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Abstract: Currently, there is limited knowledge about the immunological profiles of Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We used computer-based immunoinformatic
analysis and the newly resolved 3-dimensional (3D) structures of the SARS-CoV-2 S trimeric protein,
together with analyses of the immunogenic profiles of SARS-CoV, to anticipate potential B-cell and
T-cell epitopes of the SARS-CoV-2 S protein for vaccine design, particularly for peptide-driven vaccine
design and serological diagnosis. Nine conserved linear B-cell epitopes and multiple discontinuous
B-cell epitopes composed of 69 residues on the surface of the SARS-CoV-2 trimeric S protein were
predicted to be highly antigenic. We found that the SARS-CoV-2 S protein has a different antigenic
profile than that of the SARS-CoV S protein due to the variations in their primary and 3D structures.
Importantly, SARS-CoV-2 may exploit an immune evasion mechanism through two point mutations
in the critical and conserved linear neutralization epitope (overlap with fusion peptide) around
a sparsely glycosylated area. These mutations lead to a significant decrease in the antigenicity of this
epitope in the SARS-CoV-2 S protein. In addition, 62 T-cell epitopes in the SARS-CoV-2 S protein were
predicted in our study. The structure-based immunoinformatic analysis for the SARS-CoV-2 S protein
in this study may improve vaccine design, diagnosis, and immunotherapy against the pandemic
of COVID-19.
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1. Introduction

The outbreak of the coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus
named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. By 16 June 2020,
SARS-CoV-2 has been reported in 216 nations and has resulted in 7,941,791 confirmed cases (https:
//www.who.int/emergencies/diseases/novel-coronavirus-2019).

Coronavirus (CoV) belongs to the family of Coronaviridae, and it is an enveloped, positive-sense
single-stranded RNA virus. Both SARS-CoV-2 and SARS-CoV fit into the subgenus of Sarbecovirus
within the genus of Betacoronavirus (Beta-CoV), based on phylogenetic tree analysis [1–3]. The viral
genome, approximately 30 kb in size, encodes four structural proteins including the spike (S), envelope
(E), membrane (M), and nucleocapsid (N) proteins. The S protein is composed of an ectodomain,

Vaccines 2020, 8, 355; doi:10.3390/vaccines8030355 www.mdpi.com/journal/vaccines

http://www.mdpi.com/journal/vaccines
http://www.mdpi.com
https://orcid.org/0000-0003-2502-1011
http://www.mdpi.com/2076-393X/8/3/355?type=check_update&version=1
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
http://dx.doi.org/10.3390/vaccines8030355
http://www.mdpi.com/journal/vaccines


Vaccines 2020, 8, 355 2 of 15

a transmembrane domain (TM), and a short cytoplasmic tail region (CP) (Figure 1). The S protein
forms homotrimers on the viral membrane surface. The ectodomain of S protein is composed of two
subunits (S1 and S2) which are responsible for host cell receptor engagement and membrane fusion,
respectively. The S1 subunit contains an NH2-terminal domain (NTD) and the carboxyl-terminal
domain (CTD), which is also called the receptor-binding domain (RBD). Coronaviruses may use both
domains to interact with a variety of host cell receptors for cell entry. For instance, both SARS-CoV and
SARS-CoV-2 use the RBD to specifically bind angiotensin-converting enzyme 2 (ACE2) on host cells for
virus entry [4–6]. Molecular modeling has suggested that the SARS-CoV-2 receptor-binding domain
(RBD) has a stronger binding affinity to ACE2 [7]. Middle East Respiratory Syndrome Coronavirus
(MERS-CoV) uses its RBD to bind to host cell receptor dipeptidyl peptidase 4 (DPP4) [8]. Some other
members, such as porcine epidemic diarrhea virus (PEDV), employ the NTD to interact with a sugar
moiety on the host cell membrane for binding and entry [9]. SARS-CoV receptor (ACE2) binding to
RBD of the S1 subunit induces subsequent conformational changes of the S2 subunit, which leads to
the fusion of the cell and the virus membranes [10,11]. The S2 subunit contains two heptad repeat
domains (HR1 and HR2) that play a critical role in SARS-CoV membrane fusion with target cells.
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Figure 1. Schematic of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and SARS-CoV-2
S protein. (A, B) Schematic of SARS-CoV and SARS-CoV-2 genome encoding spike protein. SP: signal
peptide; NTD: N-terminal domain; RBD: receptor-binding domain; RBM: receptor-binding motif; FP:
fusion peptide; HR1 and HR2: heptad repeat regions 1 and 2; TM: transmembrane; CP: cytoplasmic
tail region.

SARS-CoV infection triggers a series of humoral and cellular immune responses, including
the production of high titers of specific neutralizing antibodies and specific cytotoxic T lymphocyte
responses to SARS-CoV [12,13]. The S protein is the major structural antigenic component through
which effective protective immunity is raised against virus infection. A vaccine based on the S protein
could elicit antibodies to neutralize virus infection by blocking virus fusion and entry. The SARS-CoV-2
S protein shares a high degree of similarity to the SARS-CoV S protein [14,15], and it also binds in similar
fashion to the human ACE2 receptor and thus is likely to employ a similar cell entry mechanism [4,16].
As such, the S protein is an effective antigenic component for SARS-CoV-2 vaccine design and
development. However, currently, there is little or limited information about the immunogenic
profiles of SARS-CoV-2 and the immune responses against SARS-CoV-2. Despite this, computer-based
immunoinformatics [17], together with the recent progress on the 3-dimensional (3D) SARS-CoV-2 S
protein [14,15,18–21], offers a powerful strategy providing rational and rapid guidelines for the design
and development of effective vaccines against this emerging infectious disease.

In this study, the close genetic relationship of SARS-CoV-2 with other members of the genus of
Beta-CoV, especially with SARS-CoV, prompted us to explore the potential immunogenic profiles
of SARS-CoV-2 for vaccine design and development. We used computer-based immunoinformatic
analysis, together with analyses of the immunogenic profiles of SARS-CoV, to anticipate potential B-cell
and T-cell epitopes of the S protein of SARS-CoV-2 for vaccine design, particularly peptide-driven
vaccine design, immunotherapy, and serological diagnosis.
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2. Materials and Methods

2.1. B-Cell Epitope Prediction

Linear B-cell epitopes of the SARS-CoV-2 S protein were predicted by BepiPred 2.0 in IEDB
(BepiPred 2.0., Immune Epitope Database and Analysis Resource, National Institute of Allergy and
Infectious Diseases, Bethesda, MD, USA) with a threshold of 0.55 (corresponding specificity > 0.817 and
sensitivity < 0.292), and only the epitopes with more than 8 residues were considered for subsequent
antigenicity analysis. Antigenicity was evaluated via the VaxiJen v2.0 server online tool (VaxiJen v2.0.,
The Jenner Institute, Oxford, UK) [22]. Discontinuous B-cell epitopes were predicted via the DiscoTope
2.0 server tool in IEDB with a default threshold of −3.7 (corresponding specificity > 0.75 and sensitivity
< 0.47), based on the 3-dimensional (3D) structures of the SARS-CoV-2 S protein (PDB ID: 6VYB, B
chain) and the SARS-CoV-2 S protein RBD (PDB ID: 6M0J, B chain).

2.2. T-Cell Epitope Prediction

CD8 T-cell epitopes were predicted based on the Net MHC pan 4.0 algorithm in IEDB with a peptide
size of 9 residues, and the 8 most frequent HLA class I alleles (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01,
HLA-A*11:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01, and HLA-B*40:01) in the worldwide
population (phenotypic frequency > 10%) were selected [23]. The top 1% of peptides with high
scores were chosen for subsequent immunogenicity evaluation, which was analyzed by the VaxiJen
v2.0 server. For CD4 T-cell epitope prediction, an IEDB-recommended 2.22 algorithm based on 7 alleles
(DRB1*0301, DRB1*0701, DRB1*0501, DRB3*0101, DRB3*0202, DRB4*0101, and DRB5*0101) [24] at
a default 15-aa peptide was used with a median consensus percentile of prediction threshold ≤ 20,
as recommended.

2.3. SARS-CoV S Protein Epitope Acquisition

B-cell and T-cell epitopes of the SARS-CoV S protein were searched in IEDB by using IEDB’s
Immunobrowser tool. To identify B- and T-cell epitopes tested by experiments, only the epitopes with
the response frequency (RF) values more than 0.5 were considered as positive.

2.4. Peptide Modeling and Molecular Docking

3D structures of all peptides were modelled via the PEP-FOLD3 online server [25]. All the
peptides were docked to the MHC I molecules HLA-B7 (PDB ID: 3VCL) and HLA-A*01:01 (PDB ID:
4NQV) via the PatchDock rigid-body docking server based on the defined threshold [26]. The docking
transformation with good molecular shape complementarity was selected based on the geometry
docking algorithm in PatchDock, and then scoring and refining of the docked complexes were
performed using the FireDock server [27,28]. The docking complexes with high global energy,
attractive van der Waals (vdW) energy, and hydrogen-bonding energy were used for subsequent
analysis. Protein–peptide connection was examined via LigPlot+ v.2.2, and Pymol (Version 1.8.4.0,
Schrödinger, Inc, New York, NJ, USA) was used to analyze docked complexes.

3. Results

3.1. B-Cell Epitope Prediction and Analysis of Spike Glycoprotein

In all, 17 potential linear B-cell epitopes were predicted by the BepiPred 2.0 program (Table S1,
Supplementary Materials), and nine linear B-cell epitopes were chosen for further analysis after their
antigenicity was evaluated via the VaxiJen v2.0 program, based on the scores (Table 1). All the predicted
B-cell epitopes were localized to a strictly conserved region and shared 100% identity throughout
the 138 SARS-CoV-2 isolates. Structure simulations demonstrated that all the nine epitopes were
located on the surfaces of either the monomer or the trimer of the S protein (Figure 2A, top panel).
Of note, of the nine epitopes, epitope 5 (405DEVRQIAPGQTGKI418) was localized to the RBD and
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epitope 6 (441LDSKVGGN448) to the RBM of the SARS-CoV-2 S protein (Table 1). We also reviewed
seven dominant linear B-cell epitopes of the SARS-CoV S proteins based on previous experimental tests
and response frequency (see Methods). Of the seven epitopes, two epitopes were identical throughout
all the 87 SARS-CoV isolates and four were highly conserved (≥93.1% SARS-CoV isolates had identical
epitopes) (Table S2, Supplementary Materials). These results suggested that the majority of linear B-cell
epitopes of the S protein were highly conserved in SARS-CoV and SARS-CoV-2 isolates, respectively
(Table 1 and Table S2). It is worth noting that one epitope (786QILPDPLKPTKRSFIEDLLFNKVTLA811)
located in the S2 subunit of the SARS-CoV S protein is an important linear B-cell epitope capable
of eliciting the production of a neutralizing antibody (NAb) identified in patients who recovered
from SARS-CoV infection (Table S2) [13]. In addition, we also predicted linear B-cell epitopes of
the SARS-CoV S protein, and six of the seven dominant linear B-cell epitopes were predicted by
BepiPred 2.0, since the six dominant B-cell epitopes had overlapping sequences with their counterparts
in the predicted epitope pool, thereby supporting BepiPred 2.0 as a reliable and powerful tool for
predicting linear B-cell epitopes. Finally, the comparison of the epitope sequences revealed that there
were no overlapping sequences between the nine potential linear B-cell epitopes of SARS-CoV-2
and the seven dominant linear B-cell epitopes of SARS-CoV (Table 1 and Table S2), suggesting that
the immunogenetic profile of the SARS-CoV-2 S protein may be different from that of SARS-CoV.

Besides the linear B-cell epitopes, 69 residues on the surface of the S protein of the SARS-CoV-2
were predicted to form the multiple discontinuous B-cell epitopes (Table 2). Furthermore, based
on the primary structure and 3D structure of the trimeric S protein, these residues were mainly
distributed within eight regions (Table 2 and Figure 2B). Notably, region S1–2 containing 35 residues
accounted for more than half of the residues (35/69) comprising the discontinuous B-cell epitopes,
and these 35 residues of region S1–2 were all located in the RBD. Furthermore, 31 of the 35 residues
were in the RBM (region S1–2 in Table 2). This result suggested that the RBD, particularly the RBM,
was highly antigenic. In addition, among the discontinuous epitope(s) of region S1–2, 10 residues
(G417, G446, Y449, Q493, G496, Q498, T500, N501, G502, and Y505) were identified as the key residues
contributing to the binding to the host receptor ACE2 [19] (Table 2). In region S2–2, two residues (P793
and I794) were located in the fusion peptide (FP) and exposed on the surface of the S2 subunit (Table 2
and Figure 2B, top panel). Therefore, antibodies targeting these two regions may block the virus binding
to the host cell receptor and the subsequent membrane fusion between virus and host cell. In addition,
sequence alignments revealed that these 69 residues were strictly conserved among the S proteins of
the 138 SARS-CoV-2 isolates, except that a point mutation (P1143L, region S2–5, Table 2) occurred
in the Australia/QLD02/2020 strain. Although this mutation did not change the secondary structure
(Figure S1A, Supplementary Materials), it caused a slight increase in the antigenicity (the antigenic
scores increasing from 0.558 to 0.565). Indeed, as shown in Figure S1B, the longer side chain of 1143L
caused an apparent alteration of the surface structure.
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Table 1. Predicted linear B-cell epitopes on the surface of the SARS-CoV-2 S protein.

Epitope Position Sequence Length VaxiJen Score Identity Domain or Motif

1 15–31 CVNLTTRTQLPPAYTNS 17 1.2219 100% NTD
2 62–75 VTWFHAIHVSGTNG 14 0.5786 100% NTD
3 141–152 LGVYYHKNNKSW 13 0.8156 100% NTD
4 208–220 TPINLVRDLPQGF 13 0.4768 100% NTD
5 405–418 DEVRQIAPGQTGKI 14 0.9312 100% RBD
6 441–448 LDSKVGGN 8 0.8773 100% RBM
7 657–664 NNSYECDI 8 0.6539 100% S1 (C-terminal)
8 696–709 TMSLGAENSVAYSN 14 0.6780 100% S2 (N-terminal)
9 1154–1169 KYFKNHTSPDVDLGDI 16 0.7333 100% S2 (C-terminal)

Note: Residues in the epitopes that are present in the crystal structure of the SARS-CoV-2 trimeric S protein are underlined; otherwise, they were absent in the crystal structure.

Table 2. Predicted discontinuous B-cell epitopes of the SARS-CoV-2 S protein.

Region Sequences Domain/Motif

S1–1 K97, S98, K187, P209, N211, E281, N282 NTD

S1–2 T415, K417, D420, Y421, N439, N440, S443, K444, V445, G446, G447, N448, * Y449, * N450, L452, R454, K458, S459, N460, K462,
S477, P491, * L492, Q493, S494, * G496, F497, Q498, P499, * T500, N501, * G502, V503, G504, * Y505 RBD

S1–3 N556, K558, L560, P561, F562, Q563, L582 C-terminal
S2–1 N703, S704, V705 N-terminal
S2–2 P793, I794 FP
S2–3 P809, S810, K811 Between FP and HR1
S2–4 Y917, E918 HR1
S2–5 Q1071, N1074, T1100, L1141, Q1142, P1143, E1144, L1145, D1146, S1147 Between HR1 and HR2

Residues in the epitopes that are involved in binding of the SARS-CoV-2 RBD to hACE2 are underlined. * indicates the residues that are present at the identical positions of both SARS-CoV
and SARS-CoV-2 S proteins.
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Figure 2. Localization of linear (A) and discontinuous (B) B-cell epitopes of the SARS-CoV-2 and
SARS-CoV S proteins. (A) The predicted linear B-cell epitopes of SARS-CoV-2 (top) and the known linear
B-cell epitopes of SARS-CoV (bottom) in the monomeric (left, ribbon model) and on the trimeric (middle
and right, surface model) S proteins. Eight predicted epitopes of the SARS-CoV-2 S protein are shown
as salmon in the monomeric S protein or distinct colors on the trimeric S protein surface (1: salmon; 2:
green; 3: red; 4: blue; 5: yellow; 6: magenta; 7: cyan; 8: orange). The epitopes of the SARS-CoV S protein
are shown as red in the monomeric and trimeric S protein surfaces. (B) The predicted discontinuous
B-cell epitopes of SARS-CoV-2 (top) and the known discontinuous B-cell epitopes (Epitope ID: 77442,
77444, and 910052) of SARS-CoV (bottom) in the monomeric (left, ribbon model) and on the trimeric
(middle and right, surface model) S proteins. The epitopes of SARS-CoV-2 are shown as orange
in monomer and distinct colors on the trimeric S protein surface (S1–1: red; S1–2: orange; S1–3: blue;
S2–1: yellow; S2–2: magenta; S2–3: light blue; S2–4: cyan; S2–5: salmon). The epitopes of the SARS-CoV
S protein are shown as blue in the monomeric S protein and on the trimeric S protein surface. The boxes
with red dashed lines indicate the membrane-distal termini of both trimeric S proteins and the top
views are on the right. Note: Three-dimensional (3D) structure models of the SARS-CoV-2 S protein
(PDB ID: 6VYB) and SARS-CoV S protein (PDB ID: 6ACD) were retrieved from the PDB database.

Next, we examined all the discontinuous B-cell epitopes of the SARS-CoV S protein deposited
in the IEDB database, and three main epitopes (Epitope ID: 77442, 77444, and 910052) were obtained
from the database (Table S3, Supplementary Materials). Furthermore, these conformational epitopes
could be recognized by a variety of neutralizing mAbs (80R, m396 and S230) in previous studies [29,30].
3D structure analyses revealed that the residues among the three discontinuous B-cell epitopes were
exclusively mapped onto the RBD surface of the S1 subunit, suggesting that the RBD of the SARS-CoV S
protein is also highly antigenic. We also compared the common residues comprising the discontinuous
epitopes within the RBDs of both the RBDs of SARS-CoV and SARS-CoV-2 S proteins. Only seven
residues (Y449, N450, L492, G496, T500, G502, and Y505 of the SARS-CoV-2 S protein) were present
in the identical positions of both S proteins (Table 2). Therefore, the three mAbs (80R, m396, and S230)
recognizing the RBD of the SARS-CoV S protein hardly bound the SARS-CoV-2 RBD, although
the RBDs of both SARS-CoV and SARS-CoV-2 exhibit a high degree of 3D structural homology [14].
Altogether, compared to the SARS-CoV S protein, the SARS-CoV-2 S protein may have a distinct
antigenic profile, although both viruses are closely related by phylogenetic analysis (Figures S2 and S3,
Supplementary Materials).

3.2. T-Cell Epitope Prediction for the SARS-CoV-2 S Protein

In all, 40 peptides were predicted as the potential CD8 T-cell epitopes following analysis of
peptide-MHC-I binding of the SARS-CoV-2 S protein using the Net MHC pan 4.0 server and their
subsequent evaluation of antigenicity using VaxiJen v2.0 (Table S4, Supplementary Materials). Similarly,
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22 potential CD4 T-cell epitopes were predicted to be present in the SARS-CoV-2 S protein (Table 3).
Three of the 62 predicted T-cell epitopes (CD8 and CD4 T-cell epitopes above) of the SARS-CoV-2 S
protein have been reported as T-cell epitopes of the SARS-CoV S protein in previous studies [31–34]
(Table S5, Supplementary Materials). The first and second were CD8 T-cell epitopes (493PYRVVVLSF501,
Epitope ID: 50166; 1174NLNESLIDL1182, Epitope ID: 44814), while the first one was located in the RBD
of the SARS-CoV S protein, which is known to be important for receptor binding and virus entry [35].
The third one was encompassed in one of the CD4 T-cell epitopes (993QLIRAAEIRASANLAATK1010,
Epitope ID: 100428) of the SARS-CoV S protein (the epitope highlighted with underline showed
the predicted CD4 T-cell epitope derived from the SARS-CoV-2 S protein).

Table 3. Predicted MHC class-II peptides of the SARS-CoV-2 S protein.

Start End Length Peptide Median Consensus Percentile VaxiJen Score

5 19 15 LVLLPLVSSQCVNLT 20 1.2086
52 66 15 QDLFLPFFSNVTWFH 16 0.4159
57 71 15 PFFSNVTWFHAIHVS 16 0.7656
113 127 15 KTQSLLIVNNATNVV 13 0.6303
116 130 15 SLLIVNNATNVVIKV 14 0.4707
139 153 15 PFLGVYYHKNNKSWM 20 0.6641
199 213 15 GYFKIYSKHTPINLV 18 0.9278
209 223 15 PINLVRDLPQGFSAL 15 0.6086
230 244 15 PIGINITRFQTLLAL 13 0.8877
239 253 15 QTLLALHRSYLTPGD 16 0.6708
263 277 15 AAYYVGYLQPRTFLL 16 0.6073
309 323 15 EKGIYQTSNFRVQPT 18 0.9243
312 326 15 IYQTSNFRVQPTESI 11 0.7459
345 359 15 TRFASVYAWNRKRIS 16 0.4963
390 404 15 LCFTNVYADSFVIRG 17 0.5950
506 520 15 QPYRVVVLSFELLHA 14 0.9109
821 835 15 LLFNKVTLADAGFIK 19 0.6327
896 910 15 IPFAMQMAYRFNGIG 6.5 1.2828

1013 1027 15 IRAAEIRASANLAAT 14 0.6785
1016 1030 15 AEIRASANLAATKMS 13 0.8255
1060 1074 15 VVFLHVTYVPAQEKN 20 1.1720
1212 1226 15 WPWYIWLGFIAGLIA 19 0.7293

The underlined epitope is also identified as a T-cell epitope of the SARS-CoV S protein.

3.3. Molecular Docking of Predicted CD8 T-Cell Epitopes with HLA Alleles

Before molecular docking with HLA molecules, the 3D structures of the 40 potential CD8 T-cell
epitopes were modelled via PEP-FOLD3. Only the best 3D model of each epitope was chosen for
the subsequent molecular docking with HLA molecules. Among the 40 epitopes, four were docked into
HLA-B7 and nine were docked into HLA-A*01:01. For the four peptide-HLA-B7 molecular docking,
the binding efficiency of each epitope was evaluated by the global and vdW energies, which were
computed ranging from −11.55 to −26.14 kcal/mol and −18.15 to −25.38 kcal/mol, respectively (Table 4).
All the four peptides were predicted to be well docked into the groove of the HLA-B7 molecule and
formed stable hydrogen bonds with the residues in the groove of the HLA (Figure 3A). Notably, both T73
and E152 in the HLA-B7 groove frequently interacted with the epitopes via hydrogen bonding within
3.1Å (Figure S4A, Supplementary Materials). Furthermore, the global and vdW energies of the nine
peptide-HLA-A*01:01 dockings ranged from −12.90 to −46.66 kcal/mol and −12.10 to −25.71 kcal/mol,
respectively (Table 4). Of these nine peptides, five peptides showed high binding affinities and the other
four peptides showed even higher binding affinities with HLA-A*01:01. Hydrogen bonds less than
3.1Å were frequently observed in docking complexes. T73, N77, T143, and R156 within the groove
were the major residues interacting with these peptides and formed stable complexes (Figure 3B and
Figure S4B).
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Table 4. Molecular docking results of HLA-B7 and HLA-A*01:01 with MHC I peptides.

Number Start End Peptide Global Energy
(kcal/mol)

vdW Energy
(kcal/mol)

H-Bonding Energy
(kcal/mol) Interacting Residues VaxiJen Score Alleles

B1 714 722 IPTNFTISV −26.14 −22.96 −0.83 Thr73, Ser77 0.882

HLA-B7
B2 241 249 LLALHRSYL −25.81 −25.38 −2.01 Glu152 0.5241
B3 269 277 YLQPRTFLL −17.28 −21.98 −0.41 Arg62, Tyr67, Glu163 0.4532
B4 526 534 GPKKSTNLV −11.55 −18.15 −1.99 Thr73, Glu152 0.6828

A1 1060 1068 VVFLHVTYV −46.66 −21.71 −1.89 His70, Tyr84 1.5122

HLA-A*01:01

A2 57 65 PFFSNVTWF −37.65 −25.71 −1.94 Thr80, Thr143 0.6638
A3 755 763 QYGSFCTQL −26.61 −20.71 −0.82 Asn77, Thr143, Arg156 1.2906
A4 142 150 GVYYHKNNK −26.01 −22.48 −0.62 Asn77, Asp116, Lys146 0.8264
A5 507 515 PYRVVVLSF −17.96 −16.51 −1.87 Asn77 1.0281
A6 1065 1073 VTYVPAQEK −14.92 −24.24 −3.52 Thr73, Asn77, Arg156 0.8132
A7 725 733 EILPVSMTK −13.80 −12.10 −1.87 Thr73 1.6842
A8 706 714 AYSNNSIAI −13.29 −13.02 −1.81 Thr73 0.8274
A9 1192 1200 NLNESLIDL −12.90 −19.85 −4.32 Asn66, Thr73, Arg163 0.6827

The underlined epitopes are also identified as T-cell epitopes of the SARS-CoV S protein.
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4. Discussion

Vaccination is the most effective medical strategy against a variety of infectious diseases.
Unfortunately, to date, no vaccine against coronavirus-associated diseases has been approved by
the FDA for use in humans. Therefore, a vaccine against COVID-19 is urgently needed to control
the pandemic caused by the highly contagious SARS-CoV-2. The lack of knowledge about SARS-CoV-2
immunogenic profiles and immune responses is a challenge to vaccine design and development.
The S protein is a leading potential target for vaccine design for either SARS-CoV or SARS-CoV-2
infection because of its strong immunogenicity and its roles in virus attachment and cell entry [16,36].
Importantly, the S protein of SARS-CoV is capable of inducing the production of neutralizing antibodies
(NAbs), which have been found in convalescent plasma samples from SARS patients [13] and in animal
models [37,38]. Therefore, antibodies targeting the S protein, particularly the RBD/RBM or the S2
fusion machinery, may exhibit neutralizing activity against SARS-CoV-2 infections. SARS-CoV-2 and
SARS-CoV belong to the same genus of the Betacoronavirus and both of them, together with the three
coronaviruses from bat, show a very close genetic relationship in the evolution of the virus (Figure S2,
Supplementary Materials). However, the similarity of the immunogenic properties of these viruses
remains to be determined. Several immunological questions are critical: “Are the immunogenic profiles
of SARS-CoV-2 and SARS-CoV as similar as the genetic relationship shown in the phylogenetic trees?”;
“Do the immunogenic properties of both viruses differ significantly from each other?”; and “Can
the NAbs raised against SARS-CoV provide effective protection against the infection of SARS-CoV-2?”.
We sought to identify the potential B-cell and T-cell epitopes of the SARS-CoV-2 S protein by using
various state-of-the-art tools. The results improve our understanding of S protein immunogenesis and
vaccine design.
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Nine linear B-cell epitopes were predicted and localized to the surface of the SARS-CoV-2 S
protein (Table 1), while seven linear B-cell epitopes of the SARS-CoV S protein have been confirmed
by previous investigations [13,39–42]. The two groups of epitopes do not share any similarities, even
though the S proteins from both viruses are close to each other in their primary structure. One critical
linear B-cell epitope (786QILPDPLKPTKRSFIEDLLFNKVTLA811) of the SARS-CoV S protein was
reported to be recognized by NAbs obtained from convalescent SARS patients in a previous report [13].
Another group also reported that an epitope (803LLFNKVTLADAGFMKQYGECLGDINA828) was
able to induce the production of NAbs in animal models [41]. Both epitopes localize to the S2
subunit and have a nine-residue overlap from position 803 to 811. Furthermore, two of our predicted
linear B-cell epitopes (predicted via BepiPred 2.0 in IEDB) were also found to map to the region
between 786Q–828A (data not shown), suggesting that the region (786Q–828A) is an epitope-rich
region of the SARS-CoV S protein. The function of this region in the S2 subunit is still unknown,
but we note that the region has a three-residue overlap with the fusion peptide (FP) from 770 to 788
(Figure 1), and a proteolytic cleavage site (S2′) upstream of the fusion peptide is conserved in all
known coronaviruses [43]. Therefore, antibodies targeting this epitope-rich site could potentially
block FP function in membrane fusion during virus cell entry. Comparison of the SARS-CoV and
SARS-CoV-2 S proteins reveals that the S2 subunit is structurally conserved and shares higher aa
identity (~90%), than does the S1 subunit (~68%). Likewise, we also identified a homologous peptide
(804QILPDPSKPSKRSFIEDLLFNKVTLA829) in the S2 subunit of the SARS-CoV-2 S protein, which
differs by only two residues from the corresponding region in SARS-CoV (see the residues indicated
by the underlines). However, this homologous peptide in the SARS-CoV-2 S protein does not qualify
as a predicted linear B-cell epitope. We noticed that the two residues in SARS-CoV (792L and 795T) are
replaced by residues with less bulky side chains in SARS-CoV-2 (810S and 813S), which may decrease
the antigenicity of the peptides and support SARS-CoV-2 countering host immune surveillance and
clearance. Indeed, we evaluated the antigenicity of both peptides using VaxiJen v2.0, and found
that the antigenicity score of the linear B-cell epitope in the SARS-CoV S protein was 0.4121, almost
double the score of the peptide in the SARS-CoV-2 S protein (0.2114). Although the antigenicity of this
peptide in SARS-CoV-2 remains to be experimentally determined, and currently, most vaccine designs
are focusing on the RBD of the S1 subunit, we rspeculate that a vaccine based on this epitope-rich
region (786Q–828A) in the S2 subunit of the SARS-CoV S protein may also elicit broad NAbs that can
cross-react with other virus members among this coronavirus family to provide broader protections
(i.e., against simultaneous infections of both SARS-CoV and SARS-CoV-2). Very recently, Poh et
al. used sera from COVID-19 convalescent patients to identify peptides eliciting NAbs from a pool
constructed from overlapping sequences of the SARS-CoV-2 S protein [44]. One of the identified
peptides (809PSKPSKRSFIEDLLFNKV826) is also from the S2 subunit, located near the fusion peptide
of the SARS-CoV-2 S protein. However, as discussed above, the antigenicity of this peptide and its
effect across human populations of different ages, genetic backgrounds, and immune status requires
further evaluation before being used for vaccine design, due to its lower antigenicity score compared
to the concomitant SARS-CoV S protein. In addition, S proteins of coronaviruses are decorated with
an extensive glycan shield, which blocks neutralizing antibody recognition and presents a challenge
for vaccine development. Walls et al. recently characterized the S glycan shield of the SARS-CoV S
protein [43]. According to their result, this epitope-rich region (786Q–828A) located in a glycan hole
that is sparsely glycosylated provides access to host protease for further proteolysis and subsequent
induction of membrane fusion. Taken together, this epitope-rich region is an ideal target for SARS-CoV-2
vaccine design.

Besides these critical linear B-cell epitopes, multiple discontinuous conformational B-cell epitopes
distributed throughout eight regions were located on the surface of the trimeric S protein (Table 2 and
Figure 2B). Region S1–2 is one of the critical sites that could be targeted by NAbs since it is located
in the RBD, and specifically on the surface of the RBM. Ten of the 35 residues among the conformational
epitope(s)/regions are potentially involved in binding of the SARS-CoV-2 RBD to hACE2: (G417, G446,
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Y449, Q493, G496, Q498, T500, N501, G502, and Y505) (Table 2) [19]. It is possible that antibodies
compete with hACE2 to bind the SARS-CoV-2 RBD, and thereafter block the interaction of the virus
with the receptor and the subsequent virus cell entry. In addition, seven of the 35 residues (Y449,
N450, L492, G496, T500, G502, and Y505) of the SARS-CoV-2 RBD are also identified in the SARS-CoV
RBD. These are the key residues forming a conformational epitope recognized by NAbs in previous
studies [45,46].

Cell-mediated immunity plays crucial roles in the response to virus infection as well as cancer
therapy. CD8 cytotoxic T cells kill cells via T-cell receptor (TCR) recognition of the cognate peptide
presented by MHC class I. Two critical CD8 T-cell epitopes (Table 4, A5 and A9 in Figure 3), previously
reported in SARS-CoV studies, were also predicted as CD8 T-cell epitopes of the SARS-CoV-2 S
protein in our study. Importantly, both the epitopes can be docked onto the HLA-A*01:01 allele in an
energetically favorable manner (Table 4). These results strongly suggest that both of the CD8 T-cell
epitopes are authentic epitopes of the SARS-CoV-2 S protein and are possibly involved in cell-mediated
immune responses against SARS-CoV-2 infection. Currently, most vaccine designs of the virus focus
on the NAb production elicited by the S protein, but T cell-mediated immunity (both CD8+ and CD4+

helper cells) against the viral infection deserves more attention. Furthermore, “human-like” T-cell
epitopes in SARS-CoV-2 should be removed from the vaccine since these epitopes are able to activate
Treg cells and suppress the immune response [47].

Epitope prediction via immunoinformatics has accelerated the identification of antigens capable
of eliciting a strong immune protective response against pathogen infections. Likewise, it can remove
deleterious epitopes from the antigen pool, which may cause antibody-dependent enhancement (ADE),
cytokine storm, autoimmune responses, and pathological lesions. The authenticity and effectiveness
of these predicted epitopes may be improved through the use of threshold scoring and further
confirmed by in vitro experiments and animal models. Since epitope mapping of a new pathogen is
time-consuming and laborious work, epitope prediction by immunoinformatics improves the efficiency
of vaccine design and development. For instance, Gutiérrez et al. predicted cross-conserved T-cell
epitopes of seven representative strains of Influenza A virus (IAV) in US swine herds [48]. Following
the prediction, researchers in Tanja Opriessnig’s group designed and tested a DNA vaccine containing
these predicted cross-conserved T-cell epitopes followed by an inactivated vaccine for boost. The new
designed vaccine (prime-boosting regimen) exhibits an additive increase in cell-mediated immunity
and an excellent clinical protection [49]. A pool of epitopes may be chosen as the core immunogen to
develop various peptide-driven vaccines, such as a peptide vaccine, a DNA/RNA vaccine encoding
these tandem epitopes, or a subunit vaccine via grafting these epitopes onto a defined nanoparticle,
i.e., virus-like particles (VLPs). In contrast to the whole pathogen-based vaccine, the injurious side
effects (i.e., ADE, cytokine storm, autoimmune responses, and pathological lesions) of these isolated
epitopes can be evaluated in vitro or in animal models. Thereafter, the peptide-driven vaccine with
the optimized epitope combination will be safer and more effective as a result of its more precise design
guided by a variety of versatile immunoinformatic tools.

Cytokine storm is one of the most dangerous and potentially lethal sequelae of COVID-19 infection
but the details of its onset and why it affects one patient rather than another remain unknown. Several
possible pathways may be responsible for SARS-CoV-2-associated cytokine storm, but it is likely that
a failure to initially suppress viral replication leads to severe tissue damage from an overwhelming
infection and a subsequent uncontrolled immune response. The initial cytokine wave following
SARS-CoV-2 infection comes from the innate immune response. Pattern recognition receptors (PRRs),
such as toll-like receptors (TLR-3, -7, and -8), RIG-I-like receptors (RLRs), and NOD-like receptors
(NLRs) recognize the viral RNA genome or its intermediates during replication. This recognition
causes substantial releases of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Second,
the proliferation of SARS-CoV-2 in host cells leads to a large amount of cell death, and the content
of the dead cells release damage signals, which further amplify cytokine release leading to cytokine
storm [50]. Lastly, cytokine storm may be exacerbated through a complement cascade after infection.
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The large number and combinatorial diversity of N-linked glycans on the surface of the SARS-CoV-2 S
protein can be recognized by mannose-binding lectin (MBL), which is able to initiate the complement
cascade and activate macrophages. Subsequently, these activated macrophages also release a large
amount of cytokine, i.e., IL-1, IL-6, and TNF-α. Thus, a peptide-driven vaccine in the absence of viral
genome and various glycan-conjugated antigens, theoretically, promises to limit inappropriate cytokine
release. An autoimmune response induced by foreign antigens presents another safety issue for vaccine
design. Generally, pathogens may evade host immunosurveillance through producing “host-like” B-cell
or T-cell epitopes and activating self-reactive T-regulatory cells that suppress the immune response
or induce tolerance to the pathogens. However, in the context of a vaccine formula (combinations of
antigens and adjuvants), these “host-like” epitopes may reversibly activate to induce an autoimmune
response. Recently, EpiVax, Inc., has launched a new immunoinformatic tool called JanusMatrix
that helps to identify “human-like” epitopes from pathogens [47]. Removing these “human-like”
epitopes from a vaccine formula further enhances the safety and efficacy of such vaccines. Compared
to the use of the whole virus proteome, the epitopes predicted in our study are more easily evaluated
by these newly developed tools such as JanusMatrix, which removes the “human-like” epitopes from
the vaccine. Finally, ADE is a critical safety concern for vaccine design and development. In general,
ADE is mediated by non-neutralizing antibodies binding to virus and then promoting virus cell entry
via Fcγ receptors (FcγRs). Actually, ADE was discovered in the course of vaccinations (i.e., RSV and
Dengue virus) and is difficult to predict. ADE has been reported in animal experiments during vaccine
trials of SARS-CoV and MERS-CoV [51,52]. However, ADE during vaccination for SARS-CoV or
MERS-CoV, let alone SARS-CoV-2, remains to be determined in human. Epitope prediction and in vitro
immunological assays can aid scientists in the identification and removal of potential ADE-promoting
B-cell epitopes. The refined pool of candidate vaccine antigens can then be more exhaustively tested
in animal models for evidence of ADE.

5. Conclusions

The results presented in this study highlight SARS-CoV-2 evolution and the structure-relevant
immune profiles of both S proteins (SARS-CoV-2 and SARS-CoV). This perspective improves vaccine
design and immunotherapy and works to minimize the side effects of vaccination for SARS-CoV-2.
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