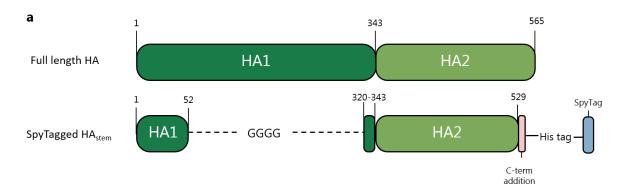
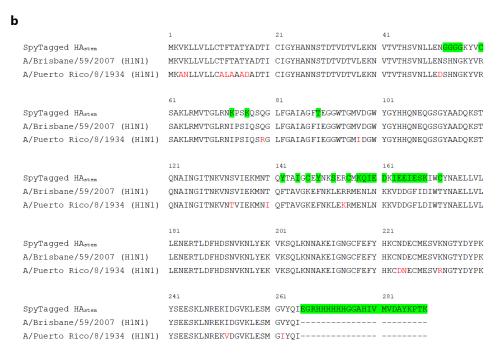
Supplementary Data

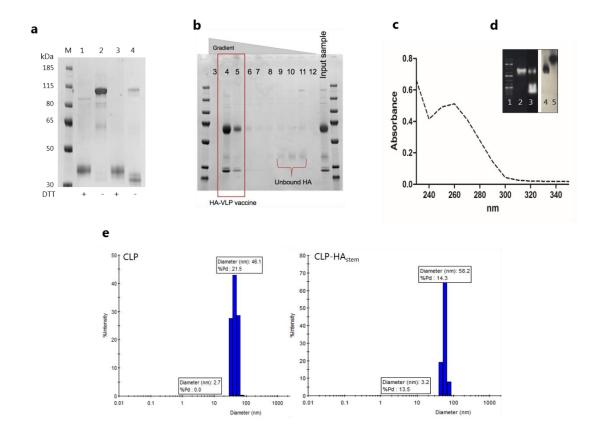
A vaccine displaying a trimeric influenza-A HA stem protein on capsidlike particles elicits potent and long-lasting protection in mice

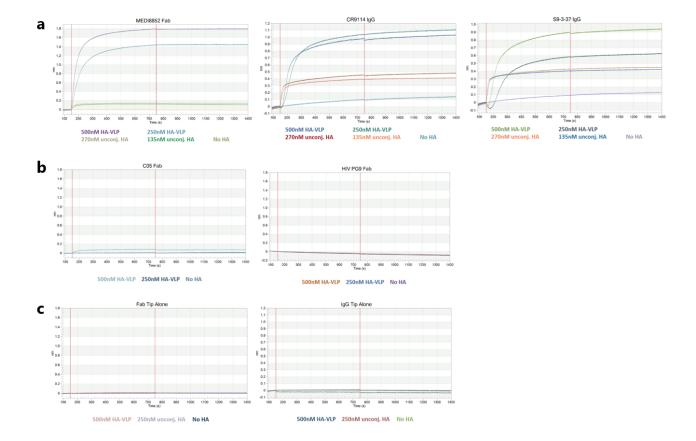

Susan Thrane¹, Kara-Lee Aves¹, Ida E. M Uddbäck¹, Christoph M. Janitzek¹, Julianna Han², Yuhe R. Yang², Andrew B. Ward², Thor G. Theander^{1,3}, Morten A. Nielsen^{1,3}, Ali Salanti^{1,3}, Allan R. Thomsen¹, Jan P. Christensen¹, Adam F. Sander^{1,3,*}


¹ Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.

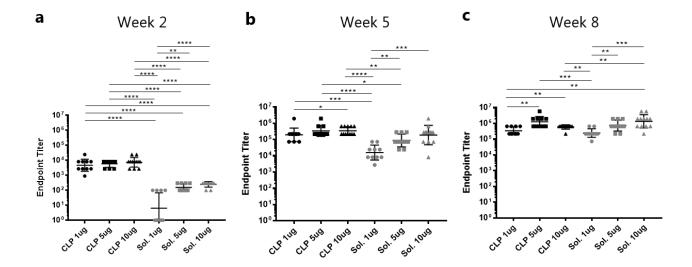
² Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA

³ AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark.


^{*}Correspondence: <u>asander@sund.ku.dk</u>


Supplementary Fig. 1 Sequence comparison of SpyTagged ${\rm HA}_{\rm stem}$ with wild type HA proteins

- a. Graphical depiction of Spytagged HA_{stem} antigen compared to full length A/Brisbane/59/2007 HA.
- **b.** Sequence alignment of Spytagged HA_{stem} with corresponding amino acid segments from A/Brisbane/59/2007 and A/Puerto Rico/8/1934 H1N1 viral strains. Residues engineered into SpyTagged $HA_{stem,}$ which are not present in the A/Brisbane/59/2007 parental protein, are highlighted in green. Non-conserved amino acid residues between the A/Brisbane and A/PR8 strains are colored red. There is a 93% pairwise identity between the A/Brisbane and A/PR8 HA_{stem} sequences compared to an 86.5% identity between the full-length HA proteins of the two strains.


Supplementary Fig. 2 Characterization of purified HA_{stem} and CLP-HA_{stem}.

a Purification of HA_{stem} trimer via immobilized metal affinity chromatography followed by size exclusion chromatography. SDS-PAGE run under reducing (+DTT) and non-reducing (-DTT) conditions, containing a fraction eluted early during gel filtration, and thus containing predominantly trimeric HA_{stem} (*lane 1 and 2*), and a fraction eluted later on, containing predominantly monomeric HA_{stem} (*lane 3 and 4*). b Purification of CLP-HA_{stem} by density gradient ultracentrifugation. Fraction 3 (high density) to 12 (low density) run on reducing SDS-PAGE alongside input sample taken before ultracentrifugation. Fraction 4 and 5 were pooled and used for the immunization studies. c UV spectrum of purified CLP. RNA absorption dominates (260nm). d Agarose gel analysis of AP205 CLP. 1kb DNA size marker (*lane 1*), AP205 CLP input (*lane 2 and 4*), Urea denatured AP205 CLP (*lane 3+5*). *Left* ethidium bromide stained gel, *right* coomassie stained gel. e Dynamic light scattering (DLS) analysis of uncoupled CLP (*left*) and CLP-HA_{stem} vaccine (*right*).

Supplementary Fig. 3 Binding of bnAb to ${\rm HA_{stem}}$ and CLP-HA $_{\rm stem}$.

Bio-layer interferometry analysis of the binding of **a** MEDI8852 Fab (*left*), CR9114 IgG (*center*) and S9-3-37 IgG (*right*) bnAbs; **b** C05 Fab (HA-head specific) (*right*) and HG9 Fab (HIV specific) (*left*); **c** Fab (*left*) or IgG (*right*) tip alone, to soluble HA_{stem} (270mM and 135nM) and CLP-HA_{stem} (500nM and 250nM). Each plot is one representative of 3 independently performed experiments.

Supplementary Fig. 4 ${\rm HA}_{\rm stem}$ specific IgG titres from dose escalation study

ELISA measurements of HA_{stem} specific IgG titres from serum taken at **a** Week 2, **b** Week 5 and **c** Week 8. Cut off was set to OD_{450nm} of 0.2. Each dot represents one animal. Horizontal lines indicate geometric mean of the group and vertical lines indicate the standard deviation. *p<0.05; **p<0.005; ***p<0.0005, ****p>0.00005.