
  

Vaccines 2020, 8, 383; doi:10.3390/vaccines8030383 www.mdpi.com/journal/vaccines 

Supplemental Material 

Supplement 1: Model Description 

We developed a discrete-time stochastic age-structured compartmental rubella transmission 

model for South Africa, building from previous work describing rubella dynamics [16,20]. The key 

feature of the model is a matrix that at every time-step defines transitions from every combination of 

epidemiological stage (maternally immune ‘M’, susceptible ‘S’, infected ‘I’, recovered ‘R’, and 

vaccinated ‘V’, taken to indicate the effectively vaccinated) and age group (1 month age groups up to 

20 years old, then 1 year age groups up to 100 years old; 321 total age groups) to every other possible 

combination of epidemiological stage and age group. The discrete time-step was set to about 16 days 

(i.e., 24 time steps in a year), the approximate generation time of rubella. We simulated a deterministic 

run for each of the vaccination scenarios from year 1995 to 2050. 

Epidemiological Parameters 

Figure S1 displays the epidemiological transitions of the transmission model. The model is age-

structured so that each epidemiological transition is age-specific, and depending on the parameter 

also time-specific. Here, da is the probability of losing maternal immunity by age class a, �� is the 

probability an individual in age class a becomes infected, r is the recovery rate, and va,t is the 

probability an individual in age class a and time-step t is successfully vaccinated.  

The duration of protection by rubella maternal antibodies ranges between 3 and 9 months; 

accordingly, we modelled the probability of remaining in the maternally immune epidemiological 

stage over age (1-da) as an exponential decay function with a constant rate of 0.95 per month [28]. 

The probability of infection by age, �� (also called the age-specific force of infection, FOI) is a 

function of n(t), a vector describing the population at time t, defined as, 

�(�) = (M�,�, S�,�, I�,�, R�,�, V�,�, M�,�, … V�,�)
� 

according to  

��(�(�)) = 1 − ��� (
− ∑ ��,�,� ��,�

�
�  

∑ �(t)
) 

 

where z is the total number of age classes (here z = 321), ��,�,� is the rate of transmission between 

individuals in age class a and j at time-step t, also known as the Who-Acquires-Infection-From-Whom 

(WAIFW) matrix, and ��,�
�

 is the number of infected individuals in age class j and time-step t, while 

� captures the non-modeled heterogeneities in age mixing and the effects of discretization of the 

underlying continuous process. We fix � at 0.97 reflecting values obtained for measles in England 

and Wales [27] , because discrete-time models that do not incorporate this exponent result in 

unrealistically unstable dynamics prone to frequent extinction. Given that rubella transmission is 

frequency dependent, we divide the number of infected individuals in each age class by the total 

population size at time-step t (∑ �(�)). 

Transmission to individuals in age group a from individuals in age group j for each time-step t 

is defined by ��,�,� = ��,�,
�����(1 + � ���(2��)), where ��,�

����� is mean transmission from individuals in age 

group j to age group a, and � is a parameter controlling the magnitude of seasonal fluctuations. 

Previous validation of this model has shown that model results for the burden of CRS were robust to 

the magnitude of seasonal fluctuations [16]; we set � to 0.35 and held it constant over time [16]. Mean 

transmission from individuals in age class j to age class a, ��,�
�����, was estimated by rescaling population-

adjusted age-contact rates (per POLYMOD study based on diary entries [29]) to reflect the assumed 

basic reproductive number (R0) of rubella. The value of R0 used in this analysis of 7.9 and was 

obtained from a previously published modelling study estimating R0 for 40 African countries [21]. 

We proceeded to run simulations with different estimates for R0 in a sensitivity analysis. The highest 
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estimate used was an R0 of 12 which was estimated in Ethiopia [22] and the lowest estimate estimated 

in Burkina Faso was 3.3 [21]. 

The recovery rate, r, is equal to 1, such that by the next time-step (or rubella generation) all 

infected individual will immediately move into the recovered class.  

The probability an individual in age class a and time-step t is successfully vaccinated, va,t, 

depends on the assumed vaccination coverage rate assumed over time and vaccine effectiveness over 

age. The vaccination coverage rate ranges from 0 to 1 and is vaccination scenario specific (Table 1 in 

the main text). Vaccination effectiveness rate over the first 11 months of life was empirically estimated 

from data extracted from Boulianne et al. 1995 [29] forcing saturating at 97% and staying constant at 

97% for all ages 12 months and older. 

Demographic Parameters 

Demographic parameters (population size, crude birth rates, and age-specific death rates) were 

country-specific and extracted from the United Nations World Population Prospects 2015 (cran 

package wpp2015). 

The number of births per time-step t were estimated by multiplying the crude birth rate per 

time-step t (i.e., annual crude birth rate divided by 24 generations in a year) by the total population 

at time-step t (∑ �(�)). Age-specific death rates as of 1995, extracted at five year age intervals, were 

estimated for all 321 age classes using smoothing splines and held constant over time. We assumed a 

constant rate of aging into the next age class (i.e., 1 divided by the length of age class a in years 

multiplied by 24).  

To simulate rubella dynamics, we first needed country-specific rubella endemic populations 

(n(1)). We began with fully susceptible populations based on country-specific population and age 

structure estimated for 1995. The one year age interval population estimates were stratified into 321 

age classes using smoothing splines. In order to move beyond the transient non-seasonal outbreaks 

to populations representing endemic rubella, we seeded infected individuals into the population and 

iteratively simulated rubella dynamics for four 20-year increments assuming constant births and 

deaths. At the end of each 20 year cycle, we rescaled the mean transmission (��,�
�����) by the assumed R0 

and the population by the 1995 population and age structure, and then simulated again, four times 

total. The result was a country-specific population representing endemic rubella in 1995 (n(1)). In 

2015, we rescaled the population size (n(t)) based on population total estimates for the respective year 

to correct for small population size differences that accumulate over time in our model. 

Model Outcomes of Interest 

Our model outputs the number of individuals in each age class and epidemiological stage at 

every time-step, allowing us to directly extract the number of rubella cases (i.e., the number of 

individuals in the ‘I’ infected epidemiological class) per age and time-step. 

Age- and time-specific CRS cases were estimated by multiplying the age-specific number of 

susceptible individuals and probability of becoming infected over 16 week period (based on model 

output from each vaccination scenario), the sex ratio of the population and age-specific fertility rate 

(extracted from the United Nations World Population Prospects 2015), and finally the probability of 

CRS following rubella infection during the first 16 weeks of pregnancy (estimated 0.65 [14]).  

The effective reproduction number (RE) was estimated from the model output using the next 

generation method [40].  

Model diagram of age-structured model. 
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Figure S1. Relationship between data and the age-structured model. Solid lines ending in arrows 

indicate either data or elements inferred from data (i.e., R0, the appropriate structure of the WAIFW) 

that directly enter the model. Individuals in the maternal immunity (M), susceptible (S), infected (I), 

recovered (R) and vaccinated (V) compartments are represented with arrows representing movement 

between compartments: ɗ is the probability of losing maternal immunity, ϕ is the probability of 

becoming infected, ᴦ is the recovery rate and v is the probability of being vaccinated. 

Supplement 2: CRS incidence over time for scenarios 2 to 6 compared to scenario 1 with extreme 

values of R0 

Prior to RCV introduction, the incidence of CRS when R0 =3.3 was about three-fold that of R0=12. 

A lower value of R0 implies the rate of infection is lower. As a result, individuals are becoming 

exposed to the pathogen later in life. The risk of infection is therefore higher in adulthood compared 

to the case when R0 is higher and this leads to an older age distribution of infected individuals and 

therefore a higher CRS incidence. 
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Figure S2. CRS incidence over time at 80% RCV coverage for scenarios 2 to 6 compared to scenario 1 

with R0 values of 3.3 and 12. The lines for scenarios 3 and 4 overlap with that of scenario 5 so only 

this line is visible. The vertical dotted line represents the year of RCV introduction.  

Supplement 3: CRS cases averted and DALYs averted over time for scenarios with RCV 

compared to no RCV 

Table S3. Number of CRS cases averted and corresponding number of undiscounted DALYs averted 

for each scenario involving RCV introduction (2 to 6) compared to scenario 1. Estimates are shown 

for a range of routine vaccine coverage levels (60% through 95%) and for three time horizons: 10, 20 

and 30 years. 

Scenario/RCV coverage 
10 years post RCV introduction 20 years post RCV introduction 30 years post RCV introduction  

CRS averted DALYs averted CRS averted      DALYs averted CRS averted      DALYs averted 

 Two 60% 1288 29484 2173 49759 2565 58738 

 Two 65% 1511 34594 3124 71543 4321 98955 

 Two 70% 1715 39271 4508 103240 6912 158280 

 Two 75% 1893 43344 5682 130122 9911 226957 

 Two 80% 2042 46759 6044 138408 10716 245392 

 Two 85% 2164 49562 6230 142658 10903 249684 

 Two 90% 2264 51853 6358 145601 11032 252627 

 Two 95% 2346 53731 6455 147814 11128 254840 

 Three 60% 3664 83911 7629 174711 11950 273659 

 Three 65% 3664 83911 7798 178574 12471 285579 

 Three 70% 3664 83911 7798 178584 12472 285610 

 Three 75% 3664 83911 7798 178584 12472 285610 

 Three 80% 3664 83911 7798 178584 12472 285610 

 Three 85% 3664 83911 7798 178584 12472 285610 

 Three 90% 3664 83912 7798 178585 12472 285611 

 Three 95% 3664 83912 7798 178585 12472 285611 

 Four 60% 3664 83911 7797 178560 12277 281152 

 Four 65% 3664 83911 7798 178584 12472 285603 

 Four 70% 3664 83911 7798 178584 12472 285610 

 Four 75% 3664 83911 7798 178584 12472 285610 

 Four 80% 3664 83911 7798 178584 12472 285610 

 Four 85% 3664 83911 7798 178584 12472 285610 

 Four 90% 3664 83912 7798 178585 12472 285611 

 Four 95% 3664 83912 7798 178585 12472 285611 

 Five 60% 3664 83911 7798 178584 12472 285610 

 Five 65% 3664 83911 7798 178584 12472 285610 

 Five 70% 3664 83911 7798 178584 12472 285610 

 Five 75% 3664 83911 7798 178584 12472 285610 

 Five 80% 3664 83911 7798 178584 12472 285610 

 Five 85% 3664 83911 7798 178584 12472 285610 

 Five 90% 3664 83912 7798 178585 12472 285611 

 Five 95% 3664 83912 7798 178585 12472 285611 

 Six 60% 3084 70615 7218 165288 11891 272314 

 Six 65% 3130 71680 7264 166353 11938 273379 

 Six 70% 3168 72550 7302 167223 11976 274249 

 Six 70% 3200 73274 7334 167947 12008 274973 

 Six 80% 3227 73889 7361 168562 12034 275588 

 Six 85% 3250 74428 7384 169101 12058 276127 

 Six 90% 3272 74927 7406 169600 12080 276626 

 Six 95% 3295 75445 7429 170118 12102 277144 
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Supplement 4: Change in effective reproductive number over time for all RCV coverage values.  

 

Figure S4a. Change in RE over time for scenario 2 compared to scenario 1. While RE never drops to 

values below one for 60% vaccine coverage, it takes between 11 and 14 years for RE to drop below one 

with vaccine coverage levels of 65% to 95%. The slow drop in RE can be explained by the time it takes 

for successive vaccinated cohorts to age and achieve sufficient reduction in rubella incidence. . 

 

Figure S4b. Change in RE over time for scenario 3 compared to scenario 1. Following RCV 

introduction, RE immediately drops to values way below one due to the wide age range of vaccinated 

individuals during the initial mass campaign. There is then a progressive rise in RE corresponding to 

accumulation of susceptible individuals missed during routine vaccination and the initial SIA, with 
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this rebound being less prominent with increasing routine vaccine coverage. RE eventually goes above 

one only for 60% RCV coverage. 

 

Figure S4c. Change in RE over time for scenario 4 compared to scenario 1. Following RCV 

introduction, RE immediately drops to values way below one due to the wide age range of vaccinated 

individuals during the initial mass campaign. There is then a progressive rise in RE corresponding to 

accumulation of susceptible individuals missed during routine vaccination and the initial SIA, with 

this rebound being less prominent with increasing routine vaccine coverage. Following the second 

mass campaign 5 years after RCV introduction, RE drops again but resumes an upward trend, 

eventually going above one only for 60% RCV coverage. 
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Figure S4d. Change in RE over time for scenario 5 compared to scenario 1. Following RCV 

introduction, RE immediately drops to values way below one due to the wide age range of vaccinated 

individuals during the initial mass campaign. There is then a progressive rise in RE corresponding to 

accumulation of susceptible individuals missed during routine vaccination and the initial SIA, with 

this rebound being less prominent with increasing routine vaccine coverage. Following subsequent 

mass campaigns every 5 years, RE drops again but resumes an upward trend. In this scenario, RE never 

goes above one irrespective of RCV coverage. 

 

Figure S4e. Change in RE over time for scenario 6 compared to scenario 1. It takes between 4 and 6 

years for RE to drop below one for all vaccine coverage levels with higher vaccine coverages associated 

with quicker decrease in RE. The slow drop in RE can be explained by the time it takes for successive 

vaccinated cohorts to age and achieve sufficient reduction in rubella incidence.  
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Supplement 5: Change in RE over time for scenarios 2 to 6 compared to scenario 1 with extreme 

values of R0 

For both values of R0, scenarios that entail a mass campaign have an immediate drop in RE but 

contrary to the lower value of R0 (3.3), there is a rebound effect for scenarios 3 to 5 with the higher 

value of R0 (12) and a slower drop in R0 to values below one for scenarios 2 and 6. This is due to 

higher rubella transmission with higher R0 values. 

 

 

Figure S5. Change in RE over time at 85% RCV coverage for scenarios 2 to 6 compared to scenario 1 

with R0 = 12. The vertical dotted line represents the year of RCV introduction. 
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