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Abstract: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory
symptoms. Due to the lack of medical countermeasures, effective and safe vaccines against MERS-CoV
infection are urgently required. Although different types of candidate vaccines have been developed,
their immunogenicity is limited, and the dose and administration route need optimization to
achieve optimal protection. We here investigated the potential use of human β-defensin 2 (HBD
2) as an adjuvant to enhance the protection provided by MERS-CoV vaccination. We found
that immunization of human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice with
spike protein receptor-binding domain (S RBD) conjugated with HBD 2 (S RBD-HBD 2) induced
potent antigen (Ag)-specific adaptive immune responses and protected against MERS-CoV infection.
In addition, immunization with S RBD-HBD 2 alleviated progressive pulmonary fibrosis in the
lungs of MERS-CoV-infected hDPP4-Tg mice and suppressed endoplasmic reticulum stress signaling
activation upon viral infection. Compared to intramuscular administration, intranasal administration
of S RBD-HBD 2 induced more potent mucosal IgA responses and was more effective for protecting
against intranasal MERS-CoV infection. In conclusion, our findings suggest that HBD 2 potentiates
Ag-specific immune responses against viral Ag and can be used as an adjuvant enhancing the
immunogenicity of subunit vaccine candidates against MERS-CoV.
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1. Introduction

Since 2000, numerous potentially lethal zoonotic human diseases have emerged due to novel
coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, Middle
East respiratory syndrome coronavirus (MERS-CoV) in 2012, and SARS coronavirus 2 (SARS-CoV-2)
in 2019. Owing to their pandemic potential, impact on global health, and lack of effective medical
countermeasures, these coronaviruses have been included in the World Health Organization (WHO)
Research and Development Blueprint list of priority diseases. The MERS-CoV outbreak in Korea
in 2015 has caused significant morbidity and mortality, posing severe threats to public health and
the economy [1]. Particularly, Saudi Arabia still has the highest reported MERS-CoV mortality rate
with approximately 80% [2]. Despite extensive research efforts to develop effective prophylactic
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or therapeutic interventions against MERS-CoV, no treatments or vaccines have gained regulatory
approval thus far.

Most MERS-CoV vaccines under investigation involve inactivated virus, live attenuated virus,
viral vector-based vaccines, recombinant virus subunits, and DNA vaccines [3]. The most common
MERS-CoV vaccine targets are the spike (S) protein or the S protein domain required for binding to
the host receptor, dipeptidyl peptidase 4 (DPP4); however, a variable degree of immunogenicity has
been reported with these vaccines. Thus, the use of proper adjuvants in addition to the optimization
of the dose and administration route is imperative to induce potent and long-lasting protective
immunity [4–6]. In particular, co-administration of adjuvants with MERS-CoV S protein in mice
induced the production of neutralizing antibodies (Abs) [7]. Alum is a commonly used adjuvant in
vaccine formulations, as it enhances the production of antigen (Ag)-specific Abs and induction of cellular
immunity [8]. However, alum alone is inefficient to induce potent type 1 helper T (Th1) responses
and subsequent viral clearance unless combined with additional adjuvants, such as glucopyranosyl
lipid [9]. Therefore, the combination of potent Ag and adjuvants capable of mimicking a natural
infection inducing strong primary immune responses is effective for the induction of antiviral immune
responses against MERS-CoV.

Host defense peptides play important roles as primary gatekeepers protecting respiratory, oral,
reproductive, and enteric tissues from various pathogens and maintaining tissue homeostasis [10,11].
Among them, human β-defensins (HBDs) are small host defense peptides expressed by epithelial cells
and establish mucosal barriers against various infectious agents. In addition to their antimicrobial roles,
HBDs link the activation of pathogen-specific innate and adaptive immunity through the recruitment
and activation of various leukocytes, including macrophages, dendritic cells (DCs), and T cells [12–14].
We previously reported that HBD 2 promotes antiviral innate immune responses in macrophage-like
THP-1 cells and enhances Ag-specific responses in vivo after immunization with the receptor-binding
domain (RBD) of MERS-CoV S protein (S RBD) [15]. More importantly, conjugation of Ag to HBD 2
enhances type I immune responses by promoting macrophage activation and polarization, ultimately
leading to more potent Ag-specific adaptive immune responses [16].

MERS-CoV infects the lower respiratory tract, leading to severe acute respiratory failure and
progressive pulmonary fibrosis. Small experimental animals, such as mice, ferrets, and hamsters,
are non-permissive for MERS-CoV infection due to structural differences in DPP4 at the interface with
MERS-CoV S RBD. We previously generated a human DPP4-transgenic (hDPP4-Tg) mouse model
for MERS-CoV infection [17]. Pulmonary fibrosis is characterized by fibroblast proliferation and
extracellular matrix remodeling leading to respiratory insufficiency. Nevertheless, the mechanisms
involved in lung fibrosis following MERS-CoV infection remain poorly understood. Herein, using
the hDPP4-Tg mouse model, we show that MERS-CoV infection activates endoplasmic reticulum
(ER) stress pathway components, including protein kinase RNA-like ER kinase (PERK), activating
transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and activating transcription factor 6
(ATF6). We also show that the administration of HBD 2-conjugated S RBD (S RBD-HBD 2) reduced
ER stress signaling and alleviated progressive pulmonary fibrosis in the lungs of MERS-CoV-infected
hDPP4-Tg mice. In addition, we provide evidence that the intranasal administration of S RBD-HBD 2
is more effective in inducing mucosal IgA responses and protective immunity against MERS-CoV.

2. Materials and Methods

2.1. Materials and Experimental Animals

hDPP4-Tg mice were generated as previously reported [17], and all mice were bred and maintained
at Kyung Hee University (Suwon, Korea). Male and female hDPP4-Tg mice (5–7 weeks old) were
used for experiments; they were housed under specific pathogen-free conditions with water and food
provided ad libitum. All animal experiments were approved by the Institutional Animal Care and
Use Committee of Jeonbuk National University (Approval No. CBNU 2018–049) and performed in
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accordance with the committee’s guidelines. MERS-CoV (1–001-MER-IS-2015001) was obtained from
the Korean Center for Disease Control and Prevention (KCDC). All experiments using MERS-CoV
were performed in accordance with the WHO’s recommendations under biosafety level 3 conditions in
a biosafety level 3 facility of the Korea Zoonosis Research Institute (Iksan, Korea), Jeonbuk National
University. Unless otherwise specified, the chemicals and laboratory wares used in this study
were obtained from Sigma Chemical Co. (St. Louis, MO, USA) and SPL Life Sciences (Pocheon,
Korea), respectively.

2.2. Recombinant Protein Production, Mouse Immunization, and Sample Collection

Production of the recombinant MERS-CoV S RBD with or without HBD 2 at the C terminus of the
S1 (residues 291–725) domain based on the MERS-CoV S protein sequence (GenBank: AKL59401.1;
GenScript, Piscataway, NJ, USA) was performed as described previously [15,18].

hDPP4-Tg mice were immunized intramuscularly in the hind leg with 5 µg/mouse of each
recombinant protein dissolved in 50 µL phosphate-buffered saline (PBS) emulsified with an equal
volume of Freund’s complete adjuvant. Ten days after the first immunization, mice were boosted with
the same immunogen emulsified with Freund’s incomplete adjuvant. In addition, hDPP4-Tg mice
were intranasally immunized once per week for five weeks with 1 µg each recombinant protein via
the intranasal route under anesthesia. Control mice were immunized with the inoculum prepared
identically but with PBS only. Sera were collected three days after the final immunization boost to
measure MERS-CoV S RBD-specific Abs.

2.3. Enzyme-Linked Immunosorbent Assay (ELISA)

The levels of MERS-CoV S RBD-specific immunoglobulin G (IgG) in mouse sera were determined
by ELISA. Briefly, 96-well ELISA plates (Thermo Fisher Scientific, Waltham, MA, USA) were coated
with S RBD protein (2 µg/mL) overnight at 4 ◦C and blocked with 5% nonfat dry milk at 37 ◦C for 2 h.
For preparing the standard curve, the anti-mouse IgG coating antibody was coated onto an ELISA
plate, unlike the serum sample. After adding serially diluted sera or standard mouse IgG to each well,
plates were incubated at 37 ◦C for 1 h, followed by four washes with phosphate-buffered saline (PBS)
containing Tween 20. Bound IgGs were incubated with alkaline phosphate-conjugated anti-mouse IgG
at 37 ◦C for 1 h, and p-nitrophenyl phosphate substrate was added. The absorbance at 405 nm was
read using an ELISA plate reader (SPECTROstar Nano, BMG Labtech, Ortenberg, Germany). ELISA
results were calculated using the standard curve.

2.4. Viral Challenge and Sample Collection

MERS-CoV was propagated in Vero E6 cells grown in Dulbecco’s Modified Eagle’s Medium
(Welgene, Gyungsan, Korea) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific)
at 37 ◦C in a humidified CO2 incubator. MERS-CoV was passaged 12 times in Vero E6 cells and
subsequently used to assess hDPP4-Tg mouse morbidity and mortality. Briefly, hDPP4-Tg mice
and their transgene-negative littermates were anesthetized and inoculated intranasally with 104

or 105 plaque-forming unit (PFU) of MERS-CoV in a total volume of 20 µL. Infected mice were
weighed and monitored every other day for weight loss and death. Although the scoring was not
recorded, other clinical signs following viral infection, including physical appearance, abnormalities
of behavior or movements, and decreased activity or enhanced responsiveness, were also observed.
Subsequently, immunized hDPP4-Tg mice were challenged with 105 PFU of MERS-CoV intranasally
and monitored for their survival, weight, and pathological changes for up to 10 or 14 days post-infection
(dpi). Some infected mice were sacrificed at the indicated time points to obtain tissue specimens.
These tissue specimens were used to assess the expression levels of target genes and mucosal IgA
responses using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and
hematoxylin-eosin (H&E) staining.
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2.5. Histopathology

Lung tissues obtained from MERS-CoV- and sham-infected hDPP4-Tg mice at the indicated time
points were immediately fixed in 10% neutral buffered formalin, transferred to 70% ethanol, and
paraffin-embedded. Histopathological evaluation was performed on tissue sections deparaffinized
and stained by H&E. We examined tissues for pathological signs, such as denatured and collapsed
cell/tissue organization, hemorrhage in the interstitial space, infiltration of inflammatory monocytes,
and change in alveolar septa after MERS-CoV infection.

2.6. RNA Extraction and qRT-PCR

Lung tissue specimens from MERS-CoV-infected mice were weighed and transferred into
individual vials containing TRIzol reagent (Thermo Fisher Scientific). The collected tissues were
homogenized and subjected to total RNA isolation as previously described [16]; RNA was extracted
using TRIzol reagent according to the manufacturer’s instructions. RNA was converted into cDNA
using an MMLV Reverse Transcription Kit (Promega, Fitchburg, WI, USA). Gene expression analyses
were performed using qRT-PCR with the SsoAdvanced Universal SYBR Green Supermix (Bio-Rad
Laboratories, Hercules, CA, USA) and a CFX Connect Real-Time System (Bio-Rad Laboratories). For the
reactions, 50 ng first-strand cDNA was used. The following qRT-PCR conditions were used: 95 ◦C for
5 min followed by 40 cycles at 95 ◦C for 15 s, 55 ◦C for 30 s, and 72 ◦C for 30 s. The relative expression
level of each gene was obtained by normalizing it to that of the endogenous control gene β-actin; fold
changes were calculated using the CFX Maestro software (Bio-Rad Laboratories). The gene expression
level of the control group was set as a reference, whose value should be 1. The primers used for
qRT-PCR are listed in Table 1.

Table 1. Sequences of the qRT-PCR primers. Primers used to measure the expression levels of genes
associated with endoplasmic reticulum (ER)-stress and IgA immune responses. β-actin was used as an
endogenous control.

Gene Primer Sequence

PERK
F: 5′-AGT CCC TGC TCG AAT CTT CCT-3′

R: 5′-TCC CAA GGC AGA ACA GAT ATA CC-3′

ATF4
F: 5′-TCC TGA ACA GCG AAG TGT TG -3′

R: 5′-ACC CAT GAG GTT TCA AGT GC -3′

ATF6
F: 5′-TGC CTT GGG AGT CAG ACC TAT-3′

R: 5′-GCT GAG TTG AAG AAC ACG AGT C-3′

CHOP
F: 5′-CTG GAA GCC TGG TAT GAG GAT-3′

R: 5′-CAG GGT CAA GAG TAG TGA AGG T-3′

XBP1u
F: 5′-AAG AAC ACG CTT GGG AAT GG-3′

R: 5′-ACT CCC CTT GGC CTC CAC-3′

XBP1s
F: 5′-GAG TCC GCA GCA GGT G-3′

R: 5′-GTG TCA GAG TCC ATG GGA-3′

Igα chain F: 5′-CGT CCA AGA ATT GGA TGT GA-3′

R: 5′-AGT GAC AGG CTG GGA TGG-3′

J chain F: 5′-GAA CTT TGT ATA CCA TTT GTC AGA CG-3′

R: 5′-CTG GGT GGC AGT AAC AAC CT-3′

pIgR F: 5′-AGT AAC CGA GGC CTG TCC TT-3′

R: 5′-GTC ACT CGG CAA CTC AGG A-3′

β-actin F: 5′-CGT ACC ACA GGC ATT GTG A-3′

R: 5′-CTC GTT GCC AAT AGT GAT GA-3′

F and R: sequences of the forward and reverse primers, respectively.
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2.7. Statistical Analyses

Statistical analyses were performed using Prism 7 (GraphPad, San Diego, CA, USA). Data
are expressed as means ± standard deviations (SDs). The statistical significance of numerical data
was analyzed using two-way analyses of variance (ANOVA). p-Values < 0.05 were considered
statistically significant.

3. Results

3.1. MERS-CoV Infection in hDPP4-Tg Mice Causes Mortality and Morbidity with Progressive
Pulmonary Fibrosis

Wild-type mice, including BALB/c and C57BL/6 mice, are not permissive to MERS-CoV
infection [19]. Therefore, we previously generated hDDP4-Tg mice as a MERS-CoV infection model.
To determine MERS-CoV mortality and morbidity in hDDP4-Tg mice, we intranasally inoculated
hDPP4-Tg mice and age-matched transgene-negative littermates with 104 or 105 PFU of MERS-CoV.
The mice were monitored every other day for survival and clinical symptoms, including weight loss
(Figure 1A). hDPP4-Tg mice inoculated with 104 or 105 PFU of MERS-CoV showed rapid weight
loss (data not shown); the mortality rates were 60% and 100% at 10 dpi and 12 dpi, respectively.
All transgene-negative littermate mice survived without clinical illnesses after the inoculation of the
same dose of MERS-CoV. In contrast to sham-infected mice, progressive lung damage was observed
in MERS-CoV-infected hDPP4-Tg mice in a viral dose-dependent manner (Figure 1B). Importantly,
MERS-CoV-infected hDPP4-Tg mice exhibited progressive pulmonary fibrosis signs, including an
irregular arrangement of pneumocytes, alveolar septal thickening, and mild inflammation with
infiltration of inflammatory cells into the lung at 10 dpi. However, no histopathological changes were
detected in the lungs of sham-infected hDPP4-Tg mice or transgene-negative littermate mice.
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with MERS-CoV (104 or 105 plaque-forming unit (PFU)) or phosphate-buffered saline (PBS). Infected
mice were monitored every other day for weight loss, clinical symptoms, and survival. (A) Survival
of hDPP4-Tg mice (TG) and transgene-negative littermates (WT) after infection with MERS-CoV or
sham (PBS, control) (n = 10). (B) Histopathological changes in the lungs of hDPP4-Tg mice and
transgene-negative littermates (WT) challenged with MERS-CoV or PBS (sham-infected). Ten days
after MERS-CoV or sham infection, lung tissues were collected, fixed, and paraffin-embedded for
hematoxylin and eosin staining. Hematoxylin and eosin (H&E)-stained lung sections were analyzed for
inflammation by light microscopy. Transgene-negative littermates (WT) and sham-infected hDPP4-Tg
mice represented normal lung tissue with thin-lined alveolar septa and well-architected alveoli.
Virus-challenged groups showed distorted lung morphologies, including collapsed alveolar spaces with
wider and thicker alveolar septa and perivascular and peribronchial cuffing. Regions of inflammatory
cell infiltration around vasculature, bronchiole, and proximal alveoli were noted by arrowheads.
Scale bars = 100 µm. (C) Effects of MERS-CoV infection in the expression of ER-stress-associated
genes in the lungs of hDPP4-Tg mice. Total RNA was extracted from the lungs of hDPP4-Tg mice
four and six days after infection with MERS-CoV. Relative expression of ER-stress-associated genes
was determined by qRT-PCR after normalizing to β-actin mRNA levels. Reactions were performed in
duplicates. Fold changes relative to non-treated controls are shown as means ± SD (n = 2). * p < 0.05
and ** p < 0.01.

Upon viral infection, large amounts of viral proteins are produced and accumulated in the
ER, inducing ER stress [20]. Pulmonary viral infections often induce an ER-stress-mediated
hyperinflammatory response, leading to fibrosis [21,22]. Here, we investigated whether ER
stress contributes to lung fibrosis following MERS-CoV infection by analyzing the levels of
ER-stress-associated genes, such as Perk, Atf4, Chop, Atf6, and X-box binding protein 1 (Xbp1) in
the lungs of MERS-CoV-infected hDPP4-Tg mice and sham-infected hDPP4-Tg mice (Figure 1C). Perk,
Atf4, and Xbp1 were significantly upregulated (p < 0.05) in the lungs of MERS-CoV-infected hDPP4-Tg
mice. Furthermore, MERS-CoV infection in hDPP4-TG mice significantly upregulated Atf6 (p < 0.05)
and Chop (p < 0.01) in lung tissues four dpi; however, their mRNA levels were reduced at six dpi. These
results suggest that MERS-CoV infection in hDPP4-Tg mice leads to lung damage by triggering ER
stress and fibrosis.

3.2. HBD 2-Conjugated Ag Elicits Potent Ag-Specific Ab Response in Hdpp4-Tg Mice Preventing
MERS-CoV Infection

Next, we investigated the immunogenicity of HBD 2-conjugated S RBD (S RBD-HBD 2) compared
to that of S RBD alone by immunizing the mice intramuscularly (Figure 2). The levels of S RBD-specific
IgG in the sera of mice immunized with S RBD-HBD 2 were significantly (p < 0.05) higher than in mice
immunized with S RBD alone, suggesting the improved ability of HBD 2-conjugated Ag to induce
humoral immune responses (Figure 2A). Then we evaluated the ability of S RBD-HBD 2 to induce
protective immunity against MERS-CoV infection by challenging immunized hDPP4-Tg mice with
105 PFU MERS-CoV intranasally and monitoring their survival, weight, and pathological changes
(Figure 2B,C). One-fourth of the mice intramuscularly immunized with S RBD-HBD 2 survived after
intranasal MERS-CoV challenge infection. Although the mice immunized with S RBD-HBD 2 showed
a moderate weight loss, their weight recovered rapidly after seven dpi. By contrast, control mice and
mice immunized with S RBD alone exhibited a continuous weight loss, and they all died within 10 dpi.
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Figure 2. Immunization with S RBD-HBD 2 elicits potent Ag-specific immunity and reduces mortality
upon MERS-CoV infection in hDPP4-Tg mice. Mice were intramuscularly (IM) immunized with 5
µg/mouse of S RBD with or without HBD 2, and sera were collected three days after boost immunization.
The levels of S RBD-specific IgG were measured using enzyme-linked immunosorbent assay (ELISA).
Data are presented as means ± SDs (n = 3). Immunized mice were challenged intranasally (IN) with
MERS-CoV (105 PFU). Infected mice were monitored every other day for weight loss, clinical symptoms,
and survival. (A) Serum levels of S RBD-specific IgG which were determined via capture ELISA using
standard mouse IgG. * p < 0.05 and ** p < 0.01. (B) Survival of hDPP4-Tg mice after MERS-CoV infection
(n = 8). P-values were calculated using the log-rank (Mantel–Cox) test. (C) Bodyweight changes
in MERS-CoV-infected mice. Results are presented as means ± SDs (n = 8) at the indicated times
post-infection. There is no statistical significance in body weight changes among the groups tested.

We also compared the ability of intranasal and intramuscular S RBD-HBD 2 immunization to
induce S RBD-specific adaptive immune responses and protective immunity against MERS-CoV
infection (Figure 3). For the comparative analysis, the results collected from the IM S RBD-HBD 2
immunization presented in Figure 2 were used for comparison. We found that the serum levels of S
RBD-specific IgG were higher in intranasally immunized mice than in intramuscularly immunized
mice (Figure 3A). Importantly, the survival rate after MERS-CoV infection was higher in hDPP4-Tg
mice intranasally immunized with S RBD-HBD 2 than in intramuscularly immunized mice (75% vs.
25%; Figure 3B). In addition, we monitored the body weight changes in each group of mice following
the virus challenge (Figure 3C). These results suggest that HBD 2 conjugation potentiates Ag-specific
adaptive immune responses and protective immunity against viral infection.
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Figure 3. Intranasal immunization with S RBD-HBD 2 provides superior immunogenicity and protection
against MERS-CoV in hDPP4-Tg mice. Mice were immunized with 5 µg/mouse of S RBD-HBD 2
intramuscularly (IM) or 1 µg/mouse intranasally (IN), and sera were collected three days after the
last boost immunization. The levels of the S RBD-specific IgG were measured using ELISA. Data are
presented as means ± SDs (n = 3). Immunized mice were challenged intranasally with MERS-CoV
(105 PFU) and monitored every other day for weight loss, clinical symptoms, and survival. (A) Serum
levels of S RBD-specific IgG which were determined via capture ELISA using standard mouse IgG.
** p < 0.01. (B) Survival of hDPP4-Tg mice after MERS-CoV infection (n = 8). P-values were calculated
using the log-rank (Mantel–Cox) test. (C) Body weight changes in MERS-CoV-infected mice. Results
are presented as means ± SDs (n = 8) at the indicated times post-infection.

3.3. HBD 2-Conjugated Ag Generates Strong Mucosal Iga Response and Prevents Lung Damage After
MERS-CoV Infection

Next, we assessed the pathological changes in the lungs of MERS-CoV-challenged mice after
different immunization regimens (Figure 4A). After the MERS-CoV challenge, the lungs of control
mice exhibited marked pathological changes, including alveolar septal thickening, inflammatory
cell infiltration, and hemorrhage. By contrast, the lungs of mice intramuscularly immunized
with S RBD-HBD 2 had similar histopathological characteristics to those of normal mice after
MERS-CoV infection, except modest changes in pneumocyte arrangement and alveolar septal thickening.
Importantly, almost no histopathological changes were observed in the lungs of mice intranasally
immunized with S RBD-HBD 2.
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Figure 4. Immunization with S RBD-HBD 2 reinforces local mucosal Ab responses, downregulates
ER-stress-associated genes, and prevents lung damage in hDPP4-Tg mice following MERS-CoV infection.
(A) Representative H&E-stained lung sections from control and immunized hDPP4-Tg mice after
MERS-CoV infection. H&E-stained lung sections were analyzed for inflammation by light microscopy.
Control group represented distorted lung morphologies, including wider and thicker alveolar septa
with perivascular and peribronchial cuffing. Immunized groups exhibited less alveolar thickening
and fewer inflammatory infiltrations. Regions of inflammatory cell infiltration around vasculature,
bronchiole, and proximal alveoli were noted by arrowheads. Scale bars = 100 µm. (B) Expression
levels of SIgA-associated Igα chain, J chain, and pIgR in the lungs of hDPP4-Tg mice. Total RNA was
extracted from the lung of hDPP4-Tg mice five days after infection with MERS-CoV and was used to
assess the expression of mucosal IgA response-related genes by qRT-PCR. Reactions were performed
in duplicate. Data are presented as means ± SD (n = 2). * p < 0.05 and ** p < 0.01. (C) Effect of S
RBD immunization with or without HBD 2 on the expression of ER-stress-associated genes in the
lungs of MERS-CoV infected hDPP4-Tg mice. Total RNA was extracted from the lungs of control and
immunized mice five days after MERS-CoV infection and was used to assess the relative expression
levels of ER-stress-associated genes by qRT-PCR. Reactions were performed in duplicate, and β-actin
was used as the internal control for normalization. Fold changes relative to the non-treated controls are
shown. Data are presented as means ± SD (n = 2). * p < 0.05, ** p < 0.01, and *** p < 0.001.

In the mucosa, the production of secretory IgA (SIgA) and polymeric Ig (pIg) receptor
(pIgR)-mediated transport of SIgA plays an essential role in protecting against pathogen invasion
and maintaining homeostasis in mucosal surfaces [23–25]. Furthermore, mucosal IgA production
in vaccinated animals leads to memory response and long-term protection against various mucosal
pathogens, including viruses, bacteria, and other intracellular pathogens [26]. Here, we explored
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the relevance of mucosal IgA responses in the protection against MERS-CoV infection. To this end,
we analyzed the expression levels of Igα chain, J chain, and pIgR in the lungs of MERS-CoV-infected
hDPP4-Tg mice after intranasal or intramuscular immunization with S RBD-HBD 2 because the SIgA
levels in the lung depend on the production of IgA in the lamina propria and transport of pIgA-pIgR
complex across epithelial cells (Figure 4B). hDPP4-Tg mice intranasally immunized with S RBD-HBD 2
exhibited high IgA levels in the lungs. Notably, the mRNA levels of Igα and J chains were significantly
(p < 0.05) higher in hDPP4-Tg mice intranasally immunized with S RBD-HBD 2 than in intramuscularly
immunized mice. Although pIgR mRNA levels were higher in the lungs of hDPP4-Tg mice intranasally
immunized with S RBD-HBD 2 than in mice intramuscularly immunized with S RBD alone, they were
slightly lower than in mice intramuscularly immunized with S RBD-HBD 2.

Interestingly, the ER-stress-associated genes Perk, Atf4, Chop, Atf6, and Xbp1 were significantly
less upregulated in the lungs of MERS-CoV-infected hDPP4-Tg mice after immunization with S RBD
protein with or without HBD 2 (Figure 4C). Although there were no significant differences in the levels
of these genes in the lungs of the mice immunized with S RBD-HBD 2 intramuscularly or intranasally,
Aft4 and Xbp1s were expressed in significantly (p < 0.01) lower levels in the lungs of intranasally
immunized mice. These results suggest that HBD2-conjugation induces potent mucosal IgA responses,
preventing ER-stress-mediated lung damage following MERS-CoV infection.

3.4. Intranasal S RBD-HBD 2 Administration Induces Potent Antiviral Immune Responses Protecting
hDPP4-Tg Mice against MERS-CoV Infection

We also evaluated the ability of low-dose S RBD-HBD 2 intranasal administration to induce
Ag-specific Ab responses and protect hDPP4-Tg mice against intranasal challenge with MERS-CoV
(Figure 5). The serum levels of S RBD-specific IgG were significantly higher in mice intranasally
immunized with S RBD-HBD 2 than in control mice or mice immunized with S RBD alone (p < 0.001
and p < 0.05; Figure 5A). Importantly, S-RBD-HBD-2-immunized mice exhibited a markedly improved
survival rate (75%) at 10 dpi with MERS-CoV compared to control mice (25%) and mice immunized
with S RBD alone (Figure 5B). In contrast to S RBD alone- and S-RBD-HBD-2-immunized mice,
MERS-CoV-infected control mice showed a modest weight loss until eight dpi (Figure 5C). No profound
weight loss was observed in S RBD alone- and S-RBD-HBD-2-immunized hDPP4-Tg mice following
MERS-CoV infection. These results suggest that the intranasal immunization of S RBD-HBD 2
induces potent mucosal IgA responses, reinforcing local and systemic immunity, and preventing
MERS-CoV infection.
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Figure 5. Intranasal administration of S RBD-HBD 2 induces potent systemic antibody responses,
preventing MERS-CoV infection in hDPP4-Tg mice. Mice were intranasally (IN) administered with
1 µg/mouse of S RBD with or without HBD 2, and sera were collected three days after the last boost
immunization. The serum levels of the S-RBD-specific IgG were measured using ELISA. Data are
presented as means ± SDs (n = 3). Immunized mice were challenged intranasally with MERS-CoV
(105 PFU). Infected mice were monitored every other day for weight loss, clinical symptoms, and
survival. (A) Serum levels of S-RBD-specific IgG which were determined via capture ELISA using
standard mouse IgG. * p < 0.05 and *** p < 0.001. (B) Survival of hDPP4-Tg mice after MERS-CoV
infection (n = 8). p-values were calculated using the log-rank (Mantel–Cox) test. (C) Body weight
changes in MERS-CoV-infected mice. Results are presented as means ± SDs (n = 8) at the indicated
times post-infection.

4. Discussion

MERS-CoV has spread in 27 countries since the 2012 outbreak in Saudi Arabia; it infects the
lower respiratory tract of humans, causing acute respiratory distress syndrome with approximately
34.5% mortality [27]. Currently, there are no therapies or vaccines against MERS-CoV on the market,
and only a few candidates are being tested in a clinical setting. Although inactivated viruses and
vector-based vaccines induce strong cellular and humoral immune responses, their safety remains
a matter of debate [28,29]. Preexisting vector-specific immunity due to natural infections can lead
to devastating host immune response, limiting the use of vector-based vaccines [30,31]. Vaccination
strategies with S protein or S RBD subunits have been proven to be more effective and safer than
vector-based vaccine candidates against SARS-CoV [32,33]. However, S protein is metastable and
difficult to produce recombinantly. In order to achieve a high-yield production of recombinant S protein,
there was a study to increase the stability of the protein through proline substitution of S protein [34].
Notably, intramuscular administration of an RBD-based vaccine in mice induces long-term protection
against the SARS-CoV infection [35]. Three doses of intramuscularly administered recombinant S-NTD
also induces protective immunity against MERS-CoV infection in Ad5-hDPP4 mice [36]. Besides the
intramuscular route, vaccines can be administered via the subcutaneous, intradermal, intragastric,
and intranasal routes [37]. Importantly, the intranasal administration of an RBD-based subunit
vaccine induces strong mucosal IgA responses [18]. In addition, prime-boost immunization using a
full-length S DNA vaccine and an S1 protein boost induces virus-neutralizing antibodies and confers
protection against MERS-CoV infection in non-human primate models [38]. Given that different types
of MERS-CoV vaccine candidates have variable degrees of immunogenicity, the combination of the
optimal adjuvant and immunization strategy, rather than immunogen-only regimens, could enhance
immunogenicity and protective immune responses against viral infection.

In this study, we investigated the potential use of HBD 2 as an adjuvant to strengthen Ag-specific
adaptive immune responses in hDPP4-Tg mice (Figure 2). HBD 2 is a cysteine-rich cationic
low-molecular-weight antimicrobial peptide. In addition to their function as host defense peptides
against various pathogens, β-defensins share structural similarity with chemokines and play a critical
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role as chemoattractants, recruiting immune cells to mucosal sites and thereby linking innate and
adaptive immunity [12,39]. In response to pathogenic invasion, DCs found in mucosal tissues
orchestrate immune responses against the invading pathogens [40]. Moreover, B cells expressing
defensins contribute to a prolonged cellular and humoral immune response to infected pathogens [41].
Consequently, β-defensin has been considered a useful tool for improving systemic and mucosal
immune responses of subunit vaccines by recruiting antigen-presenting cells and priming adaptive
immune responses [42]. We previously found that HBD 2 promotes antiviral innate immune responses
in macrophage-like THP-1 cells and enhances the production of virus-specific neutralizing Abs
in vivo [15,16].

The role of mucosal immunity in the lungs and other primary infectious tissues has not been
widely studied, although the respiratory mucosa is the main infectious site for numerous pathogens,
including MERS-CoV. In this study, we intramuscularly or intranasally immunized hDPP4-Tg mice
with S RBD protein with or without HBD 2 and investigated systemic and mucosal immune responses
against MERS-CoV. Ag-specific Ab levels and protective immunity against intranasal viral infection
were significantly potentiated in mice intranasally immunized with S RBD-HBD 2, although the Ag
dose was lower than the dose used for intramuscular immunization (Figure 3). It is worth noting that
the levels of Ag-specific Abs and protective immunity against MERS-CoV did not significantly differ in
hDPP4-Tg mice intranasally immunized with a low (1 µg/mouse) or high (5 µg/mouse) S RBD-HBD 2
dose (data not shown). Intramuscular immunization with a low dose of S RBD protein with or without
HBD 2 elicited weak protective and Ag-specific IgG responses in compare to intranasal immunization
(data not shown). By contrast, intranasal administration of S RBD-HBD 2 elicited potent systemic and
mucosal Ab responses, protecting against MERS-CoV infection (Figure 5). These data suggest that the
use of HBD 2 as an adjuvant enhances local mucosal and systemic immune responses, particularly
when administered intranasally. We also demonstrated that MERS-CoV infection triggered ER stress
pathways promoting pulmonary fibrosis (Figure 1). MERS-CoV infection in the respiratory tract causes
fibrotic lung disease symptoms, including alveolar cell damage, inflammation, fibroblast proliferation,
and extracellular matrix deposition [43]. However, the mechanisms underlying progressive lung
fibrosis following MERS-CoV infection remain elusive.

ER stress has been implicated in fibrotic remodeling by activating unfolded protein responses and
pro-apoptotic pathways, as well as promoting inflammation in various tissues, including the lungs, liver,
gastrointestinal tract, kidney, and heart. We previously demonstrated that, upon MERS-CoV infection,
tissue damage elicits severe inflammatory responses and activate ER stress pathway components,
including PERK, ATF4, CHOP, and ATF6. In this study, we showed that the administration of HBD
2-conjugated S RBD downregulated various ER stress-associated molecules and alleviated progressive
pulmonary fibrosis in the lungs of MERS-CoV-infected hDPP4-Tg mice (Figure 4).

5. Conclusions

Overall, these results suggest that the conjugation of HBD 2 with S RBD protein enhances systemic
and mucosal immune responses that protect from MERS-CoV infection. Moreover, these findings
indicate that immunization via the intranasal route might be superior in triggering protective local
and systemic immunity against mucosal pathogens. Therefore, the use of HBD 2 as an adjuvant
may represent a promising approach to enhance the immunogenicity and safety of subunit vaccine
candidates against MERS-CoV and other mucosal viruses.
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