Vaccine	Usage	Season	Lot No.	Content	
Fluarix®	Vaccination-	2014-15	AFLBA032AA	A/California/7/2009(H1N1)pdm09-like strain	
Tetravalent	challenge model			A/Texas/50/2012(H3N2)-like strain	
	(7 days apart)			B/Massachusetts/02/2012-like strain	
				B/Brisbane/60/2008-like strain	
VAXIGRIP®	Vaccination-	2015	M7080-2	A/California/7/2009(H1N1)pdm09-derived strain	
Trivalent	challenge model			A/Switzerland/9715293/2013(H3N2)-like strain	
	(7 days apart) and			B/Phuket/3073/2013	
	mechanistic study				
Fluarix®	Vaccination-	2014-15	AFLUA864AH	A/California/7/2009(H1N1)pdm09-like strain	
Trivalent	challenge model			A/Texas/50/2012(H3N2)-like strain	
	(3 days apart)			B/Massachusetts/02/2012-like strain	
Fluarix®	Vaccination-	2015-16	AFLBA112AF	A/California/7/2009(H1N1)pdm09-like strain	
Tetravalent	challenge model			A/Switzerland/9715293/2013(H3N2)-like strain	
	(3 days apart)			B/Phuket/3073/2013	
				B/Brisbane/60/2008-like strain	

Supplementary Table S1 Vaccines used in this project

Gene	Forward primer (5' to 3')	Reverse primer (5' to 3')
β-actin	ACGGCCAGGTCATCACTATTG	CAAGAAGGAAGGCTGGAAAAG
IFN-γ	AAGCGTCATTGAATCACACC	CGAATCAGCAGCGACTCCTT
IL-6	TGGAGTCACAGAAGGAGTGGCTAAG	TCTGACCACAGTGAGGAATGTCCAC

Supplementary Table S2 Primers used for this project (mouse-specific)

Antigen (mouse) / isotype control	Fluorochrome	Clone	Purchased from
CD3ɛ	FITC	145-2C11	BioLegend
Armenian Hamster IgG Isotype	FITC	HTK888	BioLegend
control			
CD4	Alexa Fluor 700	RM4-5	BioLegend
Rat IgG2a, к Isotype control	Alexa Fluor 700	RTK2758	BioLegend
CXCR5	Biotin	2G8	BD Biosciences
Rat IgG2a, к Isotype control	Biotin	R35-95	BD Biosciences
Streptavidin	APC	N/A	BioLegend
(For detection of CXCR5)			
CD279 (PD-1)	PE	J43	BD Biosciences
Hamster IgG2, к Isotype control	PE	B81-3	BD Biosciences
B220	PE	RA3-6B2	BioLegend
(Used for compensation of PE-			
CD279)			

Supplementary Table S3 Antibodies, isotype controls, and streptavidin conjugate used for flow cytometry

0.0050

Supplementary Figure S1 Phylogenetic tree of HA showing the genetic relationship of influenza A(H1N1) viruses. The two strains involved in the HAI and MN tests for the antibody responses against antigenicallydrifted viruses are highlighted in red. The phylogenetic tree was constructed using the maximum-likelihood method with the Tamura-Nei model. Bootstrap values were calculated from 1000 trees. Evolutionary analyses were conducted in MEGA X [1].

Supplementary Figure S2 The effect of two doses of vaccines with or without miltefosine on the antibody titers without influenza virus challenge. (A) Schedule of influenza vaccination and sample collection. (B) HAI titers and MN titers of serum samples after vaccination. (C) Anti-H1N1 IgM and anti-H1N1 IgG antibody levels determined by ELISA.

MTF-VAC, miltefosine (0.2 mg) + vaccine group; Vac, vaccine only group; MTF, miltefosine (0.2 mg) only group; PBS, PBS only group. Short solid lines indicate geometric means of titers, and long dashed lines indicate the detection limit of HAI and MN assays. Data collected from 3 mice per group. * for P<0.05; **** for P<0.0001, calculated by two-way ANOVA followed by a Tukey's multiple comparison test.

References:

1. Kumar, S., et al., *MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms*. Mol Biol Evol, 2018. **35**(6): p. 1547-1549.