, H. Vaccine Design
from the Ensemble of Surface Glycoprotein Epitopes of SARS-CoV-2: An Immunoinformatics Approach. Vaccines 2020, 8, 423.
[CrossRef] [PubMed]

105. Oladipo, E.K.; Ajayi, A.F.; Onile, O.S.; Ariyo, O.E.; Jimah, E.M.; Ezediuno, L.O.; Adebayo, O.I.; Adebayo, E.T.; Odeyemi, A.N.;
Oyeleke, M.O.; et al. Designing a Conserved Peptide-Based Subunit Vaccine against SARS-CoV-2 Using Immunoinformatics
Approach. Silico Pharmacol. 2021, 9, 8–28. [CrossRef]

106. Waqas, M.; Haider, A.; Rehman, A.; Qasim, M.; Umar, A.; Sufyan, M.; Akram, H.N.; Mir, A.; Razzaq, R.; Rasool, D.; et al. Im-
munoinformatics and Molecular Docking Studies Predicted Potential Multiepitope-Based Peptide Vaccine and Novel Compounds
against Novel SARS-CoV-2 through Virtual Screening. BioMed Res. Int. 2021, 2021, 1596834. [CrossRef]

107. Al Saba, A.; Adiba, M.; Saha, P.; Hosen, M.I.; Chakraborty, S.; Nabi, A.H.M.N. An In-Depth in Silico and Immunoinformatics
Approach for Designing a Potential Multi-Epitope Construct for the Effective Development of Vaccine to Combat against
SARS-CoV-2 Encompassing Variants of Concern and Interest. Comput. Biol. Med. 2021, 136, 104703. [CrossRef] [PubMed]

108. Crooke, S.N.; Ovsyannikova, I.G.; Kennedy, R.B.; Poland, G.A. Immunoinformatic Identification of B Cell and T Cell Epitopes in
the SARS-CoV-2 Proteome. Sci. Rep. 2020, 10, 14179. [CrossRef]

109. Gangaev, A.; Ketelaars, S.L.C.; Patiwael, S.; Dopler, A.; Hoefakker, K.; de Biasi, S.; Gibellini, L.; Mussini, C.; Guaraldi, G.; Girardis,
M.; et al. Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features. Nat.
Commun. 2021, 12, 2593–2606. [CrossRef] [PubMed]

110. Ferretti, A.P.; Kula, T.; Wang, Y.; Nguyen, D.M.V.; Weinheimer, A.; Dunlap, G.S.; Xu, Q.; Nabilsi, N.; Perullo, C.R.; Cristofaro,
A.W.; et al. Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 That Largely
Reside Outside the Spike Protein. Immunity 2020, 53, 1095–1107. [CrossRef] [PubMed]

111. Sohail, M.S.; Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. In Silico T Cell Epitope Identification for SARS-CoV-2: Progress and
Perspectives. Adv. Drug Deliv. Rev. 2021, 171, 29–47. [CrossRef] [PubMed]

112. Tan, A.T.; Sodsai, P.; Chia, A.; Moreau, E.; Chng, M.H.Y.; Tham, C.Y.L.; Ho, Z.Z.; Banu, N.; Hirankarn, N.; Bertoletti, A.
Immunoprevalence and Immunodominance of HLA-Cw*0801-Restricted T Cell Response Targeting the Hepatitis B Virus
Envelope Transmembrane Region. J. Virol. 2014, 88, 1332–1341. [CrossRef] [PubMed]

http://doi.org/10.3390/molecules25215088
http://doi.org/10.1016/j.arcmed.2021.01.004
http://doi.org/10.1016/j.meegid.2020.104587
http://doi.org/10.1155/2020/7079356
http://doi.org/10.1039/D1BM01060C
http://doi.org/10.3390/vaccines8030423
http://www.ncbi.nlm.nih.gov/pubmed/32731461
http://doi.org/10.1007/s40203-020-00062-x
http://doi.org/10.1155/2021/1596834
http://doi.org/10.1016/j.compbiomed.2021.104703
http://www.ncbi.nlm.nih.gov/pubmed/34352457
http://doi.org/10.1038/s41598-020-70864-8
http://doi.org/10.1038/s41467-021-22811-y
http://www.ncbi.nlm.nih.gov/pubmed/33972535
http://doi.org/10.1016/j.immuni.2020.10.006
http://www.ncbi.nlm.nih.gov/pubmed/33128877
http://doi.org/10.1016/j.addr.2021.01.007
http://www.ncbi.nlm.nih.gov/pubmed/33465451
http://doi.org/10.1128/JVI.02600-13
http://www.ncbi.nlm.nih.gov/pubmed/24227846

	Introduction 
	Materials and Methods 
	SARS-CoV-2 ORF1ab Sequence Retrieval 
	Entropy Analysis of 9-Mer Peptide Sequences 
	Retrieval of HLA Alleles Type in INDONESIAN Population as the Bases for Prediction 
	Retrieval of the Number of Experimentally Validated ORF1ab Epitopes Associated with Predominant Indonesian HLA Alleles 
	Prediction of CTL Epitopes from ORF1ab 
	Prediction of HTL Epitopes from ORF1ab 
	Immunogenicity Analysis of Predicted CTL Epitopes 
	Interferon-Gamma (IFN)-Inducing Ability of Predicted HTL Epitopes 
	Conservancy Analysis of the Predicted Epitopes against SARS-CoV-2 Variants 
	Validation of Predicted Epitopes in IEDB Epitopes List 
	Cross-Reactivity of Predicted Epitopes with Human Peptides 
	Epitope Selection and Vaccine Construction 
	Evaluation of VC Properties: Antigenicity, Allergenicity, Toxicity, and Physicochemical Characteristics 
	Re-Analyze the VC for Epitopes Generation and Homology with Human Proteins and Human Microbiome 
	Immune Simulation of the VC 
	Population Coverage of the VC 
	Secondary Structure and Tertiary Structure Prediction of the VC 
	Molecular Docking of the VC with TLR4 
	Molecular Docking of Peptide WSMATYYLF with HLA-A*24:02 and HLA-A*24:07 

	Results 
	SARS-CoV-2 ORF1ab Polyprotein Contains Evolutionary Stable Regions with Low Entropy 
	SARS-CoV-2 ORF1ab Contributes a Large Number of Experimentally Known Immunogenic Epitopes in IEDB 
	HLA Allele Frequencies of the Indonesian, Thai, and German Population 
	Asian HLA Alleles Are Less Studied as Compared to the HLA Alleles Predominant in the European Population 
	Prediction of CTL Epitopes and Evaluation of Immunogenicity 
	Prediction of HTL Epitopes and Evaluation of IFN Induction Capability 
	Conservancy Analysis 
	Comparison of Predicted Epitopes and Experimentally Proven Epitopes from IEDB 
	Homology with Human Peptides 
	Epitope Cross-Reactivity with Human Peptides, Human Common Cold Coronaviruses (HCCs), or Other Ubiquitous Antigens 
	Epitope Selection 
	Population Coverage 
	Vaccine Design 
	Vaccine Antigenicity, Allergenicity, Toxicity, and Physicochemical Characteristics 
	Re-Analyze the VC for Epitopes Generation and Homology with Human Proteins and Microbiomes 
	In Silico Immune Simulation of the VC 
	Secondary Structure and Tertiary Structure of Vaccine Construct 
	Molecular Docking of the VC with TLR4 
	Molecular Docking Simulation of Peptide Binding to HLA-A*24:02 and HLA-A*24:07 

	Discussion 
	Conclusions 
	References

