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Abstract: M2SR (M2-deficient single replication) is an investigational live intranasal vaccine that
protects against multiple influenza A subtypes in influenza-naïve and previously infected ferrets. We
conducted a phase 1, first-in-human, randomized, dose-escalation, placebo-controlled study of M2SR
safety and immunogenicity. Adult subjects received a single intranasal administration with either
placebo or one of three M2SR dose levels (106, 107 or 108 tissue culture infectious dose (TCID50))
expressing hemagglutinin and neuraminidase from A/Brisbane/10/2007 (H3N2) (24 subjects per
group). Subjects were evaluated for virus replication, local and systemic reactions, adverse events
(AE), and immune responses post-vaccination. Infectious virus was not detected in nasal swabs
from vaccinated subjects. At least one AE (most commonly mild nasal rhinorrhea/congestion) was
reported among 29%, 58%, and 83% of M2SR subjects administered a low, medium or high dose,
respectively, and among 46% of placebo subjects. No subject had fever or a severe reaction to the
vaccine. Influenza-specific serum and mucosal antibody responses and B- and T-cell responses were
significantly more frequent among vaccinated subjects vs. placebo recipients. The M2SR vaccine
was safe and well tolerated and generated dose-dependent durable serum antibody responses
against diverse H3N2 influenza strains. M2SR demonstrated a multi-faceted immune response in
seronegative and seropositive subjects.

Keywords: influenza; vaccine; clinical trial; M2SR; immunity

1. Introduction

Influenza viruses cause respiratory disease and additional medical complications,
resulting in over 200,000 hospitalizations and 12,000 to 61,000 deaths per year in the
United States [1]. Annual influenza vaccination is the primary means of preventing
influenza and its complications. The CDC recommends seasonal influenza vaccination
for all individuals aged 6 months and older. However, the vaccine effectiveness (VE) of
current licensed vaccines is sub-optimal, ranging from 60% in years in which there is a
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good match between vaccine and circulating strains to as low as 6% in years in which there
is a mismatch [2]. VE against the H3N2 subtype is especially problematic, accounting for
higher hospitalization rates and excess mortality compared with H1N1 and influenza B
infections [3]. Furthermore, concerns have been raised regarding waning of protection
within the course of a single influenza season [4–7]. Thus, there is a need for new effective
influenza vaccines that induce broader, cross-reactive and durable immune responses.

Natural infection with the influenza virus generates a multi-faceted immune response
that can provide heterologous and/or heterosubtypic protection against influenza dis-
ease [8–10]. Recent recommendations emphasize that the next generation of influenza
vaccines should aim to elicit similar systemic and mucosal immune responses in order
to increase VE [8,11]. Currently available inactivated influenza vaccines (IIV) primarily
induce neutralizing antibodies against the virus envelope protein hemagglutinin (HA)
and depend on a close match between the vaccine and circulating viruses. Such vaccines
are therefore relatively ineffective against newly emerging viruses or viruses that have
drifted away from the vaccine strain. Mucosal antibody and T cell immune responses
elicited after wild-type or experimental influenza virus infection have been associated
with cross-protection [12–15] but are generally not elicited following vaccination with
IIV [13,14,16,17].

The investigational influenza vaccine, M2SR (M2-deficient single replication), is in-
tended to simulate wild-type influenza virus infection of the nasal mucosa, presenting a
broader repertoire of influenza antigens, including the neuraminidase and internal proteins
that are highly conserved among influenza viruses. The vaccine virus is produced in cells
that constitutively provide the essential viral M2 protein on the virus surface but M2 is
not expressed from the virus genome. The resulting virus mimics the infectious wild-type
influenza virus when intranasally administered, but only for a single replication cycle, and
does not produce infectious virus progeny. In animal models, M2SR vaccination thus mim-
ics the immune responses generated following a naturally acquired, wild-type infection
and induces broad-spectrum immunity, including neutralizing antibody responses to HA,
mucosal and cell-mediated responses [18,19]. The intranasally administered M2SR live
virus vaccine has shown homologous, heterologous and heterosubtypic protection against
multiple influenza A subtypes in several animal model systems [18–21].

Here, we report the safety and immunogenicity of a prototype monovalent M2SR
vaccine encoding the HA and neuraminidase (NA) of an A/Brisbane/10/2007-like H3N2
virus (further referred to here as “Bris2007 M2SR”) in a first-in-human clinical study. The
H3N2 subtype was chosen as the initial target to demonstrate clinical proof-of-concept
as the licensed vaccines provide sub-optimal H3N2 protection when there is a mismatch
between the vaccine and circulating H3N2 strains or when multiple clades circulate simul-
taneously. M2SR was shown to be safe and immunogenic, inducing mucosal and systemic
immune responses, including hemagglutination inhibition (HAI) antibody titers, against
drifted H3N2 strains.

2. Materials and Methods
2.1. Study Vaccine and Placebo

The HA and NA gene segments of A/Brisbane/10/2007 (H3N2) were transferred
into the M2SR backbone (A/Puerto Rico/8/1934, H1N1) as described previously [20].
The resulting Bris2007 M2SR vaccine was produced under good manufacturing practice
conditions in the qualified production cell line M2VeroA (Vero cells that stably express
the M2 protein). The vaccine virus was purified by anion exchange chromatography
and formulated into SPG-NaCl buffer (303 mM sucrose, 5 mM glutamic acid, 136.9 mM
sodium chloride, 2.67 mM potassium chloride, 1.47 mM potassium dihydride phosphate
and 8.1 mM disodium phosphate, pH 7.2). Bris2007 M2SR (Lot# 15100251) was provided
in single-use vials at a single concentration as a frozen solution that was stored at less than
−65 ◦C until time of use. The placebo was sterile physiological saline (APP Pharmaceuti-
cals, Schaumberg, Illinois) stored at an ambient temperature and provided in single-use
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packages. An unblinded pharmacist was responsible for preparing vaccine doses and
filling delivery devices (MAD Nasal™ Intranasal Mucosal Atomization Device, Teleflex,
Morrisville, North Carolina). Other members of the study team and laboratory staff were
blinded to treatment assignment. Subjects in Cohorts 1 and 2 (106 and 107 TCID50 and
placebo doses) received 0.2 mL divided approximately equally between two nares. Subjects
in Cohort 3 (108 TCID50 and placebo doses) received 0.3 mL total, 0.15 mL per nare.

2.2. Study Population, Design and Objectives

This was a single-center, phase 1, blinded (2 sentinel subjects dosed with unblinded
M2SR preceded enrollment of each cohort), placebo-controlled, randomized, dose es-
calation study that enrolled 96 subjects (72 M2SR and 24 placebo recipients) into 1 of
3 sequential dose cohorts (Clinical Trials Registration: NCT02822105) from June–October
in 2016. Written informed consent was provided by all participants. Healthy adults aged
18–49 were evaluated for eligibility criteria and pre-screened for A/Brisbane/10/2007 HAI
titer. Subjects were randomized 3:1 M2SR to placebo and stratified by baseline (day 0) HAI
titers within each dose level cohort: 106 (low dose, cohort 1), 107 (medium dose, cohort 2),
or 108 (high dose, cohort 3) TCID50.

The primary objective of the study was to assess the safety and tolerability of Bris2007
M2SR influenza vaccine delivered intranasally to healthy adult subjects. Secondary objec-
tives included the evaluation of nasal virus shedding and percentage of subjects demon-
strating seroconversion after Bris2007 M2SR vaccination.

2.3. Safety Evaluation

Subjects were monitored for adverse events (AE) for 28 days and for serious AE for
180 days after vaccination. The primary safety outcome measures in this study were the
frequency and severity of local and systemic treatment-emergent AEs (TEAEs) and changes
in routine hematology and chemistry parameters. Reactogenicity AEs were collected for
7 days after vaccination in a subject diary in a standard, systematic format using a grading
scale based on functional assessment or magnitude of reaction. Nasal swab specimens
collected on days 0 (baseline), 1, 2, 3 and 7 were evaluated for vaccine virus shedding by
real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and a
culture-based infectivity assay.

2.4. Influenza Antibody Assays

A/Brisbane/10/2007 HA-specific IgA and IgG antibody titers were measured in
serum by ELISA at FluGen as previously described [22] using recombinant A/Brisbane/
10/2007 HA antigen (Immune Tech, New York, NY, USA).

A standard HAI assay was performed at Quest Diagnostics (San Juan Capistrano, CA,
USA) or at FluGen to assess functional antibody levels [23]. Serum samples were treated
with a receptor-destroying enzyme (RDE, Denka Seiken, Tokyo, Japan) overnight at 37 ◦C
followed by heat inactivation for 1 h at 56 ◦C. Twofold dilutions of RDE-treated serum
samples were incubated with influenza viruses (4 hemagglutination units per well) and
50 µL of a 0.5% suspension of turkey red blood cells (Innovative Research, Novi, Minnesota)
for 30 min at room temperature. The HAI titer is reported as the reciprocal of the highest
dilution that prevented hemagglutination. For individuals with a serum HAI titer < 10 at
baseline, seroconversion was defined as an HAI titer ≥ 40 post-vaccination. For individuals
with HAI ≥ 10 at baseline, seroconversion was defined as an HAI titer with a ≥4-fold
increase from baseline post-vaccination. Seroprotection was defined as HAI ≥ 40 [24].

A/Brisbane/10/2007 HA-specific secretory IgA antibodies in nasal swab specimens
were evaluated by ELISA at Saint Louis University [25]. Total IgA antibodies were evalu-
ated using the Abnova™ IgA (Human) ELISA Kit (Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions.
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2.5. Cellular Immune Response Assays

Antigen-specific IgG/IgA ELISpot assays were used to measure the frequency of
anti-M2SR B-cells [26,27] at Cellular Technology Limited (CTL, Shaker Heights, OH, USA).
Briefly, cryopreserved peripheral blood mononuclear cells (PBMC) were either unstimu-
lated to measure antibody-secreting cells (ASC), or four-day pre-stimulated cultures with
Resiquimod (R-848) and IL-2 (B-Poly-S, CTL) were used to measure memory B-cells. Plates
were coated with H3N2 M2SR antigen overnight and thereafter washed; cells were plated
at 1 × 106 per well or 5 × 105 cells depending on availability. Medium alone (no antigen
coated) served as the negative control, and total IgG and IgA measurement served as a
positive control.

Cryopreserved PBMCs were analyzed by ELISpot assay for the secretion of interferon
gamma (IFN-γ) upon stimulation with influenza-specific peptides at Cellular Technology
Limited (CTL, Shaker Heights, OH, USA). Briefly, PBMC plated at 4 × 105 per well in
triplicate onto IFN-γ-specific antibody-coated plates were stimulated with a class 1 peptide
pool (Proimmune, Oxford, UK) at 2.5 or 5 µg/mL overnight and processed as described
previously [28].

2.6. Statistical Methods

Statistical analyses were performed using SAS 9.4 or GraphPad Prism 7 (GraphPad,
San Diego, CA, USA). Post-randomization stratification was used to analyze the effect of
baseline HAI seropositivity. Two-tailed Fisher’s exact test was used to evaluate differences
in proportions (e.g., proportions of subjects with a ≥4-fold rise in HAI titer) in each group.
Results were statistically significant if p values were <0.05. R-squared regression analysis
was used for correlation of immune responses against time.

3. Results
3.1. Demographics

From June 2016 through September 2016, 288 subjects were screened. The most
common reasons for screen failure (n = 192) were not meeting one or more of the eligibility
criteria and/or high HAI titers (Figure 1). Demographic and baseline characteristics among
the 96 enrolled subjects were well-balanced across the treatment groups (Table 1). One
subject in the medium-dose group was lost to follow up after day 2. This subject was
included in safety analyses up to day 2 but not in immunological analyses. The proportions
of subjects in each baseline HAI category (<10, ≥10 to <40, and ≥40) were similar between
the low and medium-dose treatment groups and placebo. More subjects (46%) had a
baseline HAI ≥40 in the high-dose group compared to placebo, low and medium-dose
groups (25%, 31%, 33%, respectively), but the differences were not statistically significant.
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Figure 1. Subject disposition. Vaccine dose (TCID50) groups were 106 (low), 107 (medium) and 108 (high) TCID50. Two 
subjects in each dose group were vaccinated as sentinel subjects before randomization into the group. One vaccinated 
subject in the medium-dose group was lost to follow up after day 2.  

Table 1. Baseline characteristics. 

Characteristic 
Placebo  Low Dose  Medium Dose  High Dose  All Treated  
(n = 24) (n = 24) (n = 24) (n = 24) (n = 72) 
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Female 13 (54%) 10 (42%) 12 (50%) 14 (58%) 36 (50%) 
Male 11 (46%) 14 (58%) 12 (50%) 10 (42%) 36 (50%) 

Race (n, %)      
Asian 0 (0%) 0 (0%) 1 (4%) 0 (0%) 1 (1%) 

Black or African Ameri-
can 

8 (33%) 7 (29%) 7 (29%) 4 (17%) 18 (25%) 

White 16 (67%) 17 (71%) 16 (67%) 20 (83%) 53 (74%) 
Ethnicity (n, %)      

Hispanic 3 (12%) 3 (12%) 4 (17%) 2 (8%) 9 (12%) 
Not Hispanic 21 (88%) 21 (88%) 20 (83%) 2 (92%) 63 (88%) 

Age (years)      
Mean (SD) 38.5 (7.3) 38.1 (7.1) 35.7 (6.8) 34.2 (8.2) 36.0 (7.5) 

Weight (kg)      
Mean (SD) 84.1 (15.3) 84.7 (17.5) 80.4 (19.6) 84.4 (23.3) 83.2 (20.1) 

BMI (kg/m2)      
Mean (SD) 28.2 (4.9) 28.8 (5.0) 27.4 (5.2) 29.1 (6.3) 28.4 (5.5) 

Baseline HAI (n, %)      
<10 6 (25%) 5 (21%) 5 (21%) 8 (33%) 18 (25%) 

≥10 and <40 12 (50%) 14 (58%) 11 (46%) 5 (21%) 30 (42%) 
≥40 6 (25%) 5 (21%) 8 (33%) 11 (46%) 24 (33%) 

SD: standard deviation of the mean; BMI: body mass index; HAI: hemagglutination inhibition. 

3.2. Vaccine Safety 
All immunized participants were included in the safety analyses. All doses of 

Bris2007 M2SR vaccine were well-tolerated through to day 28 post-vaccination. There 
were no serious AEs, and no subjects withdrew due to an AE. All treatment-emergent 

Figure 1. Subject disposition. Vaccine dose (TCID50) groups were 106 (low), 107 (medium) and 108 (high) TCID50. Two
subjects in each dose group were vaccinated as sentinel subjects before randomization into the group. One vaccinated
subject in the medium-dose group was lost to follow up after day 2.

Table 1. Baseline characteristics.

Characteristic
Placebo Low Dose Medium Dose High Dose All Treated
(n = 24) (n = 24) (n = 24) (n = 24) (n = 72)

Gender (n, %)
Female 13 (54%) 10 (42%) 12 (50%) 14 (58%) 36 (50%)
Male 11 (46%) 14 (58%) 12 (50%) 10 (42%) 36 (50%)

Race (n, %)
Asian 0 (0%) 0 (0%) 1 (4%) 0 (0%) 1 (1%)

Black or African American 8 (33%) 7 (29%) 7 (29%) 4 (17%) 18 (25%)
White 16 (67%) 17 (71%) 16 (67%) 20 (83%) 53 (74%)

Ethnicity (n, %)
Hispanic 3 (12%) 3 (12%) 4 (17%) 2 (8%) 9 (12%)

Not Hispanic 21 (88%) 21 (88%) 20 (83%) 2 (92%) 63 (88%)
Age (years)

Mean (SD) 38.5 (7.3) 38.1 (7.1) 35.7 (6.8) 34.2 (8.2) 36.0 (7.5)
Weight (kg)

Mean (SD) 84.1 (15.3) 84.7 (17.5) 80.4 (19.6) 84.4 (23.3) 83.2 (20.1)
BMI (kg/m2)

Mean (SD) 28.2 (4.9) 28.8 (5.0) 27.4 (5.2) 29.1 (6.3) 28.4 (5.5)
Baseline HAI (n, %)

<10 6 (25%) 5 (21%) 5 (21%) 8 (33%) 18 (25%)
≥10 and <40 12 (50%) 14 (58%) 11 (46%) 5 (21%) 30 (42%)

≥40 6 (25%) 5 (21%) 8 (33%) 11 (46%) 24 (33%)

SD: standard deviation of the mean; BMI: body mass index; HAI: hemagglutination inhibition.

3.2. Vaccine Safety

All immunized participants were included in the safety analyses. All doses of Bris2007
M2SR vaccine were well-tolerated through to day 28 post-vaccination. There were no
serious AEs, and no subjects withdrew due to an AE. All treatment-emergent adverse
events (TEAEs) were mild or moderate in severity (Table S1). There were no subjects with
severe or life-threatening TEAEs during the study. No subjects reported nasal pain or
irritation after dosing during the 14-day monitoring period. No fever was observed in any
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subject. The most frequently reported TEAEs (all causality and treatment-related) were
rhinorrhea and headache, both of which were reported at a nominally higher incidence in
the medium and high-dose groups compared with placebo (although not significant for
individual comparisons, Fisher’s Exact Test; p = 0.014 for any TEAE in the high-dose group
vs. placebo) (Table S2). There were no clinically significant changes in blood and urine
laboratory results during the study. Mean baseline values and mean changes from baseline
in chemistry and hematology parameters were similar between the vaccinated and placebo
groups.

3.3. Vaccine Virus Shedding

Nasal swab samples were collected from subjects at baseline (day 0, pre-dose) and
on days 1, 2, 3, and 7 following intranasal vaccination. The presence of the M2SR
virus was evaluated by two methods: an influenza-specific real-time quantitative RT-
qPCR assay to detect viral RNA, and a culture-based infectivity assay to detect infec-
tious viruses. Influenza virus RNA was detected in a dose-dependent manner in sub-
jects who received the Bris2007 M2SR virus (Figure S1). Quantifiable levels of RNA
(≥1900 copies/mL) were detected on day 1 in two subjects in the medium-dose group
(range: 2179 to 43,919 copies/mL) and in nine subjects in the high-dose group (range: 1959
to 110,199 copies/mL), and on day 2 in one subject in the high-dose group (5491 copies/mL).
RNA was not detected in any subject on day 7.

Presence of infectious virus in nasal swabs was assayed in Madin–Darby Canine
Kidney (MDCK) cells that stably express M2 protein (M2CK cells), that is, cells permissive
for vaccine virus growth [19]. As expected, infectious virus was not recovered at any time
point tested from any of the subjects receiving Bris2007 M2SR at any dose (n = 71) or in the
24 placebo subjects.

3.4. Serum Antibody Responses

Serum antibody titers against the A/Brisbane/10/2007 virus were measured in HAI
assays in all subjects before vaccination (day 0) and on days 14, 21, and 28 post-vaccination.
Baseline HAI titers ranged from seronegative (<10) to seroprotected (≥40) in all cohorts
(Table 1).

HAI responses to A/Brisbane/10/2007 were elevated in a dose–response manner
following vaccination with the Bris2007 M2SR vaccine. An increase in the number of
subjects with a geometric mean fold rise (GMFR) in HAI antibody titer ≥ 2-fold compared
to baseline was observed for the high-dose group only. Responses were seen as early as
day 14 post-vaccination (Figure 2). In this high-dose group, HAI titers increased by at least
2-fold in 42% (10 of 24) of subjects, by at least 4-fold in 21% (5 of 24), and the protocol
definition of seroconversion was met in 12.5% (3 of 24) of subjects. Most responses were
seen in subjects with baseline HAI titers below 40, although two subjects with a high
baseline HAI titer showed increases of at least 2-fold (Table 2), and two of the subjects with
seroconversion had baseline HAI titers between 10 and 40 (Table S3). The proportion of
subjects with seroprotective titers (HAI ≥ 40) at baseline in the high-dose cohort was 45.8%
(95% confidence interval: 25.6–67.2%) and increased to 67% (44.7–84.4) on day 28 post-
vaccination. Those subjects in the high-dose cohort with <10 HAI at baseline demonstrated
12.5% (0.3–52.7) seroprotection and those with HAI between 10 and <40 demonstrated
80.0% (28.4–99.5) seroprotection on day 28 (Table S4).
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Figure 2. Serum HAI dose response against A/Brisbane/10/2007 virus. HAI titer fold increase vs. baseline is shown for
subjects in the four different groups at days 14, 21 and 28. Bars represent the geometric mean with error bars showing the
95% confidence interval. Mean HAI titers at baseline ranged from 15 to 25.

Table 2. Day 28 HAI responses rates after high-dose vaccination.

Placebo High Dose M2SR

Baseline HAI Seroconversion a ≥4-Fold
Increase b

≥2-Fold
Increase b Seroconversion ≥4-Fold

Increase
≥2-Fold
Increase

<40 0% (0/18) 0% (0/18) 0% (0/18) 23.1% (3/13) 39% (5/13) c 62% (8/13) c

≥40 0% (0/6) 0% (0/6) 0% (0/6) 0% (0/11) 0% (0/11) 18% (2/11)
All 0% (0/24) 0% (0/24) 0% (0/24) 12.5% (3/24) 21% (5/24) b 42% (10/24) d

a Percentage (number) with ≥4-fold increase from baseline and with day 28 HAI titer ≥40 post-vaccination; b Percentage (number) with day
28 HAI titer at least 4-fold or 2-fold greater than baseline; c Fisher’s exact test p < 0.05 vs. placebo; d Fisher’s exact test p < 0.01 vs. placebo.

HAI titers remained elevated 6 months post-vaccination (Figure 3A) among the subset
(n = 10) of high-dose group subjects who showed elevated HAI titers to A/Brisbane/10/2007.
Furthermore, sera from these individuals were cross-reactive with more recent antigenically
drifted H3N2 influenza isolates A/Perth/16/2009 (clade 1), A/Switzerland/9715293/2013
(clade 3c3.a) and A/Hong Kong/4801/2014 (clade 3c2.a) (Figure 3B). These cross-reactive
antibody responses were as durable as responses against the vaccine strain (Figure 3B).
The breadth of antibody response in serum was further confirmed by microneutraliza-
tion assays using both the matched vaccine virus, A/Brisbane/10/2007, and A/Hong
Kong/4801/2014 (data not shown, responses summarized in Table 3).
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Figure 3. Duration and breadth of response induced by Bris2007 M2SR in high-dose cohort. (A) Fold increase in HAI
titer against A/Brisbane/10/2007 vs. baseline at days 28, 56 and 180 post-vaccination. Lines represent individual
subjects. (B) Correlation of fold increase in HAI titer at day 180 vs. baseline for vaccine strain A/Brisbane/10/2007
(clade 1) vs. responses to H3N2 drift strains A/Perth/16/2009 (clade 1), A/Switzerland/9715293/2013 (clade 3c3.a), and
A/HongKong/4801/2014 (clade 3c2.a). R-squared values for each correlation ranged from 0.74 to 0.98 (p < 0.0001).

3.5. Mucosal Antibody Responses

Post-vaccination mucosal antibody responses on day 28 were evaluated by an in-
fluenza A/Brisbane/10/2007 HA-specific endpoint enzyme-linked immunosorbent assay
(ELISA) assay for secretory IgA (sIgA) from nasal swabs. Total IgA-normalized sIgA titers
relative to baseline for all cohorts on day 28 are shown in Figure 4. A dose-dependent
increase in mean sIgA antibodies relative to baseline was observed. Seven of the 24 Bris2007
M2SR subjects in the high-dose cohort had a ≥2-fold rise in titers. Increases in sIgA of
2-fold or greater were observed in subjects with baseline HAI<10 (n = 2), seropositive
(n = 2) and seroprotected subjects (n = 3). Five subjects in the high-dose group also showed
an increase of more than 2-fold in serum IgA titer by ELISA compared to none in the
placebo group (data not shown).
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Figure 4. Influenza A/Brisbane/10/2007 HA-specific secretory IgA (sIgA) responses in nasal swabs.
Shown are fold increase in HA-specific sIgA titer normalized to total IgA on day 28 post-vaccination
over baseline. Bars represent the geometric mean ELISA titer with error bars showing the 95%
confidence interval. Each symbol represents an individual subject.
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3.6. B Cell Responses

The frequencies of influenza-specific IgG and IgA antibody-secreting (ASC) (day 7
post-vaccination) and memory B-cells (days 0, 7, and 56 post-vaccination) in PBMC from
the Bris2007 M2SR high-dose and placebo cohorts were tested by direct or stimulated
B-cell ELISpot assays, respectively. The M2SR high-dose cohort had a significantly higher
proportion of subjects with elevated frequencies of Bris2007 Ag-specific IgG ASC B-cells
at day 7 (Figure 5A) compared with placebo (63.2% vs. 16.7%, respectively, p = 0.0036).
Interestingly, five of the subjects with elevated levels of ASC had a baseline HAI titer of
80 or higher and did not demonstrate an increase in serum antibody. Two of the high-
dose M2SR subjects also demonstrated an increase in IgA ASC B-cells (data not shown).
Similarly, the high-dose group demonstrated expansion of memory B-cells on days 7 and
56 post-vaccination in contrast to the placebo subjects. On day 7 and day 56, the mean fold
rise in influenza specific memory cells from baseline was 1.7-fold and 1.3-fold, respectively,
for the M2SR cohort compared to a 1.0-fold on day 7 and 0.95-fold on day 56 for the placebo
cohort (Figure 5B).
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Figure 5. (A) Quantities of circulating influenza virus-specific antibody-secreting cells on day 7 post-vaccination. ASC:
antibody-secreting cell. PBMC: peripheral blood mononuclear cells. Bars represent the mean with error bars showing
the standard error. Number of samples analyzed: 19 for high-dose M2SR and 23 for placebo. (B) Influenza virus-specific
memory B cells in circulation before, 7 and 56 days after vaccination. PBMC from M2SR high-dose and placebo cohorts
were tested in memory B cell (IgG) ELISpot assay after four days of stimulation with B-Poly-STM for polyclonal expansion
of memory B cells. Results over 3 per 106 (dashed line) were considered above background.

3.7. T Cell Responses

Influenza virus-specific IFN-γ positive T-cell responses were evident on days 14 and
28 post-vaccination in subjects receiving the high dose (Figure 6). The mean fold rise in
spot-forming cells (SFC) per million PBMCs from baseline to day 14 and day 28 post-
vaccination was 8-fold for the M2SR high-dose cohort (both time points) and 1.8 (day 14)
and 2.4 (day 28) for the placebo cohort. The number of subjects who demonstrated at least
a 2-fold rise over baseline was 13 on day 14 and 12 on day 28 in the M2SR high-dose group;
and 8 on day 14 and 7 on day 28 for placebo. Responses were independent of the HAI
serostatus at baseline, i.e., responder subjects with pre-existing HAI titers ≥ 40 had T-cell re-
sponses similar to those in subjects with a baseline HAI < 10 (5/11 or 45%, vs. 6/8 or 75%).
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Figure 6. T-cell immune responses. PBMCs collected at baseline and on days 14 and 28 were analyzed
by ELISpot assay for the secretion of IFN-γ upon stimulation with influenza-specific class 1 peptides.
SFC: spot-forming cells. Bars represent the geometric mean with error bars.

3.8. Cumulative Immune Response of M2SR (108 TCID50)

A summary of the various immunological assays performed for each subject in the
high-dose M2SR cohort is summarized in Table 3. These results indicate that the intranasally
administered M2SR stimulates multiple arms of the immune system in both seronegative
and seropositive subjects. The proportion of responders (defined as a ≥2-fold increase
from baseline) is shown for M2SR subjects and placebo subjects. Significant differences in
responder frequencies were seen between M2SR and placebo for serum HAI, MNT and IgA
responses and day 7 plasmablast ASC responses. The day 7 ASC provided the opportunity
to see M2SR-elicited responses in subjects with high baseline serum HAI titers along with
the mucosal sIgA responses. Overall, influenza virus-specific B cell responses were detected
at a significantly higher frequency among high-dose vaccine subjects compared to placebo
subjects: 87.5% (21/24) of subjects in the vaccine cohort demonstrated a ≥2-fold rise over
baseline in at least one of the seven B cell assays shown in Table 3 in contrast to 45.8%
(11/24) of the placebo cohort (p = 0.005, Fisher’s Exact Test, two-sided). Immune responses
were not associated with any demographic (gender, race, ethnicity, BMI) in this small
cohort.
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Table 3. Summary of immune responses for high-dose M2SR cohort.

SERUM NASAL
SWAB PBMC

Subject
No.

Baseline
HAI HAI MNT IgG IgA sIgA IgG

Plasmablast
IgG ASC

(Day 7, 56) IFN-γ

1 5 + - - - - - + +
2 5 - + - - - + - -
3 5 - - - - - - - -
4 5 - - - - - - - +
5 5 - - - - - NT - +
6 5 + + + + + + + +
7 5 + + - + - - + +
8 5 - - + - + - - +
9 10 + + + + + - + -
10 20 + + - + - + - -
11 20 + + - + - NT - +
12 20 + + - - - - + -
13 20 + - - + - NT NT +
14 40 + - - + + + - -
15 40 + - - - - NT NT +
16 40 - + - - - NT - -
17 80 - - - - - - - +
18 80 - - - - - + - -
19 80 - - - - - - + -
20 80 - - - - - - + +
21 80 - - - - - + - -
22 101 - - - - + + + -
23 160 - + - - + + + -
24 1280 - - - - + - - -

Total (%
Re-

sponse)

M2SR 41.7 37.5 12.5 29.2 29.2 47.1 40.9 45.8
Placebo 0.0 4.2 0.0 0.0 8.3 4.3 29.2 33.3
p value 0.0006 0.0102 0.234 0.0094 0.1365 0.0059 0.5379 0.5556

PBMC: peripheral blood mononuclear cells; HAI: hemagglutination inhibition; MNT: microneutralization titer; ASC: antigen-secreting cells;
IFN: interferon; NT: not tested. p-values for high dose vs. placebo cohorts, Fisher Exact Test. +: ≥2-fold rise from baseline; -: <2-fold rise
from baseline.

4. Discussion

This was a first-in-human, phase 1 clinical study of a novel, live, single-replication
intranasal influenza vaccine, M2SR. Single intranasal doses of M2SR, at a dose as high
as 108 TCID50, were well tolerated and elicited humoral, mucosal and cellular immune
responses similar to that following natural infection [8–10]. Serum antibodies elicited by
the M2SR vaccine were durable for at least 6 months and had broad reactivity, reacting
with antigenically drifted H3N2 influenza strains from different clades and up to four
years separated from the vaccine strain. Mucosal antibody, B-cell and T-cell responses
were detected in seronegative and seropositive subjects, demonstrating a broad immune
response independent of baseline sero-status. These results emphasize the potential for
M2SR to provide improved protection against circulating strains with antigenic drift
compared to currently licensed vaccines.

We assessed the antibody response to M2SR in multiple assays, including HAI and
MNT, in order to further understand the immune response to this novel vaccine platform
in both seronegative and seropositive subjects. We measured HAI antibody, serum IgG and
IgA ELISA antibody and production of ASCs against the vaccine virus. Significant increases
in serum antibodies were seen in the high-dose group, mainly in serosusceptible subjects
(HAI < 40). Serum antibody increases were not detectable in subjects with high baseline
HAI titers. In contrast, increases in ASC, a more sensitive measure of response to influenza
vaccine [29], were seen in individuals who were seronegative and seropositive at baseline.
The ASC measured on day 7 post-vaccination identified subjects who responded to M2SR
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vaccination but had high baseline serum HAI antibodies, as described previously for adults
with high levels of baseline immunity against influenza [29]. Similarly, serum IgA may be
a marker for a mucosal immune response for intranasally delivered influenza vaccines, as
the baseline for IgA antibodies are lower than serum IgG levels. Past studies have found
an association between serum and nasal wash IgA after intranasal administration of live
influenza vaccines [16]. M2SR elicited a B cell response in 87.5% (21/24) of subjects in
the high-dose cohort when all assays are considered with most subjects demonstrating a
response over multiple assays. The few subjects with low or no response suggest that a
dose-response plateau was not reached in this study. The safety and immunogenicity of
higher doses are being evaluated in a subsequent study (NCT03999554).

The ability of M2SR to induce immune responses in seropositive individuals indicates
the potential of M2SR to induce improved responses in older adults (>65 years old), a
population for which the currently licensed live attenuated influenza vaccine is not indi-
cated [30]. M2SR does not require sustained in vivo replication for generating immune
responses, suggesting that the vaccine could be effective in individuals with pre-existing
immunity (e.g., the elderly). The currently licensed live attenuated influenza vaccine,
FluMist, is thought to be blunted by pre-existing influenza immunity present in adults,
preventing sufficient vaccine virus replication to generate protective immunity and there-
fore less effective in adults than in children [31,32]. FluMist is not indicated in adults in
Europe or in adults over 49 years old in the United States [33,34]. Pre-clinical studies in
ferrets that have been pre-infected with influenza viruses have shown that M2SR is not
as susceptible to pre-existing immunity as FluMist and can provide effective protection
against antigenically drifted influenza strains [20]. In addition, M2SR has the desired
characteristics of restimulating the existing memory pool for T cell responses, a correlate of
protection in the elderly [35] that is not induced by current inactivated vaccines indicated
for >65 year olds (e.g., Fluzone™ High Dose). Testing of H3N2 M2SR in older adults in a
safety and immunogenicity clinical study has been initiated (clinicaltrials.gov accessed on
10 November 2021 NCT04785794).

The kinetics of HAI response in subjects showed that peak titers were reached by
day 14 post-vaccination and lasted through at least 180 days post-vaccination. Moreover,
these responses were cross-reactive with future H3N2 drift strains. Subjects vaccinated
during the summer of 2016 with A/Brisbane/10/2007 (clade 1) had vaccine-induced HAI
titers against the A/Switzerland/9715293/2013 (clade 3c.3a) vaccine strain for the 2015–
2016 influenza season, and A/Hong Kong/4801/2014 (clade 3c.2), the vaccine strain for
the 2016–2017 influenza season. M2SR, similar to natural infection, stimulates broadly
cross-reactive antibody responses [8–10]. Together with local mucosal and cell-mediated
immunity, M2SR has the potential to be protective against drifted H3N2, viruses unlike
current inactivated vaccines that display poor VE against drift strains [3]. A subsequent
Phase 2a challenge study demonstrated that M2SR provided protection against a highly
drifted challenge virus [36,37].

An important attribute of M2SR is the lack of vaccine virus shedding in vaccinated
subjects. Consistent with the animal data, M2SR does not produce any infectious virus after
vaccination. In spite of the single-replication phenotype, vaccination with M2SR induces
statistically significant levels of strain-specific antibodies in addition to mucosal and cellular
immune responses. These results suggest the potential for eventual study of M2SR in young
children and infants. ‘Imprinting’ of immune responses early in life have been suggested
to play a critical role in future immune responses to influenza vaccines and protection
against new strains [38]. Exposure to natural infection in early life was shown to provide
cross-reactive immune responses to pandemic strains. However, Bodewes et al. have
suggested that annual vaccination of infants with inactivated influenza vaccines prevents
development of cross-reactive cellular immunity stemming from natural infection [39].
While FluMist, the only licensed live flu vaccine, does elicit T-cell responses in young
children [40], it is not indicated in those less than 2 years old due to safety concerns
associated with this replicating vaccine virus [30,41,42]. The single-replication M2SR
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induces a multi-faceted immune response against multiple influenza antigens and could
potentially serve as the first immunization that ‘imprints’ for broadly reactive responses as
has been suggested for natural infection [43–47].

5. Conclusions

This first human clinical trial with M2SR demonstrates that the M2-deficient influenza
virus vaccine is well-tolerated and immunogenic in humans at doses up to 108 TCID50.
These phase 1 data validate the proposed target profile for M2SR, i.e., mimic wild-type
infection in the nasal mucosa and induce broad humoral, mucosal and cellular responses.
M2SR models the multi-faceted immune response following natural (wild-type) infection
while at the same time incorporating the critical safety feature of a single round of virus
replication after vaccine administration. M2SR elicited a broad immune response, including
humoral, cellular, and mucosal immunity, independent of baseline HAI antibody titers.
The favorable safety profile of M2SR supports continued investigation and development
of this promising single-replication live vaccine, including study of higher dose levels, to
address the need for broadly protective influenza vaccines in all age groups.
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