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Abstract: The World Health Organization estimates that the pandemic caused by the SARS-CoV-2
virus claimed more than 3 million lives in 2020 alone. This situation has highlighted the importance
of vaccination programs and the urgency of working on new technologies that allow an efficient, safe,
and effective immunization. From this perspective, nanomedicine has provided novel tools for the
design of the new generation of vaccines. Among the challenges of the new vaccine generations is the
search for alternative routes of antigen delivery due to costs, risks, need for trained personnel, and
low acceptance in the population associated with the parenteral route. Along these lines, transdermal
immunization has been raised as a promising alternative for antigen delivery and vaccination based
on a large absorption surface and an abundance of immune system cells. These features contribute to
a high barrier capacity and high immunological efficiency for transdermal immunization. However,
the stratum corneum barrier constitutes a significant challenge for generating new pharmaceutical
forms for transdermal antigen delivery. This review addresses the biological bases for transdermal
immunomodulation and the technological advances in the field of nanomedicine, from the passage
of antigens facilitated by devices to cross the stratum corneum, to the design of nanosystems, with an
emphasis on the importance of design and composition towards the new generation of needle-free
nanometric transdermal systems.

Keywords: transdermal vaccines; needle-free immunization; nanomedicine; nanoparticle design;
nano vaccines

1. Introduction

The recent pandemic caused by the SARS-CoV2 infection has shown the great impor-
tance of vaccines and their impact on preventing and controlling infectious diseases [1]. As
a result, the attention to developing safe and effective vaccines has increased. However, the
main route of antigen delivery remains parenteral, reducing the possibility of universal cov-
erage since it can be considered traumatic for some individuals, requires qualified health
professionals for application, and, in many cases, efficient cold chain management [2,3].
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These factors make it challenging to develop vaccination programs in developing countries
or remote areas [4,5]. In addition, the World Health Organization (WHO) estimates that at
least 19.4 million infants in the world have not received basic vaccines, a scenario that has
worsened due to the pandemic. Therefore, the need to find alternative routes for efficient,
safe, and effective antigen delivery to induce protective immunity [6].

The transdermal route of administration provides multiple advantages for achieving
this goal because it reduces both the first-pass metabolism and adverse effects, is non-
traumatic, and allows self-administration by the patient making it an attractive delivery
route for needle-free immunization [7,8]. However, the protective barrier function of the
skin can restrain the step of macromolecule and antigen absorption. Those that manage
to overcome the stratum corneum (SC) may be available to exert their pharmacological
effect [9,10].

The skin is an easily accessible and highly immunocompetent organ [7,11], which
can have up to 20 billion cells of various subtypes, such as keratinocytes, Langerhans
cells, dendritic cells, T cells, and mast cells that contribute to the immunocompetence of
skin [12]. To overcome the barrier that the stratum corneum imposes and favor transdermal
permeability, various technologies have been developed, including iontophoresis [13],
sonophoresis [14], magnetophoresis [15], electroporation [16], and laser microporation [17].
Unfortunately, these methods have shown significant economic limitations [18]. Therefore,
microneedles are the most widely studied method to administer micro and macromolecules
through the skin [19]. However, many researchers do not consider this delivery method
as a “needle-free” approach. Thus, the development of highly efficient and optimized
nanosystems is one of the strategies to cross the skin barrier and benefit from the immuno-
competence of this tissue, with design being one of the factors to consider when penetrating
the skin without invasive techniques. A solution to this problem could be developing
nanosystems capable of transporting the antigen and bypassing this barrier without mi-
croneedles. Fulfilling this last objective largely depends on the design composition of
the nanoparticles [20]. This article will focus on the advances that have been achieved in
the area, with a strong focus on the design techniques of nanoparticle-based transdermal
antigen delivery systems and the role of the configuration and use of excipients that favor
the crossing of the skin barrier.

2. Mechanisms Involved in the Skin Immune Response

The skin is an extensive and complex organ that accomplishes a fundamental barrier
function and comprises various layers that develop in different stages of gestation [21]. The
epidermis development is a complex but coordinated process involving cell proliferation,
differentiation, and adhesion steps [22]. This process begins in the first weeks of embryonic
development, and stratification extends until the end of the first trimester of embryonic
development, which ends with the differentiation of spiny cells into granular and cornified
cells [22]. The dermis is organized in more advanced stages and continues its maturation
weeks after birth [23,24]. Although cells of the immune system in the skin are not usually
so abundant, a great density and diversity of immune cells are achieved after a complex
development process, which constitutes the skin as a specialized barrier organ [25].

The properties of this barrier are granted mainly by the presence of the stratum
corneum, which consists of the outermost layer of the skin, located on the viable epidermis
with a thickness of around 15 to 20 layers composed mainly of dead tissue, assuming
a barrier almost impenetrable for the vast majority of molecules with therapeutic activ-
ity [9]. But not only the intrinsic properties of SC can influence the transdermal passage,
but also the physicochemical properties of the compounds can define entry efficiency.
The physicochemical properties include molecular weight, solubility, and lipophilicity,
which define their ability to be absorbed. Molecules with low molecular weight (less
than 500 Da) [26] and log P between 1–4 are expected to diffuse easily [27]. On the other
hand, larger molecules but with sufficient lipophilicity could enter through the annexed
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pathways that we will explain later. All these skin characteristics pose challenging work in
administering assets via the transdermal route [8].

The passage of bioactive compounds through the stratum corneum is the first critical
point of interest for delivering drugs through the skin. As mentioned above, the specific
physicochemical characteristics are restricted and, if it is sufficiently lipophilic, it can enter
through the lipophilic stratum corneum [26]. The passage of compounds through the skin
can occur through the transepidermal pathway, either through the transcellular pathway
that involves the passing through SC cells or the intercellular pathway (also known as
paracellular) through the spaces between corneocytes (approximately 75 nm) [28]. On
the other hand, the transpedicular pathway consists of skin attachments, such as sweat
glands, sebaceous glands, and hair follicles. Normally, this route is not relevant for drug
administration as it constitutes only 0.1% of the human skin [29]. However, it plays an
important role in highly lipophilic drugs that could form reservoirs in the sebaceous glands
or high molecular weight compounds such as nanoparticles, facilitating their entry through
hair follicles. Figure 1 shows the various access routes of the active ingredients through the
skin [30,31].
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Figure 1. Schematic representation of the routes of skin penetration of active compounds. On the
left, a transpedicular route consists of a. entry through hair follicle, b. entry through sweat glands,
c. entry through sebaceous glands. On the right, transepidermal route. d. Transcellular pathway,
e. Intercellular pathway.

Once the molecule enters through the stratum corneum, it will face the interface
between the viable epidermis and the dermis with hydrophilic characteristics; given the
above, only compounds capable of ionizing will cross, facing the enzymatic activity of
the skin [32]. As we can see, the passage of molecules through the skin poses significant
challenges. In this regard, various approaches have been developed to facilitate the passage
of active compounds. Specifically, in this review, we will address advances in immunization
since it is in this field where we find advantageous characteristics for administration.

Drug or antigen delivery via the transdermal route has several advantages (Figure 2).
First, pre-systemic metabolism can be avoided, being a candidate for compounds with
extensive hepatic metabolism. Second, the transdermal route offers a minimally invasive
approach. Third, transdermal delivery avoids infections associated with the manipulation
of conventional needles. Fourth, the transdermal route allows dose reduction due to the
existence of minimal metabolism. Finally, it has the potential for self-administration and
effective induction of the immune system, making it an attractive route for non-invasive
immunization [30,31].
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Innate and Adaptive Immune Response of the Skin

The potential of transdermal immunization is supported by the abundant presence
of cells of the immune system in the skin, which can trigger an effective antigen-specific
immune response [33]. Langerhans cells were initially described in 1868 by Paul Langer-
hans [34] and correspond to a subtype of dendritic cells with a stellate shape located mainly
at the base of the epidermis [35]. Langerin expression characterizes these cells; this protein
plays a fundamental role in presenting antigens to T25 cells and corresponds to a type
C lectin, which is localized in cytoplasmic organelles with a striated appearance inside
Langerhans cells called Birbeck granules [36]. It has been recently shown that the expression
of the kinases activated by serine/threonine p21 (PAK1) in Langerhans cells contributes
significantly to the maintenance of epidermal stem cells, which in turn can be related to
autoimmune pathologies and skin cancer, underscoring the importance of this cell type for
skin immunomodulation [37]. An essential link between innate and adaptive immunity is
the dendritic cell, which can activate naïve T cells and contributes to the initiation of both
cellular and adaptive humoral immunity [38], Specifically, in the skin, we can find dermal
dendritic cells, which correspond to a subtype of dendritic cells; the evidence shows that
they present a greater activation than blood dendritic cells, promoting a strong proliferation
of T cells, two populations of dermal dendritic cells; CD1c + DC and CD141 + CD, the
latter being responsible for the cross-presentation of CD8 + T antigens [39]. On the other
hand, the recent discovery of various subtypes of innate lymphoid cells (ILC), such as
ILC1/2/and 3, has contributed to the complexity of the immunomodulation mechanisms
in the skin [40,41]. Despite coming from a common lymphoid progenitor, ILCs lack the
specific rearranged antigen receptors expressed by T cells and the three ILC subtypes
located at different skin layers [42].

Keratinocytes (KCs) are cells that produce keratin in the skin and constitute a high
percentage of the cells of the epidermis response [39], forming an efficient barrier, which
works as the first line of defense against skin pathogens and exogenous substances [43].

BioRender.com


Vaccines 2021, 9, 1420 5 of 22

KCs express Toll-Like receptors (TLR) and secrete several types of chemokines and proin-
flammatory cytokines in response to TLR stimulation by PAMPs. Thus, high expression of
interleukin 33 (IL-33), a member of the IL-1 family, has been shown to activate helper T cells,
macrophages and induce the ILC innate lymphoid cell family [44]. The recent discovery
of various subtypes of innate lymphoid cells (ILC), such as ILC1/2/and 3, has added to
the complexity of the immunomodulation mechanisms in the skin [40,41]. Despite coming
from a common lymphoid progenitor, ILCs lack the specific rearranged antigen receptors
expressed by T cells and the three ILC subtypes located at different skin layers [42]. Dermal
fibroblasts are another cell type that makes up the skin and express TLR-type receptors
even at higher levels than keratinocytes. One of the functions of these cells is to secrete
components of the extracellular matrix [45].

3. Transdermal Immunization Based on Physical Methods to Go across the
Stratum Corneum

As discussed above, a significant challenge for administering transdermal vaccines
is to overcome the stratum corneum [46]. In this regard, various approaches have been
explored, based either on devices disrupting the skin barrier or on vehicles that facili-
tate antigen passage through the skin. Figure 3 summarizes the most commonly used
approaches to achieve this transdermal penetration. These approaches have been used
alone or in combination with nanosystems, described in the following sections.
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3.1. Transdermal Administration Based on Microneedles

One of the strategies that have been successfully applied for transdermal administra-
tion and that causes minor disruption of the stratum corneum is based on microneedles [47].
This strategy manages to overcome the limitations of the conventional parenteral route,
as needles with sizes of micrometers can penetrate the layers of the skin, avoiding the
typical discomfort in the patient due to pain, bleeding, and risk of infections [48]. Fur-
thermore, microneedles do not suffer from limitations associated with the particle size
of bioactive compounds since these devices usually have a larger size. Because of these
features, there are already several products marketed for therapies, such as the intrader-
mal influenza vaccine Intanza® [49] or the acne treatment Dermaroller [50]. Furthermore,
microneedles are usually classified according to the material with which they have been
produced or the active release profile. Thus, we can find dissolving-, solid-, coated- and
hollow-microneedles [51].

In the field of transdermal immunization, microneedles associated with free antigen or
combined with nanosystems have been used successfully. Table 1 shows some nanosystems
designs for diphtheria and a new DNA vaccine against SARS-CoV-2. Microneedles are un-
doubtedly the most developed devices to date in transdermal immunization [52]. Although
recently a very low-cost microneedle-anchored electroporator device for immunization
against SARS-CoV-2 was shown, there are still challenges to overcome [53]. Current studies
aim to overcome the remaining challenges in this area [54]. New technologies have been
developed to manufacture microneedles to obtain improved compatibility when entering
the stratum corneum. Examples are soluble microneedles, made with totally biocompat-
ible water-soluble materials that penetrate the skin barrier and then solubilize with the
active principle [55]. The oxidation of the material and the shortening of the microneedle
length to avoid skin irritation has been another focus of study, leading, for example, to
the development of microporous polymeric microneedles [56]. The biocompatibility of
the devices has also been an essential subject of study, due to the presence of possible
unwanted effects in the application site, such as irritation, inflammation, pore enlargement,
and modification of the skin barrier [57,58]. It should be noted that these challenges to
be overcome are common to other administration methods; this review will not focus on
microneedles mainly; however, we do recommend to the reader some excellent reviews to
delve into the advances of this technology [59].

Table 1. Transdermal nanovaccine designs for various antigens using novel nanosystems and their immune response from
in vivo assays.

Antigen Nanosystem Design Immune Response In Vivo Assays

Ovalbumin

Liposomes, transferosomes and etosomes
formulated using the reverse phase

evaporation method.

In female BALB/c mice using colloidal Al
(OH) 3 as adjuvant, an antiova antibody
titer was obtained higher than the other

nanosystems, compared to the
non-encapsulated control [60].

Phytoglycogen (PG) nanoparticles
conjugated to form Nano-11 adjuvant

particles with and without cyclic di-AMP,
administered with Pharmajet.

The compound combining both
adjuvants demonstrated a synergistic

immune response that resulted in
increased production of Abs IgG1 and
IgG2a, as well as CD8 T lymphocytes

expressing Th1, Th17 and IFN-γ in mice
and pigs [61].

Homolog 5 of Plasmodium falciparum
reticulocyte-binding protein (PfRH5) and

coding sequence of small hepatitis B
virus envelope (HBs) antigen

Tattoo Cationic liposomes fused with
VHP antigen, expressing on their surface

(PfRH5) formulated from
dimethyldioctadecylammonium

bromide) and DC-cholesterol by solvent
evaporation.

A strong humoral response against
PfRH5 in malaria vaccines was

demonstrated in mice in those with fused
tattoo, superior to the non-fused control

PfRH5 and to intraperitoneal
administration [62].
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Table 1. Cont.

Antigen Nanosystem Design Immune Response In Vivo Assays

Diphtheria toxoid (DT)
Mesoporous Silica Nanoparticles (MSN)

Embedded in Coated, Hollow
Microneedles

The DT encapsulated in MSN induced a
stronger antibody response than the

antigen solution when administered by
hollow microneedles in BALB/c mice, it
is shown that the type of encapsulation

and microneedle affect the response [63].

HIV-1P24-Nef peptide
PGLA nanoparticles with the sequence of
the flagellin molecule from Pseudomonas
aeruginosa as TLR5 activating adjuvant.

The formulation is shown in mice to
improve immunogenicity and reduce the

dose [64].

Antigen DNA, based on protein N or S
from SARS-CoV-2 viruses

Lipidoid nanoparticles composed of low
molecular weight polyethyleneimines

conjugated with deoxycholic acid loaded
with the adjuvant Resiquimod in

separable microneedles.

The authors show in female C57BL/6
mice that the intradermal vaccine is

capable of inducing an enhanced and
lasting immune response compared to

the intramuscular route, the formulation
can be kept at room temperature for at

least 30 days [65].

Influenza Neuraminidase and Flagellin
Protein

Influenza 2 matrix protein ectodomain
(M2e) nanoparticles (M2) by ethanol

desolvation and double-layered protein
nanoparticles, incorporated in soluble

microneedles.

The nanovaccine was able to significantly
increase the levels of specific antibodies
and protect the mice from infection [66].

3.2. Transdermal Administration Based on Electrical Techniques

Iontophoresis consists of the application of electrical current through the skin to favor
the penetration of specific molecules. This method is an effective and non-invasive route of
penetration [67]. Among the limitations that this administration technique faces for trans-
dermal vaccination is the difficulty of administering the antigen in a focused way, avoiding
permeation towards the muscle, and efficiently achieving its accumulation and subse-
quent stimulation of Langerhans cells. Combining this technique with nanoencapsulated
bioactive compounds is a promising approach to overcoming this challenge [68,69].

Other techniques that use this basis for the delivery of bioactive compounds include
sonophoresis, in which ultrasonic energy is used to induce the entry of assets through
the skin [70]. Another technique is magnetophoresis, in which electric charges induce
a magnetic field and with this occurs the vectorization of the drug [71]. We also have
electroporation; in this technique, an aqueous pore is created in the skin by exposing it to
high voltages for short periods, allowing the entry of bioactive compounds [72]. Finally, we
find microporation, which, like electroporation, is based on creating a pore that will enable
the passage of bioactive compounds. Still, this time the energy is transmitted through a
metallic element by conduction, which produces a non-transitory pore in the skin due to
the increase in temperature at the level of the stratum corneum [73]. Figure 3 shows a
schematic representation of the active diffusion techniques and passive diffusion through
barriers. It is important to note that once the stratum corneum has been crossed, the
particles can release their content to produce the immune response.

3.3. Transdermal Administration Based on Other Approaches

Star-shaped particles have been developed, made of aluminum oxide or stainless
steel, which can generate pores in the skin and thus overcome the stratum corneum barrier.
The authors achieved surprising results in improving the survival of mice with cutaneous
melanoma treated with 5-fluorouracil and in vaccination against tetanus toxin [74]. How-
ever, it is still unclear whether these pores are harmful to the skin in the long term. That is
why in the next section, we will review the approaches that have been made to achieve a
needle-free vaccination, focusing on the design and composition.
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Another relatively novel device used is the PharmaJet Needle-Free Jet injector device,
which has been shown to successfully administer the influenza virus vaccine in a random-
ized trial that compared it with intramuscular administration. The results were not inferior
to those obtained with conventional administration, offering an alternative to traditional
needle syringes since the device does not have a needle [75]. However, the costs associated
with this type of device remain a disadvantage in this field. Table 1 shows another example
of the successful use of this device to administer the ovalbumin antigen. Additionally, it
incorporates the recent advances in nanosystem technologies used for immunization in
in vivo tests for different antigens.

4. Nanosystem-Based Antigen Delivery Systems Noninvasive;
Needle-Free Administration

Until now, we have reviewed the characteristics that make the skin and the trans-
dermal pathway promising for immunization and the administration techniques used to
cross the stratum corneum and their limitations, highlighting as the main challenge the
achievement of immunization without damaging the stratum corneum.

One of the factors that make needle-free immunization desirable is the fact that the
rupture methods used to allow the passage of particles such as microneedles, microporation,
abrasion, among others, not only produce the response of the innate immune system,
generating skin reactions adverse effects in patients, but also interrupt the skin barrier,
which implies a greater risk of infections. This does not mean a greater compromise
in healthy patients; however, in immunocompromised people, patients with difficult
healing, children, and the elderly pose a greater risk that limits extensive use, without also
considering the use of these devices complicates administration [76].

In this race to obtain adequate and safe transdermal vaccines, the incorporation of
nanomedicine has made a significant contribution [77]. This has allowed, for example, to
improve the revised administration techniques with the incorporation of controlled antigen
release systems that have allowed to overcome some limitations such as thermostabil-
ity [78], to enhance permeability by having a small particle size and increasing the contact
surface [79], to reduce doses avoiding the manifestation of adverse reactions and to improve
pharmacokinetic profiles [80]. The main advantages of nanovaccines are summarized in
Figure 4. Next, this review will address the advances in administering vaccines through
the skin using nanosystems, their types, designs, approaches, and challenges for the design
and composition of nanosystems.

The most widely used nanosystems for antigen delivery are nanoparticles, liposomes,
polymeric nanoparticles, niosomes, cubosomes, ethosomes, gold nanoparticles, and na-
noemulsions. The choice of the type of nanometric particle depends mainly on the bioactive
characteristics of the compound and the chosen route of administration; therefore, it is
crucial to consider its use either combined with some administration method of those
already reviewed or by itself. The design orientation is based on the delivery of passive or
active bioactive compounds. Table 2 summarizes the various types of nanosystems used
for antigen administration, their properties, their specific application in the immunization
area, and the main challenges that remain to be faced with making their use in the field of
immunization. Next, we will address some nanosystems that have been more widely used.
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Table 2. Main Nanocarriers used in transdermal immunization.

Nanosystem Application in Immunization Challenges References

Liposomes

Microneedles combined with liposomes
co-loaded with doxorubicin HCl (DOX) and

celecoxib (CEL)/cationic liposomes
encapsulated with hepatitis B DNA vaccine and

adjuvant CpG ODN. Conducting clinical trials, limitations
associated with the coupled use of

microneedles.

[81,82]

Liposomes loaded with the surface antigen of
P-falciparum MSP-1 [83,84]

Yersinia pestis F-1 antigen-loaded liposomes
using microneedles [85]

Transferosomes Cationic transferosomes composed of cationic
lipid DOTMA and sodium deoxycholate.

Deficiency of consistent results that
validate increased transdermal

permeability.
[60,86]

Ethosomes
Hyaluronic acid (HA) and galactosylated

chitosan (GC) modified ethosome (Eth-HA-GC)
loaded ovalbumin.

Evaluation of safety and efficacy using
other antigens, application suggested

by authors in oncology

[87]High ethanolic content can be a
“double-edged sword”, producing high

drug entrapment, but also large
leakage.

BioRender.com
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Table 2. Cont.

Nanosystem Application in Immunization Challenges References

Niosomes Cationic niosomes loaded with ovalbumin
combined with hollow microneedle.

Dependence of association with
microneedles. [88]

Cubosomes

Cubosomes that encapsulate adjuvants Quil A
and monophosphoryl lipid.

Ability to cross the stratum corneum by
passive diffusion, compatibility to

encapsulate antigens and adjuvants in
sets still under study.

[89]

Cubosomes to transport antigens combined with
microneedles [90]

Polimeric
Nanocapsules

Protamine and polyarginine nanocapsules in
association with the recombinant hepatitis B

surface antigen.

Incorporation of adjuvant molecules to
obtain an improved immune response.

Nanocapsules of a vitamin E oily core,
surrounded by two layers: a first layer of

chitosan and a second of dextran sulphate,
antigen, IutA protein from Escherichia coli

[91]

Autonomous active microneedle for the direct
intratumoral delivery of an immunoadjuvant,
cowpea mosaic virus nanoparticles (CPMV).

[92–94]

Chitosan-coated PLGA nanoparticles

4.1. Liposomes

Liposomes correspond to a double layer commonly formed by phospholipids or other
derivatives and cholesterol [95]. These systems have been widely studied to transport
antigens and active molecules due to their possible adjuvant effect, triggering an efficient
immune response [96,97]. On the other hand, their composition gives them high biocompat-
ibility and the possibility of directing immunological therapies to the different targets in a
controlled way [88,98]. The properties that affect this process are the physicochemical char-
acteristics such as particle size, Z potential, polydispersity, and lipid composition [99–101].
To date, multiple approaches have been developed to combat infectious diseases by associ-
ating antigens with this type of nanocomposite [102–104]. Its efficacy for administering
antigens against SARS-CoV-2 by different routes of administration is still being evalu-
ated [105]. In the area of transdermal immunization, they have been used in conjunction
with dissolvable microneedles to develop vaccines against leishmaniasis [106] and for
non-invasive delivery of vaccines against tetanus toxoid [107], among others (see Table 2).

4.2. Nanocomposites Derived to Liposomes

In the field of needle-free transdermal immunization, it has been suggested that the
rigid structure of liposomes makes it challenging to pass through the skin barrier [89],
which is why multiple modifications have been incorporated to create liposome-derived
nanosystems that can circumvent such limitations.

4.2.1. Transferosomes

Transferosomes are elastic liposomes composed of phospholipids, which form de-
formable vesicles and increase transdermal permeability in the presence of a hydration
gradient in the stratum corneum [108]. Their composition, based mainly on edge activating
surface surfactants such as sodium cholate, polysorbates, and Sorbites, allows a modulation
in the flexibility of the sheath, allowing them to pass through the pores of the skin, thus
opening the way to needle-free vaccination [109]. Among the advantages of using these
designs are their high flexibility, their ability to encapsulate hydrophilic and hydrophobic
compounds, and their ability to incorporate molecules of peptide origin [110]. Due to their
composition, they lack biocompatibility problems; like other nanosystems and can be used
for topical and systemic treatments.
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The mechanism of transdermal entry of transferosomes is based on the presence of
border activators, in a first step; They allow the nanosystem to pass through the stratum
corneum through channels with diameters of less than 50 nm. In a second step, the
component derived from phospholipids is capable of sealing the vesicle and transporting
it through the pore, the gradient produced by the difference in water content between the
surface of the skin and the epidermis produces what is known as “transdermal gradient”,
which allows the passage of the nanosystem [111]. This is how they are capable of crossing
the skin barrier by the transcellular or intercellular route [112].

Despite its beneficial properties for transdermal immunization, there is currently a
small number of studies in this field, we can mention tetanus vaccine designs [113] and
against the virus responsible for hepatitis B [86]. The above is a motivation to overcome the
challenges that limit its use, mainly derived from its oxidative stability [114], high cost asso-
ciated with the constituent lipids, and difficulty of reproducibility of the preparations [115].
So, there is still a long way to understand the interaction between the compounds, compo-
nents, and stabilization of these nanosystems to develop transdermal vaccines.

4.2.2. Ethosomes

Ethosomes correspond to a type of liposome that contains in its composition between
20 to 40% ethanol. Their properties include a great drug encapsulation capacity and stability
in comparison with the classic liposomes, negative Z potential, size smaller than 200 nm,
which decrease as the ethanol concentration increases, highly deformable, non-toxic and
highly biocompatible [116], skin permeability facilitated by ethanolic content [117,118].
The passage mechanism through the stratum corneum of ethosomes involves two steps:
the contact of SC lipids with ethanol produces a composition alteration, known as the
“ethanol effect”. In a second phase, the breakdown of the superficial lipids generates a
decrease in the skin barrier compaction that allows the flexible structure of ethosomes
to enter through the skin and interact with the polar component of lipids, known as
the “ethosome effect” [119]. By using ethosomes marked with fluorescent probes, the
molecular mechanism of entry of ethosomes was alucidated. Thus, the passage through
the SC by intercellular pathways can take place without damaging the structure of the SC
and distributing mainly in the cell membrane.

Ethosomes have been developed for various applications, such as treatment of in-
flammation, analgesia, skin conditions, among others [120]. Although few studies have
been carried out in the field of transdermal immunization, it has been shown enhanced
transdermal penetration by ethosomes marked with rhodamine [121]. Additionally, etho-
somes in conjunction with biopolymers for the administration of ovalbumin, effectively
stimulating the response of the immune system and they have been incorporated into
carbomer gels to achieve vehicles that can be administered needle-free [122]. It was also
shown that ethosomes that include hyaluronic acid or chitosan formulated by layer-by-
layer self-assembly promote the stimulation of IL-2 and IL-6 and cytokines associated with
dendritic cell maturation when loaded with an antigen [89]. The challenges associated with
the formulation of this type of nanosystem are summarized in Table 2.

4.2.3. Niosomes

Niosomes are liposome-type nanometric structures formed by the assembly of non-
ionic surfactants, which are mainly derivatives of alkyl or dialkyl polyglycerol ether and
cholesterol that are subsequently hydrated. Since they were discovered in the cosmetic
industry in the 1980s, these structures have been widely formulated. Depending on
their manufacturing method, Niosomes can be unilamellar or multilamellar (obtained by
thin layer evaporation, addition of molten lipids, addition of hot water, ether injection,
microfluidics, among others) [123]. Advantages of using niosomes include easy large-scale
production, high stability, low toxicity, and high transdermal penetration [124].

A successful example of the use of niosomes for transdermal vaccination is a 60%
increase in the immune response by encapsulating the antigen to prevent Newcastle
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disease [125]. However, in recent years, despite the great apogee of niosomes, no significant
advances have been reported in the field of transdermal immunization. This scenario could
be due to the use of organic solvents, phase heating (non-appropriate for thermolabile
compounds), or a large number of existing patents for these vehicles.

4.2.4. Cubosomes

Cubosomes are composed of two aqueous channels, separated by a lipid bilayer
arranged three-dimensionally either in a lipid form, water, double diamond, rotated, or
primitive [126,127]. Among the lipids most used to formulate them is the [128], while sur-
factants derived from poloxamers have been the most used to stabilize the cubic structures
of these nanosystems [129]. Among the ways of obtaining it, the bottom-up approach and
top-down approach stand out. The latter is the most used and consists of the formation
of the viscous primary structure formed by lipids and its subsequent dispersion in water
by applying high-energy methods [130,131]. The designs for transdermal immunization
of niosomes and cubosomes are still small (Table 2) and are not without challenges when
formulating them. It is expected that with the progress of research and incorporation of
suitable stabilizers, these limitations can be overcome by the encapsulation of assets and
transdermal penetration, preventing them from losing their conformation as they pass
through the various layers of the skin [132].

4.3. Nanoparticles

Nanoparticles correspond to colloidal structures of nanometric size, for nanomedicine
approaches, usually less than 500 nm. Depending on their formulation, we can find
polymeric nanoparticles associated with polymers by interacting electrostatic charges or
nanocapsules, which generally have a lipid core and a polymer shell. Both designs can
incorporate compounds of therapeutic interest either by encapsulation or association by
adsorption on the surface [80,133,134].

4.3.1. Polymeric Nanoparticles

New approaches based on incorporating biodegradable polymers into their composi-
tion have shown great potential in the biomedical area and the field of immunization [135].
These nanosystems are capable of containing not only antigens of interest but also various
adjuvants. Being biodegradable, they can maintain the release of compounds from days to
several weeks generating biocompatible waste [81,82]. Table 2 shows recent examples of
formulations for transdermal immunization using these nanocarriers.

The pandemic caused by the SARS-CoV-2 virus has not only triggered a broad race to
find effective vaccines against this virus. Still, it has also allowed novel vaccines based on
nanoparticles loaded with messenger RNA to reach the market, positioning itself as the first
of such designs to be approved by regulatory agencies such as the EMA and the FDA [136].
This is how vaccines such as Pfizer and BioNTech RNA: BNT162b2 and modern mRNA-
1273 based on purified messenger RNA are used today [137,138]. Although these designs
are administered parenterally, without a doubt, they open the door to the development of
new technologies, aiming at needle-free vaccination and is not only limited to the transport
of antigens but also undoubtedly an open door towards the development of new therapies
for the treatment of COVID-19 [139].

4.3.2. Nanocapsules

Systems with nanometric size and core-shell structure and coated mainly with poly-
meric compounds are called nanocapsules. Among their characteristics, we find the ability
to induce long-lasting immune responses, dose reduction, and reduction of adverse ef-
fects [140]. Our research group has worked on the development of nanocapsules capable
of carrying antigens for needle-free transdermal immunization and shown that polymeric
nanocapsules with chitosan shell, loaded with Ovalbumin (OVA) are stable, with a high
association of the protein capable of interacting with the immune system and being, in an
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ex vivo model in pigskin, better retained than OVA in solution [33]. This property has been
reinforced by associating hyaluronic acid as a biopolymer, showing promising systems for
needle-free transdermal administration [141].

4.4. Nanoemulsions

Nanoemulsions are heterogeneous mixtures that can be formed by drops of oil in
an aqueous medium (O/W) or drops of water dispersed in oil (W/O), stabilized by
incorporating surfactants and being of nanometric size [60]. They have shown great
potential in transdermal vaccination; however, it is still necessary to study the mechanisms
by which they could cross the skin barrier. Until now, there is a history that this is dependent
on size, which is mainly called the note is that in this case, smaller sizes do not necessarily
imply a greater transdermal passage [142].

In the case of transdermal immunization, they have been designed in conjunction
with Imiquimod to induce enhanced responses in T lymphocytes [143]. In the case of
the incorporation of biopolymers, the influence of the polymeric coating on transdermal
penetration has been studied [144]. Recently, the nanoemulsion MF59, an authorized and
approved preparation with commercial use for the administration of parenteral vaccines
against influenza, has been associated with microneedles, demonstrating a painless admin-
istration and maturation of dendritic cells [145]. Although only a few studies for the use of
nanoemulsions for transdermal vaccination have been published, their versatility, stability,
and a large number of studies associated with their excellent safety profile make them
promising vehicles for the fight against COVID-19 disease, not only as antigen carriers but
also as carriers of various active molecules against the SARS-CoV-2 virus [146].

5. Novel Approaches to Design Nanoparticles for Needle-Free Transdermal Delivery
Based on Their Composition

One of the most recent approaches to address the problem of needle-free vaccination
is to focus on the composition of the design without losing sight of the nanometric size.
The first approaches in this field were not very far from what is known today; it is neces-
sary to have a small particle size to bypass the stratum corneum [102], and this was the
predominant approach in designs for a long time. Large amounts of surfactants were used
to achieve this objective. However, today it is known that it is not enough to have a small
particle size and adequate lipophilicity; it is also necessary to have excipients that will allow
the stratum corneum to be reversibly and non-aggressively opened and thus will enable
the passage of nanosystems. Among the components that can be highlighted recently, the
use of Compritol 888 ATO has been described as a promoter of transdermal penetration in
polymeric nanoparticles that encapsulate ovalbumin and as adjuvant Imiquimod [7].

5.1. Azones

Azones and their derivatives are among the main transdermal permeability enhancers
that can be used to manufacture nanosystems. These molecules are composed of a polar
and a hydrophobic chain and can enhance transdermal penetration at low concentrations.
It is most extensively used alongside laurocapram; however, it should be noted that this
or its derivatives have not been yet incorporated for the development of nanosystems for
needle-free immunization purposes [117,147].

5.2. Fatty Acids

Fatty acids such as oleic acid, stearic acid, and ethyl oleate are approved by the U.S.
Food and Drug Administration (FDA) and can provide various advantages when incor-
porated into the designs. These excipients allow increasing the transdermal penetration
of format dependent on its structure and chain length. The mechanism of action for the
transdermal penetration increase is based on the increase in the diffusion coefficient of the
skin due to the improvement of the interaction between the preparations with the lipid
layer of the skin [30,124].
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5.3. Alcohols

Alcohols are excipients that can be incorporated into nanosystems both in their internal
and external phases. These can improve the solubility of encapsulated compounds and
their ability to enhance the permeability of the skin. Ethanol and isopropyl alcohol have
been the most used in topical preparations [148]. However, the use of alcohols represents
an excellent design challenge since it is important to optimize the quantity due to their
high toxicity when used in high concentrations [149,150]. Otherwise, the encapsulated
compounds may be released from the nanosystems, their equilibrium may be broken, and
their nanometric structure may be lost. The quantity, length of chain, and phase in which
they are added suppose a significant challenge in the design [126].

5.4. Polymers

Polymers are excipients composed of simple subunits joined by covalent bonds called
monomers and have been used in nanoparticle designs for various purposes. Among
them, we can highlight the increase in the stability of the particles when they are located in
external areas due to the particle-particle steric hindrance or as surfactants [108]. On the
other hand, these compounds have been described in the field of nanovaccines as thermal
stabilizers, and it has been shown that even at concentrations lower than those normally
used as surfactants, they are capable of protecting antigens from degradation by keeping
them at room temperature, without loss of efficiency [151].

5.5. Polysaccharides

Most polysaccharides are generally recognized as safe (GRAS), and they are widely
used for various purposes. In the field of immunization, their use in formulations has
been recognized for their ability to activate cells of the immune system. In the field of
nanocarrier design of antigens, they stand out for their property of increasing transdermal
permeability since they are capable of promoting increased permeability in the stratum
corneum, which is, as has been mentioned with much emphasis, one of the main barriers to
overcome [152]. These excipients have not only the property already described to enhance
permeability; moreover, the incorporation of these excipients in nanoparticle-based vaccine
formulations significantly increases the thermostability of antigens. An example of this has
been reported for a DNA vaccine for immunization against the Ebola virus, in which the
antigen in its non-encapsulated form required −70 ◦C for storage. In its nano encapsulated
state, it no longer requires refrigeration. It is important to note that this strategy was
combined with microneedles and has not been applied in needle-free systems, so there is a
potential benefit with incorporation into the designs, largely because they are inexpensive
excipients but with the limitation that a significant amount must be used to obtain the
thermostability enhancer effect [153].

6. Projections

The transdermal route is a promising route of administration for immunization.
Among its advantages, we find the great diversity of cells of the immune system, it
is not traumatic, its great acceptance by patients, and the potential to improve the deficient
characteristics of bioactive compounds. However, although multiple studies have been con-
ducted, we do not yet have commercially available transdermal vaccines. Much progress
has been made, especially in the field of microneedles, but there are still many challenges to
overcome. When facing these challenges, the safety and efficacy of administering nanocom-
posites play a very relevant role [137]. The recent approval of parenteral vaccines that use
this technology, such as the BNT162b2 vaccine (BioNTech/Pfizer) and the modern design,
have shown high efficacy and safety in clinical, double-blind, multicenter, and randomized
studies [154–157]. On the other hand, there is a tremendous challenge in scaling these
designs to applications that can be massively developed for the population. Along these
lines, it was recently shown that incorporating engineering strategies for production A
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batch scale of polymeric nanoparticles and even a continuous manufacturing line using
microfluidics is feasible and has much potential for these applications [158].

Another relevant characteristic is the manufacturing reproducibility of the nanosys-
tems to comply with the regulatory requirements. Therefore, the improvement of the
animal study models used to evaluate the biogenicity of the materials used to consti-
tute nanosystems needs improvement [159]. The costs associated with the production of
nanocomposites will continue to be a focus of development. Undoubtedly, immunization of
the population continues to be the most cost-effective way to prevent diseases [160]. Efforts
continue to focus on low-cost excipients; however, only interdisciplinary work in conjunc-
tion with the production laboratories will improve production costs [161]. Needle-free
administration must focus on the size and stability of the nanosystems and their compo-
sition and rational design. For years, the design and stabilization of nano-sized vehicles
have relied on practical strategies and pseudo-ternary phase diagrams [134]. The most
elaborate approaches have tackled the problem using Box-Behnken [162] or staggered-level
designs in which various combinations of the chosen excipients are tested [163]. However,
it is essential to have strategies that optimize designs in less time and consider limited
resources [164]. In this context, incorporating computational techniques arises to tackle the
design process with a multidisciplinary approach. The use of mathematical models and
machine learning as a nanosystem optimization technique is incipient [164]. However, it
is a valuable resource capable of reducing design times and the number of experiments
required. Experimental data are needed to “fit” or “train” models of the effect of the
composition, and they allow to explore the impact of the formulation composition in a
range defined for each component [165,166].

One of the projections that this review article seeks to deliver is to motivate researchers
to incorporate these types of tools that have been successfully included for the design
of new and optimized promising nanosystems that not only limit their use to nanovac-
cines [167]. Unfortunately, the need to use elaborate programming interfaces, often away
from the medical personnel who direct these investigations, has limited their use. Therefore,
mathematical modeling and the use of artificial inteligence are an open door, which could
allow rapid advances in the field of nanovaccines. Time and the training of interdisciplinary
professionals will be able to take advantage of their potential.
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