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Abstract: The antigen-specific Th17 responses in the lungs for improved immunity against 
Mycobacterium tuberculosis (Mtb) infection are incompletely understood. Tuberculosis (TB) vaccine 
candidate HSP90-ESAT-6 (E6), given as a Bacillus Calmette-Guérin (BCG)-prime boost regimen, 
confers superior long-term protection against the hypervirulent Mtb HN878 infection, compared to 
BCG or BCG-E6. Taking advantage of protective efficacy lead-out, we found that ESAT-6-specific 
multifunctional CD4+IFN-γ+IL-17+ T-cells optimally correlated with protection level against Mtb 
infection both pre-and post-challenge. Macrophages treated with the supernatant of re-stimulated 
lung cells from HSP90-E6-immunised mice significantly restricted Mtb growth, and this 
phenomenon was abrogated by neutralising anti-IFN-γ and/or anti-IL-17 antibodies. We identified 
a previously unrecognised role for IFN-γ/IL-17 synergism in linking anti-mycobacterial 
phagosomal activity to enhance host control against Mtb infection. The implications of our findings 
highlight the fundamental rationale for why and how Th17 responses are essential in the control of 
Mtb, and for the development of novel anti-TB subunit vaccines. 

Keywords: Mycobacterium tuberculosis; BCG-prime boost; IFN-γ/IL-17; multifunctional T cells; 
phagosome maturation. 

 

1. Introduction 

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb), is associated 
with high morbidity and mortality, thus posing a global public health problem. In 2017, TB ranked 
as one of the top ten causes of death, with an estimated 10 million new cases and 1.6 million deaths 
[1]. In addition, approximately 1.7 billion people, 23% of the global population, are estimated to have 
latent TB infection and to be at risk of developing active TB during their lifetime. In addition, the 
emergence of Mtb strains resistant to TB drugs poses a major growing burden of hard-to-treat 
infections [2]. 

Mycobacterium bovis Bacillus Calmette-Guérin (BCG) currently is the only licensed prophylactic 
vaccine; however, it provides insufficient protection against TB, and thus, novel effective vaccines 
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are urgently needed [3]. Various types of adjuvants, antigen (Ag) targets, and vaccine platforms have 
been developed in an aim to improve Mtb vaccines. These efforts have yielded various results, with 
some producing positive outcomes in clinical trials. Heterologous prime-boost regimens involving 
priming with BCG, followed by an adjuvant boost, are a promising vaccination strategy against TB 
[4], and have a proven high level of efficacy. 

Clinical efficacy trials of three TB multi-antigenic subunit vaccines (H4:IC31, M72/AS01E, and 
ID93) conducted in 2018 yielded encouraging results, and helped to advance experimental design 
strategies in the field of TB vaccine development [5–7]. All three subunit vaccine candidates are multi-
antigen, single-fusion protein vaccines formulated with their own unique adjuvant, and have been 
evaluated in BCG-vaccinated healthy populations in TB-endemic regions, mainly in South-African 
countries. The candidates effectively boosted a BCG-induced immune response and provided long-
term protection and induced persistent Th1-biased multifunctional CD4+ T-cell responses in 
preclinical TB models [8,9]. 

We previously demonstrated that a subunit vaccine consisting of the ESAT-6 Mtb antigen fused 
with HSP90 (hereafter referred to as HSP90-E6) formulated with MPL/dimethyldioctadecyl- 
ammonium (DDA) as an adjuvant confers high-level, robust protection against the hypervirulent 
Beijing strain, HN878 [10]. The improved protection provided by this vaccine was characterised by 
durable, robust pulmonary Th1-polarised multifunctional CD4+ T-cell immune responses in the lungs 
in comparison with BCG or ESAT-6 alone in a standard mouse model [10]. These findings suggested 
the potential usability of this vaccine candidate. 

Similar to MPL, CIA05 is a TLR4 agonist purified from an Escherichia coli strain that expresses 
lipopolysaccharides with short carbohydrate chains and detoxified by alkaline hydrolysis [11]. CIA05 
stimulates the secretion of various cytokines and chemokines from human monocytes and mouse 
bone-marrow dendritic cells (DCs), and the immuno-stimulatory activity of CIA05 is higher than that 
of MPL [11]. Therefore, in the current study, we tested the efficacy of HSP90-E6 TB vaccine with 
CIA05 instead of MPL adjuvant. 

For a vaccine to induce protection against TB, antigen-specific T-cells should be rapidly recruited 
to the lungs and activate the infected phagocytes [12,13]. While CD4+IFN-γ+ T-cells are generally 
thought to be essential for Mtb control [14,15], IFN-γ production does not correlate with protection 
against TB [16–18]. Moreover, recent data suggest that CD4+ T-cells producing multiple cytokines, 
including IFN-γ, TNF-α, and IL-2, are associated with protection against TB [19–22], suggesting that 
multifunctional CD4+ T-cells are important in Mtb control. Further, IL-17 and Th17 responses have 
been found to be important for protective immunity against TB [13,23–29]. CD4+IL-17+ T-cells play a 
particularly crucial role in vaccine-mediated immunity [13,30] by promoting a prompt recruitment 
of CD4+IFN-γ + T-cells to the lungs, leading to early control of Mtb replication in Mtb-infected mice 
[13]. However, the function of IL-17 in the protection against Mtb and, in particular, in synergism 
with IFN-γ in Mtb-infected macrophages, remains unclear. Our previous study investigating 
cytokine profiles from DCs activated by E6-HSP90 treatment and co-cultured with naïve CD4+ T-cells 
suggested a possible involvement of the Th17 response [10]; however, whether the protective 
mechanism of this vaccine candidate is associated with its Th17-inducing capacity remained to be 
clarified. 

In the current study, a heterologous prime-boost regimen with HSP90-E6/CIA05 following BCG 
vaccination was used to evaluate putative correlations between protective efficacy and CD4+ T-cell 
subset phenotypes. In addition, we investigated whether a Th17 response is required for the optimal 
efficacy of this vaccine candidate, as well as the underlying mechanism. 

2. Materials and Methods 

2.1. Ethics Statement 

All animal studies were performed in accordance with Korean Food and Drug Administration 
(KFDA) guidelines. The experimental protocols used in this study were reviewed and approved by 
the Ethics Committee and Institutional Animal Care and Use Committee (Permit Number: 2014-0197-
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3) of the Laboratory Animal Research Center at Yonsei University College of Medicine (Seoul, Korea) 
and IACUC (CNU-00284) of animal care at Chungnam National University (Daejeon, Korea). 

2.2. Mice 

Specific pathogen-free female C57BL/6J mice (6–7 weeks old) were purchased from Japan SLC, 
Inc. (Shizuoka, Japan), and maintained under barrier conditions in the ABSL-3 facility at the Yonsei 
University College of Medicine with constant temperature (24 °C ± 1 °C) and humidity (50% ± 5%). 
The animals were fed a sterile commercial mouse diet with ad libitum access to water under 
standardized light-controlled conditions (12-h light and 12-h dark periods). The mice were monitored 
daily, and none of the mice showed any clinical symptoms or illness during this experiment. 

2.3. Preparations of Mtb Strains and Antigens 

Mtb HN878 was obtained from the strain collections of the International Tuberculosis Research 
Center (ITRC, Changwon, Gyeongsangnam-do, South Korea). BCG (Pasteur strain 1173P2) was 
kindly provided by Dr. Brosch, from the Pasteur Institute (Paris, France). All mycobacteria used in 
this study were prepared as described previously [31]. 

PPD was kindly provided by Dr. Michael Brennan at Aeras (Rockville, MD, USA). To produce a 
recombinant HSP90-E6 protein, the corresponding gene was amplified by PCR using Mtb H37Rv 
ATCC27294 genomic DNA as a template and the following primers: HSP90 forward, 5′- 
CATATGAACGCCCATGTCGAGCAGTTG-3′, and reverse, 5′-GAATTCGGCAAGGTACGCGCG 
AGACGTTC-3′; ESAT-6 forward, 5′-AAGCTTATGACAGAGCAGCAGTGGAAT-3′, and reverse, 5′-
CTCGAGTGCGAACATCCCAGTGACGTT-3′. The PCR product of HSP90 was digested with NdeI 
and EcoRI, and ESAT-6 was cut with HindIII and XhoI. The products were inserted into the pET22b 
(+) vector (Novagen, Madison, WI, USA), and the resultant plasmids were sequenced. The 
recombinant plasmids were transfected into E. coli BL21 cells by heat-shock for 1 min at 42 °C. To 
produce a recombinant fusion protein, the PCR products of HSP90 were inserted into previously 
produced ESAT-6-containing pET22b (+) vector. The recombinant protein was prepared as 
previously described [10]. 

2.4. Immunisation and Mtb Infection in Mice 

C57BL/6 mice (n = 12/group) were injected subcutaneously with a single dose of 2 × 105 colony 
forming units (CFU) of BCG Pasteur 1173P2 (prime), and were immunised 3 months later, through 3 
intramuscular injections administered 3 weeks apart (boosts). Each immunisation contained 2 μg of 
ESAT-6 and HSP90-E6 with 2 μg of CIA05 formulated in 250 μg of dimethyldioctadecylammonium 
(DDA) liposomes. The control group was immunised with CIA05/DDA only. Immunogenicity was 
analysed in spleen and lung cells 4 weeks after the last immunisation. Afterwards, immunised mice 
(CIA05/DDA, BCG, BCG+ESAT-6/CIA05/DDA, and BCG+HSP90-E6/CIA05/DDA) were challenged 
by aerosol exposure with Mtb HN878 strain, as previously described [32]. Briefly, mice were exposed 
to HN878 strain in the calibrated inhalation chamber of an airborne infection apparatus for 60 min, 
delivering a predetermined dose (Glas-Col, Terre Haute, IN, USA); approximately 200 viable bacteria 
were delivered. 

2.5. Intracellular Cytokine Staining 

After 10 wk Mtb HN878 challenge, the mice were euthanized by CO2 asphyxiation, and single 
cell suspensions (1 × 106 cells) from immunised and infected mice were stimulated with PPD (2 
μg/mL) or ESAT-6 (2 μg/mL) at 37 °C for 12 h in the presence of both GolgiPlug and GolgiStop (BD 
Biosciences, San Jose, CA, USA). PBS-washed cells were blocked with anti-CD16/32 (BD Biosciences) 
at 4 °C for 20 min. After that, cells were surface stained with Brilliant Violet (BV) 605-conjugated anti-
CD90.2, peridinin chlorophyll (PerCP)-Cy5.5-conjugated anti-CD4 (BD Biosciences), allophycocyanin 
(APC)-Cy7-conjugated anti-CD8 (Biolegend, San Diego, CA, USA), and V450-conjugated anti-CD44 
antibodies at 4 °C for 30 min, and were washed three times with PBS. These cells were fixed and 
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permeabilised with the Cytofix/Cytoperm kit (BD Biosciences) at 4 °C for 30 min. Then, cells were 
washed three times with Perm/Wash (BD Biosciences) and stained intracellularly with PE-conjugated 
anti-IFN-γ, PE-Cy7-conjugated anti-IL-2, APC-conjugated anti-TNF-α and Alexa488-conjugated anti-
IL-17 (T-bet, GATA-3 and RORγt) (BD Biosciences) at 4 °C for 30 min. After being washed three times 
with Perm/Wash, cells were fixed using IC Fixation buffer (eBioscience). Then, PBS-resuspended cells 
were analysed on a CytoFLEX S Flow cytometer (Beckman Coulter, Indianapolis, IN, USA), using the 
commercially available software program FlowJo (Treestar, Inc., San Carlos, CA). 

2.6. Bacterial Counts and Histopathological Analysis 

Adherent bone marrow-derived macrophages (BMDMs) (2 × 105 cells/well) were washed twice 
in PBS and infected, in triplicate with Mtb (2 × 105 bacilli/well). Tubercle bacilli and macrophages 
were incubated for 4 hr. Then, the infected BMDMs were treated with amikacin (200 μg/mL) for 2 hr. 
After 2 hr, monolayers were washed to remove extracellular bacilli, and this time point was 
considered as day 0. Two different types of measurement of CFU in infected macrophages were used. 
First, the infected BMDMs were preincubated with neutralizing antibody against IFN-γR1 (R&D 
Systems, Minneapolis, MN, USA) (200 ng/mL), IL-17RA (R&D Systems) (200 ng/mL), or IFN-γR1/IL-
17RA (200 ng/mL) for 2 hr, and then a previously prepared culture supernatants—antigen-activated 
DCs co-cultured with CD4+ T-cells at a DC:T-cell ratio of 1:10 for 3 days—was added to each well, 
and the plate was incubated for 3 days. The following DC-activating antigens were used: PPD, ESAT-
6, and HSP90-E6 (2 μg/mL). Second, infected BMDMs were treated with recombinant mIFN-γ (R&D 
Systems) (10 ng/mL), recombinant mIL-17 (R&D Systems) (10 ng/mL), or recombinant mIFN-γ/mIL-
17 (1 ng/mL) for 3 days. The number of ingested and internalised Mtb by the BMDMs was calculated 
by lysing the infected cells from one of the wells in distilled water. The Tubercle bacilli counts in the 
inoculum were then checked by serial dilution and plating on 7H10 agar with 10% Middlebrook 
OADC supplement (Difco, Detroit, MI). The plates were incubated at 37 °C for 3 weeks. Afterwards, 
the plates were taken out, and colony forming units (CFUs) were calculated based on the number of 
colonies of Mtb. 

Ten weeks after Mtb HN878 infection, the lungs and spleens dissected from the infected mice 
were homogenised. The number of viable bacteria was determined by plating serial dilutions of the 
organ (left lung or half spleen) homogenates onto Middlebrook 7H11 agar (Difco Laboratories, 
Detroit, MI, USA) supplemented with 10% OADC (Difco Laboratories), amphotericin B (Sigma-
Aldrich, St. Louis, MO, USA), and 2 μg/mL 2-thiophenecarboxylic acid hydrazide (Sigma-Aldrich). 
Colonies were counted after 4 weeks of incubation at 37 °C. For the histopathological analysis, the 
superior lobes of the right lung were vertically or horizontally sectioned, and stained with 
Haemotoxylin and Eosin (H&E). For assessment of severity of inflammation, representative 
horizontal sections were used. The level of inflammation and the size of lesions in the lungs was 
evaluated using the ImageJ software (National Institutes of Health, Bethesda, MD), as described 
previously [32]. 

2.7. Quantification of Cytokines 

A sandwich enzyme-linked immunosorbent assay (ELISA) was used for detecting IL-1β, TNF-
α, IFN-γ, IL-4, IL-2, IL-12p70, IL-12p19, IL-17, and IL-10 in culture supernatants, as described 
previously [10]. Cytokines present in supernatants obtained from in vitro culture and in ex vivo single 
cells isolated from the lungs, spleens and lymph nodes of immunised or Mtb-infected mice were 
measured using commercial ELISA kits as per the manufacturers’ instructions after stimulation with 
the PPD, ESAT-6, and HSP90-E6 (2 μg/mL). PPD was kindly provided by Dr. Brennan, at Aeras 
(Rockville, MD, USA). All ELISA kits were purchased from eBioscience, except for the IL-10 ELISA 
kit (BD Bioscience). 
  



Vaccines 2020, 8, 300 5 of 22 

2.8. Cell Culture 

Murine bone marrow-derived DCs were generated, cultured, and purified, as described in a 
previous study [10]. BMDMs were prepared using recombinant M-CSF, as previously described [10]. 
Briefly, bone marrow cells isolated from C57BL/6 mice were lysed with red blood cell (RBC)-lysing 
buffer (ammonium chloride 4.15 g/500 mL, 0.01 M Tris-HCl buffer pH 7.5 ± 0.2) and washed with the 
RPMI 1640 medium. The obtained cells were plated in six-well culture plates (106 cells/mL, 3 mL/well) 
and cultured at 37 °C in the presence of 5% CO2 in RPMI 1640 media supplemented with 100 unit/mL 
penicillin/streptomycin (Lonza), 10% of fetal bovine serum (Lonza), 50 μM mercaptoethanol (Lonza), 
0.1 mM nonessential amino acids (Lonza), 1 mM sodium pyruvate (Sigma), 20 ng/mL GM-CSF, and 
10 ng/mL IL-4 (BMDCs) or 20 ng/mL M-CSF (BMDMs). 

2.9. In Vitro T-Cell Proliferation and Polarisation Assay 

CD4+ T cells were purified by CD4+ T Cell Isolation Kit using a LS column (Miltenyi Biotec) from 
total mononuclear cells extracted from individually vaccinated C57BL/6J mice. These T-cells were 
stained with 1 μM CFSE (Invitrogen) as previously described [33]. DCs (2 × 105 cells per well) treated 
with 2 μg/mL of PPD, E6, or HSP90-E6 for 24 hr were co-cultured with CFSE-stained and CD4+ T-cells 
(2 × 106) at DC:T-cell ratios of 1:10. On day 3 or 4 of co-culture, each T-cell batch was stained with anti 
CD4+, T-bet, or RORγt mAbs, and analysed by flow cytometry. 

2.10. Colocalisation of Phagosomes and Phagolysosomes 

To observe the colocalisation of Mtb-containing phagosomes, we performed confocal 
microscopy as described previously [34]. Macrophages (2 × 105/well) were prepared in 12-well culture 
dishes that contained 18 mm diameter round glass coverslips. The cells were then infected with Mtb-
RFP at an MOI of 1 for 4 h at 37 °C in a 5% CO2 incubator and incubated with (i) recombinant mIFN-
γ (1 ng/mL), recombinant mIL-17 (1 ng/mL), or recombinant mIFN-γ/mIL-17 (1 ng/mL), (ii) re-
stimulated with ESAT-6 in vaccinated-lung cells with/without IFN-γR1 (200 ng/mL), IL-17RA (200 
ng/mL), or IFN-γR1/IL-17RA (200 ng/mL). After 72 hr incubation, the cells were stained with anti-
LAMP1 (Santa Cruz, CA, USA) and imaged under a confocal microscope. 

2.11. Statistical Analysis 

All the experiments were repeated at least three times with consistent results. For immunological 
analysis, the levels of significance for comparison between samples were determined by Tukey’s 
multiple comparison or unpaired t-test. For CFU and histopathology analysis, Mann-Whitney rank 
test was used when comparing the differences between two different groups. For statistical analysis, 
GraphPad Prism version 6.00 for Windows was used (GraphPad Software, La Jolla California USA, 
www.graphpad.com). The data in the graphs are expressed as the mean ± SD. Differences having * p 
< 0.05, ** p < 0.01, *** p < 0.001, or **** p < 0.0001 were considered statistically significant. 

3. Results 

3.1. Characterisation of the Immune Responses induced by HSP90-E6 

To examine whether HSP90-E6 induces an antigen (Ag)-specific memory T-cell response, we 
analysed Ag-specific IFN-γ, TNF-α, IL-2, IL-4, IL-10, and IL-17 production in the lungs, spleen, and 
lymph nodes of mice 4 weeks after the last immunisation and before challenge (Figure 1a, green 
arrow). All Ag-specific Th1 cytokines, except IL-4 and IL-10, were significantly induced in mice 
immunised with ESAT-6 or HSP90-E6 when compared to mice immunised with BCG alone (Figure 
1b,c). When stimulated with purified protein derivative (PPD) antigen, IFN-γ, TNF-α and IL-2 
production in the lungs, spleen, and lymph nodes of mice immunised with HSP90-E6 was 
significantly higher than that in mice immunised with BCG or ESAT-6 (Figure 1b). Notably, upon re-
stimulation with ESAT-6, not only Th1 cytokines, but also the Th17-related cytokine IL-17 was 
significantly produced in all three tissues evaluated in the HSP90-E6 immunised mice, when 
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compared to the other treatment groups (Figure 1c). These results suggested that HSP90-E6/CIA05-
boosting establishes Th1/Th17-biased immunity. 

 
Figure 1. Comparative cytokine production profiles in Bacillus Calmette-Guérin (BCG)-, BCG+ESAT-
6-, or BCG+HSP90-E6-vaccinated mice upon antigen (Ag) stimulation four weeks after final 
vaccination. (a) Experimental design for HSP90-E6 subunit vaccine testing. Mice (n = 12 per group) 
were immunised by BCG injection 12 weeks before subunit vaccination. Three intramuscular injection 
of HSP90-E6/CIA05 were administered (blue arrows) before Mycobacterium tuberculosis (Mtb) HN878 
aerosol challenge (black arrow). Immunological analysis was conducted before (green arrow) and 
after Mtb infection (red arrow). Bacterial counts and histopathology in each group were determined 
at the indicated time points after Mtb infection (red arrow). (b,c) Levels of IFN-γ, TNF-α, IL-2, IL-10, 
IL-4, and IL-17 secreted by lung, spleen, and lymph-node cells from each fully immunised group in 
response to ESAT-6 (2 μg/mL) or purified protein derivative (PPD) (2 μg/mL) stimulation as detected 
by enzyme-linked immunosorbent assay (ELISA). * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to 
BCG-immunised mice. ** p <0.01 and *** p < 0.001 between BCG+ESAT-6- and BCG+HSP90-E6-
immunised mice. 

3.2. HSP90-E6/CIA05 induces Ag-Specific Multifunctional T-Cells 

Although there is no consensus on correlates of protection against TB in TB vaccine 
development, recent studies in animal models have suggested the protective contribution of 
multifunctional T-cells and a Th17-mediated immune response against Mtb infection [13,28,29,35]. 
Therefore, we next assessed the generation of Ag-specific IL-17-, IFN-γ-, TNF-α- and IL-2-producing 
multifunctional T-cells upon ex vivo re-stimulation with ESAT-6 after the final immunisation. CD4+ 
T-cells collected from the lungs, spleen, and lymph nodes were stained for intracellular cytokines and 
subtyped by multi-colour flow cytometry (Supplementary Materials Figure S1). We focused on 
multifunctional T-cells producing IL-17 and IFN-γ for comparative analysis. Upon re-stimulation 
with ESAT-6 or PPD, HSP90-E6/CIA05 immunisation induced expansion of Ag-specific CD4+CD44+ 
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multifunctional T-cells (IFN-γ+IL-17+TNF-α+IL-2+, IFN-γ+IL-17+IL-2+, IFN-γ+IL-17+TNF-α+, and IFN-
γ+IL-17+ cells) in the lungs, spleen, and lymph nodes to a similar extent as ESAT-6/CIA05 
immunisation. These multifunctional T-cells were more strongly expanded in HSP90-E6/CIA05- than 
in ESAT-6/CIA05-immunised mice, especially in the spleen (Figure 2, Supplementary Materials 
Figure S2). 

 
Figure 2. Induction of Ag-specific multifunctional T-cells in the lungs, spleen, and lymph nodes in 
BCG+HSP90-E6-immunised mice. Mice were immunised and euthanised, as described in the Methods 
section. Four weeks after the last immunisation, the mice were sacrificed, and their lung, spleen, and 
lymph-node cells collected from the mice were treated with ESAT-6 (2 μg/mL) at 37 °C for 12 h in the 
presence of GolgiStop. Upon stimulation with ESAT-6, cell counts of Ag-specific, multifunctional 
CD4+CD44+ T-cells producing IFN-γ, IL-17 and/or TNF-α and IL-2 in the lung, spleen, and lymph-
node cells from each immunised group were determined by flow cytometry. Gray arc denotes the 
percentage of cytokine-positive T-cells (IL-17+IFN-γ+TNF-α+IL-2+-, IL-17+IFN-γ+IL-2+-, IL-17+IFN-
γ+TNF-α+-, and IL-17+IFN-γ+-CD4+CD44+ T-cells). The figure 2+ stands for sum percentages of double-
cytokine positive T-cells (IL-17+IFN-γ+, IL-17+TNF-α+, and IL-17+IL-2+), 3+ stands for triple-cytokine 
positive T-cells (IL-17+IFN-γ+IL-2+, IL-17+IFN-γ+TNF-α+ and IL-17+TNF-α+IL-2+), and 4+ stands for 
quadruple-cytokine positive T-cells (IL-17+IFN-γ+TNF-α+IL-2+). Data are expressed as the mean ± SD 
for five mice from each group. n.s.: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 
compared to BCG-immunised mice. n.s.: not significant, * p < 0.05, ** p < 0.01 between BCG+ESAT-6- 
and BCG+HSP90-E6-immunised mice. 

3.3. Protective Efficacy of HSP90-E6 Boosting against Hypervirulent Mtb HN878 

Given the early protective role of IL-17 and the protective efficacy of HSP90-E6/MPL-DDA 
vaccination against Mtb HN878 [10,28], any Ag that can enhance the limited BCG efficacy against 
emerging Mtb strains during long-term infection can be regarded a novel vaccine target. In this 
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context, we evaluated the protective efficacy of HSP90-E6/CIA05 suggested by the immunisation-
induced Ag-specific multifunctionality, including IFN-γ+IL-17+ T-cells (Figures 1 and 2). Mice were 
challenged with Mtb HN878 4 weeks after the last immunisation, and the bacterial burden in and 
histopathology of the lungs and spleen were evaluated 10 weeks post-infection (Figure 1a). In HSP90-
E6/CIA05-boosted mice, lung inflammation, and lesion size were significantly ameliorated when 
compared to the BCG-vaccinated mice or ESAT-6/CIA05-boosted mice group (Figure 3a,b). 
Moreover, bacterial burden in the lungs and spleen was significantly lower in HSP90-E6/CIA05-
boosted than in ESAT-6/CIA05-boosted mice (Figure 3c). These results suggested that HSP90-E6 
vaccination can boost the protection induced by BCG. 

 
Figure 3. HSP90-E6/CIA05 booster vaccination improves BCG-primed protection against 
hypervirulent Mtb HN878. (a) H&E staining of superior lobes of the right lung of each immunised 
mouse at 10 weeks after Mtb HN878 infection (scale bars = 2.0 mm). (b) Inflamed area as % of the total 
area (left) and lesion size (right) in the lungs. (c) Colony forming units (CFUs) in the lungs and spleen 
in all treatment groups at 10 weeks post-infection, determined by counting the viable bacteria. Data 
are from one of two independent experiments (n = 6 or 7 mice per group at each time point). Mann-
Whitney rank tests were used to compare groups. n.s.: not significant, * p < 0.05, ** p < 0.01, and *** p 
< 0.001. 
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3.4. Multifunctional T-Cells and Cytokine Profiles in Mice Immunised with BCG Prime HSP90-E6/CIA05 
Boosting after Challenge with Mtb HN878 

Based on the immunological contribution of vaccination-induced Th1/Th17-biased immunity 
(Figure 1) and the enhanced protection (Figure 3), we next evaluated whether the magnitude and 
quality of poly-functionalities upon Ag re-stimulation, represented by IFN-γ+ and IL-17+, could be 
sustainably induced or expanded. At 10 weeks after HN878 challenge, lung cells (Figure 4a) and 
splenocytes (Supplementary Materials Figure S3) were stimulated ex vivo with PPD or ESAT-6, and 
CD4+ Ag-specific T-cells were typed by multi-colour flow cytometry. In addition, culture 
supernatants of Ag re-stimulated lung and spleen cells were analysed by enzyme-linked 
immunosorbent assay (ELISA) (Figure 4b). Robust expansion of Ag-specific CD4+CD44+ multi-
functional (IFN-γ+IL-17+TNF-α+IL-2+, IFN-γ+IL-17+IL-2+, IFN-γ+IL-17+TNF-α+ and IFN-γ+IL-17+) T-cells 
was observed—especially in lung cells—after stimulation with ESAT-6 or PPD in BCG-primed 
HSP90-E6/CIA05-boosted, compared to ESAT-6/CIA05-vaccinated mice (Figure 4a). Similar results 
were obtained in spleen cells stimulated with ESAT-6 (Supplementary Materials Figure S3). 
Furthermore, Th1-related IFN-γ, but not Th2-related cytokines, such as IL-4 and IL-10, was markedly 
increased upon PPD stimulation of lung and spleen cells from fusion protein-boosted mice when 
compared to the corresponding responses in ESAT-6/CIA05-boosted mice (Figure 4b). Th17-related 
IL-17 production was higher in lung cells from HSP90-E6/CIA05-boosted than in those from ESAT-
6/CIA05-boosted mice (Figure 4b). Upon ESAT-6 stimulation, protective cytokines in lungs and 
spleen where more strongly induced in HSP90-E6/CIA05- than in ESAT-6/CIA05-boosted mice. 
Interestingly, IL-2 production was significantly up-regulated in lung cells and splenocytes upon PPD 
or ESAT-6 re-stimulation, suggesting that increased IL-2 production contributes to the quality of T-
cell responses. These results suggested that HSP90-E6 vaccination can boost protective Ag-specific 
multifunctional T-cells, especially CD4+CD44+ IFN-γ+IL-17+ T-cells. 
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Figure 4. Ag-specific multifunctional T-cell subsets and cytokine production after challenge with Mtb 
HN878. (a) Mice of each group were sacrificed 10 weeks post-infection, and spleen and lung cells 
obtained from the mice were treated with ESAT-6 (2 μg/mL) at 37 °C for 12 h in the presence of 
GolgiStop. Upon stimulation with the ESAT-6, cell counts of Ag-specific, multifunctional CD4+CD44+ 
T-cells producing IFN-γ, IL-17 and/or TNF-α and IL-2 in the spleen and lung cells in all treatment 
groups were determined by flow cytometry. Gray arc denotes the percentage of cytokine-positive T-
cells (IL-17+IFN-γ+TNF-α+IL-2+-, IL-17+IFN-γ+IL-2+-, IL-17+IFN-γ+TNF-α+-, and IL-17+IFN-γ+-
CD4+CD44+ T-cells). The figure 2+ stands for sum percentages of double-cytokine positive T-cells (IL-
17+IFN-γ+, IL-17+TNF-α+, and IL-17+IL-2+), 3+ stands for triple-cytokine positive T-cells (IL-17+IFN-
γ+IL-2+, IL-17+IFN-γ+TNF-α+ and IL-17+TNF-α+IL-2+), and 4+ stands for quadruple-cytokine positive 
T-cells (IL-17+IFN-γ+TNF-α+IL-2+). Data are the mean ± SD for 6 or 7 mice from each group. (b) Levels 
of IFN-γ, TNF-α, IL-2, IL-10, IL-4, and IL-17 secreted by lung and spleen cells in all treatment groups 
in response to ESAT-6 (2 μg/mL) or PPD (2 μg/mL) stimulation as detected by ELISA. n.s.: not 
significant, * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 compared to BCG-immunised mice. 
n.s.: not significant, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 between BCG+ESAT-6- and BCG+HSP90-
E6-immunised mice. 
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3.5. Correlates of Protection for Improved BCG Boosting Efficacy of BCG-HSP90-E6/CIA05 in the Lungs 

Next, we aimed to identify immunological correlates for the improved BCG-primed protection 
conferred by HSP90-E6/CIA05 boosting. Given that the subunit candidate elicited predominantly 
CD4+-biased T-cell responses, positive correlates associated with enhanced protection against highly 
virulent Mtb infection were analysed based on the experimental set-up in this study. We previously 
reported that growth inhibition of Mtb in HSP90-E6/MPL-immunised mice is related with the 
activation of CD4+CD44+IFN-γ+TNF-α+IL-2+ multifunctional T-cells [10]. In line herewith, these 
multifunctional T-cells were expanded in the lungs of HSP90-E6/CIA05-immunised mice before 
(Supplementary Materials Figure S4) and after (Supplementary Materials Figure S5) challenge. To 
identify protective biomarkers for clinical or experimental evaluation of TB vaccine candidates, CD4+ 
T-cell subsets expressing various combinations of four cytokines were compared among the different 
treatment groups. As shown in Figure 5a, the CD4+CD44+IFN-γ+IL-17+ T-cell (R = −0.8641, p < 0.0001) 
responses to ESAT-6 in BCG-HSP90-E6/CIA05-vaccinated mice correlated with bacterial loads in both 
pre-and post-infections; CD4+CD44+IFN-γ+IL-17+TNF-α+IL-2+ T-cells (R = −0.9082, p < 0.0001), 
CD4+CD44+IL-17+ T-cells (R = −0.8183, p < 0.0001), and CD4+CD44+IL-17+IL-2+ T-cells (R = −0.6333, p = 
0.0002) appeared to be significantly correlated only in pre-infected mice, which suggested that these 
cell populations could be the key factors correlating with BCG-HSP90-E6/CIA05 vaccination-induced 
protection. On the other hand, CD4+CD44+IFN-γ+IL-17+IL-2+ T-cells (R = −0.7133, p < 0.0001) and 
CD4+CD44+IFN-γ+TNF-α+IL-2+ T-cells (R = −0.6845, p < 0.0001) showed correlation with bacterial load 
only post-infection. However, the CD4+CD44+IFN-γ+ T-cell (R = 0.6789, p < 0.0001) responses to ESAT-
6 correlated negatively with bacterial load post-infection, but not pre-infection (Figure 5b). No 
prominent correlation was observed in other multifunctional T-cells (Supplementary Materials 
Figure S6 and Figure S7). The correlation results are summarised in Supplementary Materials Table 
S1 by ranking. Taken together, these data suggested that Ag-specific IFN-γ+IL-17+ responses are 
involved in HSP90-E6/CIA05-mediated BCG boosting effects. 
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Figure 5. Analysis of protective correlations for protection level with vaccine-induced immune 
responses pre- and post-infection. Relationship between protection (CFU) and ESAT-6 specific 
CD4+CD44+IFN-γ+, CD4+CD44+IFN-γ+IL-17+TNF-α+IL-2+, CD4+CD44+IFN-γ+IL-17+IL-2+, CD4+CD44+ 

TNF-α+ producing T-cells or CD4+CD44+IFN-γ+IL-17+ is shown as a fitted regression line with the 
correlation coefficient. (a) Positive correlation, (b) some relation or negative correlation. Spearman’s 
r and P values of the correlations are indicated. White circle: naïve or infection, green circle: BCG, red 
circle: BCG+E6, and blue circle: BCG+HSP90-E6. 

3.6. Th1- and Th17-Related Responses are Simultaneously induced in DCs and Co-Cultured CD4+ T-Cells 
upon Stimulation with HSP90-E6 

Recent studies have suggested that IFN-γ/IL-17 responses contribute to protection against Mtb 
infection [13,28,36–39]. We previously reported that proinflammatory cytokines such as IFN-γ and 
IL-17, which are related to anti-mycobacterial activity, were significantly induced by T-cells activated 
by HSP90-matured DCs [10]. Therefore, we next tested whether HSP90-E6-matured DCs produce 
cytokines related to Th1/Th17 polarisation. Interestingly, the fusion protein significantly stimulated 
the secretion of TNF-α, IL-1β, IL-12p70, and IL-23p19, but not IL-10, which have important roles in 
Th1/Th17 differentiation, in DCs, whereas untreated DCs secreted negligible amounts of these 
cytokines (Figure 6a). Next, we determined whether HSP90-E6-matured DCs affect cell proliferation. 
To evaluate the effect of HSP90-E6 on the interaction between DCs and T-cells, we performed in vitro 
T-cell proliferation assays of carboxyfluorescein succinimidyl ester (CFSE)-labelled sorted CD4+ T-
cells obtained from vaccinated mice upon co-culture with DCs stimulated with individual vaccine 
antigens for 72 h. T-cells from mice injected with BCG alone were cocultured with PPD-treated DCs. 
HSP90-E6-, PPD-, or ESAT-6-treated DCs induced T-cell proliferation primed by immunisation with 
each Ag to a significantly greater extent than did untreated DCs (Figure 6b). T-cells activated with 
PPD, ESAT-6, or HSP90-E6-treated DCs produced significantly higher levels of cytokines than those 
activated with untreated DCs (Figure 6c). The production of IFN-γ, IL-17, and TNF-α was 
significantly higher in T-cells co-cultured with HSP90-E6-treated DCs than in T-cells co-cultured with 
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E6- or PPD-treated DCs. IL-2 production was similarly induced upon co-culture with all Ag-treated 
DCs. However, T-cells activated with E6- or HSP90-E6-matured DCs did not significantly produce 
Th2-related cytokines IL-4 and IL-10, whereas T-cells activated with PPD did (Figure 6c). We next 
evaluated the differentiation of CD4+ T-cells using intracellular transcription factor immunostaining. 
As shown in Figure 6d, the expression of the Th1/Th17-associated transcription factors T-bet and 
RoRγt was increased in proliferating T-cells co-cultured with HSP90-E6-treated DCs, as compared to 
the levels in T-cells co-cultured with E6-treated DCs (Figure 6d). Taken together, these results 
suggested that HSP90-E6 is capable of simultaneously polarizing T-cells towards Th1 and Th17. 

 
Figure 6. T-cell proliferation and differentiation induced by HSP90-E6-treated dendritic cells (DCs). 
(a) DCs were activated with PPD (2 μg/mL), ESAT-6 (2 μg/mL), or HSP90-E6 (2 μg/mL) for 24 h. TNF-
α, IL-1β, IL-12p70, IL-10, and IL-23p19 levels in the culture medium were measured by ELISA. Data 
are the mean ± SD (n = 3). (b) CD4+ T-cells were isolated from the spleens of individually vaccinated 
mice, stained with carboxyfluorescein succinimidyl ester (CFSE), and co-cultured with DCs treated 
with PPD (2 μg/mL), E6 (2 μg/mL), or HSP90-E6 (2 μg/mL) for 3 days. T-cells alone and T-cells co-
cultured with untreated DCs served as controls. CD4+ T-cell proliferation was assessed by flow 
cytometry. (c) Culture supernatants were harvested after 3 days and TNF-α, IFN-γ, IL-2, IL-4, IL-10, 
and IL-17A secretion levels were measured by ELISA. (d) Expression of Th1- and Th17-related 
transcription factors was assessed using intracellular staining after 4 days of co-culture with DC:T-
cells (CON: Naïve T-cells, PPD: BCG vaccinated T-cells, E6: ESAT-6/CIA05 immunised T cells, HSP90-
E6: HSP90-ESAT-6/CIA05 immunised T cells). Data are the mean ± SD from three independent 
experiments; *p < 0.05 versus appropriate controls. n.s.: no significant difference, * p < 0.05, ** p < 0.01, 
*** p < 0.001 and **** p < 0.0001 compared to untreated DCs. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** 
p < 0.0001 between ESAT-6- and HSP90-E6-treated DCs. 
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3.7. IFN-γ and IL-17 Synergistically Exert Anti-Mycobacterial Activity Via Enhanced Phagolysosomal 
Maturation 

The involvement of IL-17 in the protection against Mtb infection has been controversial, as the 
interaction between Th1 and Th17 cells is not well understood [13,30,40,41]. Th17 responses 
reportedly do not inhibit the generation of Th1 cells in vitro, and favour Th1 responses in vivo [41]. 
Thus, we hypothesised that IL-17 alone does not effectively inhibit Mtb growth within macrophages, 
but may act synergistically with IFN-γ. To investigate this hypothesis, Mtb-infected macrophages 
were treated with IFN-γ, IL-17 or both. IL-17 alone did not inhibit intracellular Mtb growth, even at 
concentrations up to 100 ng/mL, whereas IFN-γ alone significantly inhibited Mtb growth at 1 ng/mL, 
with no significant difference between 1 ng/mL and 10 ng/mL of IFN-γ (Supplementary Materials 
Figure S8). Interestingly, IFN-γ plus IL-17 at 1 ng/mL each significantly inhibited Mtb growth in 
macrophages, when compared to 1 ng/mL IFN-γ (Figure 7a), and IFN-γ plus IL-17 at 5 ng/mL each 
significantly inhibited Mtb growth, when compared to 100 ng/mL IFN-γ (Supplementary Materials 
Figure S8). Mtb growth was inhibited in a concentration-dependent manner upon treatment with 
both cytokines (Supplementary Materials Figure S8). These results suggested that IL-17 
synergistically enhances the anti-mycobacterial activity of IFN-γ. 

We previously demonstrated that T-cells activated with HSP90-E6-matured DCs inhibit Mtb 
growth in macrophages [10]. Therefore, we further investigated the synergistic effect of both 
cytokines on HSP90-E6-mediated anti-mycobacterial activity after inhibition of cytokine signalling 
by using neutralizing anti-cytokine antibodies. As expected, Mtb-infected macrophages co-cultured 
with T-cells activated by HSP90-E6-matured DCs significantly inhibited intracellular bacterial 
growth, when compared to infected macrophages co-cultured with T-cells activated by untreated 
DCs (Figure 7b). Pre-treatment with anti-IFN-γ or both anti-IFN-γ and anti-IL-17 completely 
abrogated HSP90-E6-mediated Mtb growth inhibition via T-cell activation. There was no difference 
in inhibitory activity between anti-IFN-γ and both anti-IFN-γ and anti-IL-17. The anti-IL-17 antibody 
alone also showed inhibitory activity, but less than the anti-IFN-γ antibody, indicating that IL-17 
synergistically enhances the antimycobacterial activity of IFN-γ. Next, we evaluated the roles of both 
cytokines in Mtb-infected macrophages exposed to supernatants from ESAT-6-re-stimulated lung 
cells of HSP90-E6-vaccinated mice before and after challenge. Ag-stimulated culture supernatants 
significantly inhibited Mtb growth in macrophages when compared to untreated culture 
supernatants (Figure 7C), and these inhibitory effects were abrogated upon addition of anti-IFN-γ 
and/or anti-IL-17. Supernatants from ESAT-6-re-stimulated spleen cells of HSP90-E6-vaccinated mice 
before and after challenge showed a similar Mtb growth-inhibitory effect, which was also neutralised 
by anti-IFN-γ and/or anti-IL-17 (Supplementary Materials Figure S9). However, supernatants from 
ESAT-6-re-stimulated spleen and lung cells collected from BCG-vaccinated naïve mice before Mtb 
challenge did not inhibit Mtb growth in macrophages, and supernatants from ESAT-6-re-stimulated 
spleen and lung cells of E6-boosted mice showed a limited inhibitory effect (Supplementary Materials 
Figure S10). Culture supernatants from the spleen and lung cells of BCG-vaccinated mice after Mtb 
challenge did not inhibit Mtb growth in macrophages and culture supernatants from the lung, but 
not in the spleen cells of E6-boosted mice, which showed a limited inhibitory effect (Supplementary 
Materials Figures S11 and S12). These results suggested that effector T-cells with antimycobacterial 
activity are effectively expanded in HSP90-E6-boosted mice. 

Next, we examined whether IFN-γ and IL-17 could affect phagosome-lysosome fusion, which is 
the Mtb-killing mechanism of macrophages. As shown in Figure 8a, IL-17 alone did not induce 
phagosome maturation, but it did significantly enhance IFN-γ-mediated colocalisation of Mtb with 
the lysosomal marker LAMP1. Mtb–LAMP1 colocalisation was more strongly induced upon co-
treatment with IFN-γ and IL-17 (1 ng/mL each) than after treatment with IFN-γ (1 ng/mL) alone 
(Figure 8a), and the level of colocalisation was comparable to that after treatment with 100 ng/mL 
IFN-γ (Supplementary Materials Figure S13). IFN-γ and IL-17 did not show a synergistic effect on 
IFN-γR1 expression in Mtb-infected macrophages (Supplementary Materials Figure S14), nor on 
reactive oxygen species (ROS) production, which was increased by IFN-γ or IL-17 treatment 
(Supplementary Materials Figure S15a). As expected, IFN-γ, but not IL-17 induced nitric oxide (NO) 
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production in Mtb-infected macrophages, and IFN-γ-mediated NO production was decreased upon 
IL-17 treatment (Supplementary Materials Figure S15b). Supernatants from ESAT-6-re-stimulated 
lung cells of HSP90-E6-vaccinated mice significantly enhanced Mtb–LAMP1 colocalisation, which 
was decreased upon treatment with anti-IFN-γ or anti-IL-17 (Figure 8b). These data suggested that 
antigens capable of simultaneously inducing Th1 and Th17 responses may have strong TB vaccine 
potential. 

 
Figure 7. Synergistic inhibition of intracellular Mtb growth in macrophages by Th1/Th17-induced 
responses. (a) Mtb-infected bone marrow-derived macrophages (BMDMs) were treated with IFN-γ 
(1 ng/mL), IL-17 (1 ng/mL), or both (1 ng/mL each) for 3 days. Intracellular Mtb growth in the BMDMs 
was determined at time point 0 days and 3 days after cytokine treatment. Data are the mean ± SD (n 
= 3); * p < 0.05, ** p < 0.01, or *** p < 0.001. n.s.: no significant difference. (b) T-cells activated with 
unstimulated DCs or HSP90-E6-stimulated DCs at a DC:T-cell ratio of 1:10 for 3 days were co-cultured 
with Mtb-infected BMDMs in the presence or absence of neutralising antibody (anti-IFN-γ or anti-IL-
17). Intracellular Mtb growth in BMDMs was determined after 3 days of co-culture, with or without 
T-cells (control). Data are the mean ± SEM (n = 3). (c) BMDMs were treated with supernatants of ESAT-
6-re-stimulated HSP90-E6-vaccinated lung cells in the presence or absence of anti-IFN-γ or anti-IL-17 
for 3 days. Intracellular Mtb growth in the BMDMs was determined after 3 days. Data are the mean ± 
SD (n = 3); * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. n.s.: no significant difference. 
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Figure 8. IFN-γ and IL-17 synergistically inhibit intracellular bacterial growth via phagosome-
lysosome fusion. BMDMs were infected with Mtb-RFP (MOI = 1) for 4 h, washed, incubated 
with/without IFN-γ, IL-17, or IFN-γ/IL-17 (1 ng/mL) (a) or with supernatants of ESAT-6-re-stimulated 
in HSP90-E6-vaccinated lung cells with/without anti-IFN-γ or anti-IL-17 (b) for 72 h, fixed with 4% 
paraformaldehyde, and immunolabeled with anti-LAMP1 antibody and Alexa 488-conjugated goat 
anti-rabbit or anti-rat IgG (green). Nuclei were counterstained with DAPI (chromosome counterstain, 
4′,6-diamidino-2-phenylindole, blue). The cells were analysed by laser-scanning confocal microscopy. 
Scale bar, 10 μm. Quantification of Mtb–LAMP1 colocalisation is shown in the bar graph. Data are the 
mean ± SD of 50–100 cells per experiment (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 
versus infection only control (CON) or for differences between treatments. n.s., no significant 
difference. 

4. Discussion 

The present study revealed that the TB vaccine candidate HSP90-E6, given as a BCG-prime boost 
regimen, confers superior, long-term protection against hypervirulent Mtb HN878 infection when 
compared to BCG or BCG-E6 alone. Further, elevated E6-specific CD4+ IFN-γ+IL-17+ T-cells pre- and 
post-infection positively correlated with protection against Mtb. 

There clearly is an urgent, unmet need for new anti-TB vaccines, and heterologous prime-boost 
vaccination appears to be a promising strategy. However, despite increased research efforts on this 
approach in the last two decades, clinical progress has been limited, due to insufficient 
understandings on protective immune response, targeting antigens, and scheme of boosting. A 
number of fusion protein-based subunit vaccines are being tested as boosters to BCG. We previously 
demonstrated that HSP90-E6 formulated with MPL/DDA significantly reduced the bacterial load in 
mouse lungs after challenge with HN878 [10], but we did not identify an immunologic correlate of 
protection for this fusion vaccine. Here, we report that HSP90-E6 formulated with CIA05/DDA 
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prolongs BCG-primed boosting and that its protective effect is related to enhancement of Ag-specific-
IFN-γ+IL-17+ multifunctional T-cells. 

The primary rationale for the development of TB vaccines designed to elicit Th1-cell-based 
immunity is based on evidence from various animal models that a strong IFN-γ-mediated Th1 
immune response is the primary protective mechanism of anti-TB immunity [19,35,42–45]. However, 
an IFN-γ response is not an optimal correlate of protection [16–18], and an IFN-γ response alone is 
not sufficient to control Mtb infection [46]. Our data suggest that the CD4+ T-cell populations that 
mediate immunity to TB are likely not solely mediated by IFN-γ-producing Th1 cells, but also by 
cells whose effector function is independent of IFN-γ [47,48]. A previous study demonstrated that 
antigens that do not elicit Th1 responses uniformly fail to protect against Mtb, but not all proteins 
that induce robust Th1 responses after vaccination provide considerable protection [49]. In addition, 
Th17 cells reportedly also contribute to protective TB immunity in mice [28,29,50], cynomolgus 
macaques [51], and rhesus macaques [52]. Although the role of Th17 cells in human patients appears 
ambiguous [41,53,54], early Th17 responses are suppressed in progressors as compared to Mtb-
infected, healthy controls [55]. Therefore, we analysed Ag-specific T-cell responses to identify 
immunological correlates for the superior BCG-primed HSP90-E6 booster vaccination. Notably, BCG-
primed HSP90-E6 booster vaccination simultaneously elicited Th1/Th17-biased immune responses 
after the last immunisation, especially upon ESAT-6 re-stimulation of the lung and spleen cells, when 
compared to BCG-primed ESAT-6-boosted vaccination (Figure 1). In addition, BCG boost with 
HSP90-E6/CIA05 induced a significant increase in the number of Ag-specific CD4+CD44+IL-17+ T-cells 
co-producing three or two effector cytokines after in vitro stimulation with ESAT-6 in the spleen cells 
(Figure 2), but not the lymph-node and lung cells, which was expected, considering that adjuvanted 
antigens were injected intramuscularly. We infer that ready-to-be-expanded IFN-γ/IL-17-producing 
multifunctional CD4+ T-cells exist, and that their Ag-specific expansion induced by HSP90-E6 
boosting possibly contributes to the enhanced protection against Mtb infection. 

Based on these results, we evaluated the protective effect of BCG-prime HSP90-E6/CIA05 
vaccination against the hypervirulent HN878 strain in a mouse model. HSP90-E6/CIA05 vaccination 
markedly enhanced the protective efficacy of BCG at 10 weeks post-infection, as indicated by reduced 
bacterial loads and smaller inflamed lesions (Figure 3). Furthermore, BCG-prime HSP90-E6 
vaccination induced an exclusive quadruple cytokine-positive population, expressing both IL-17 and 
IFN-γ in addition to IL-2 and TNF-α. The ESAT-6-specific IL-17-, IFN-γ-, TNF-α-, and IL-2-producing 
CD4+ T-cell population in the lungs and spleen was considerably larger than that in BCG-immunised 
and BCG-primed ESAT-6-boosted mice, and Ag-specific CD4+CD44+ T-cells in the lungs were 
expanded when compared to pre-infection numbers (Figure 4). Pre-infection expansion of IFN-γ/IL-
17-producing cells in the lungs was inversely correlated with bacterial burden (R = −0.8641, p < 
0.0001), but there was no significant correlation between IFN-γ-producing cell responses and lung 
bacterial burden (R = −0.0679, p = 0.726). Notably, the expansion of Ag-specific CD4+IFN-γ+IL-17+ T-
cells was identified as a correlate of protection after Mtb challenge (R = −0.7703, p < 0.0001), indicating 
that these cells are an exclusive feature of BCG-primed HSP90-E6 vaccination. Given that Ag-specific 
IFN-γ responses were similarly induced in all groups of immunised mice, an IFN-γ response alone 
is insufficient to control Mtb infection (R = 0.6789, p < 0.0001), especially in the absence of IL-17 
contribution (Figure 5). 

It was difficult to detect differences between the groups when multifunctional T-cell responses 
were presented as percentages of the parental populations; therefore, we used actual cell counts to 
evaluate T-cell responsiveness against Ag and how many Ag-responding T-cells existed in the Mtb-
infected tissues. Upon vaccination but prior to infection, CD4+CD44+ T-cell numbers generally 
increased in all organs, when compared to the numbers in naïve mice. Additionally, splenic 
CD4+CD44+ T-cells displayed increased infiltration of cells capable of producing cytokines in response 
to Ag stimulation in both boosted groups, which may be because of the route of Ag immunisation. 
Further, multifunctional T-cells were more highly expanded in HSP90-E6-than in ESAT-6-boosted 
mice (Figure 2). Upon infection, the expansion of PPD-/ESAT-6-specific multifunctional T-cells in the 
lungs and ESAT-6-specific multifunctional T-cells in the spleen were more obvious in HSP90-E6- than 
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in ESAT-6-boosted mice, which is linked to protective efficacy of HSP90-E6, which outperforms BCG 
and BCG-prime ESAT-6 vaccination (Figures 3 and 4, and Supplementary Materials Figure S3). 

In vitro, HSP90-E6 also significantly induced DCs possessing a Th1/Th17-polarizing phenotype, 
characterised by IL-1β, IL-12p70, and IL-23p19 production, as compared to ESAT-6 alone. Moreover, 
IFN-γ and IL-17 production in T-cells from individually vaccinated mice was markedly increased 
upon co-culture with HSP90-E6- versus ESAT-6-treated DCs, and was accompanied with enhanced 
T-cell proliferation (Figure 6), demonstrating that HSP90-E6 is capable of inducing Th1/Th17-biased 
responses mediated by optimal DC activation. Most importantly, IFN-γ and IL-17 clearly 
synergistically contributed to intracellular bacterial growth inhibition in Mtb-infected macrophages 
through enhanced phagolysosomal fusion (Figures 7 and 8), whereas ROS, NO, and up-regulation of 
IFN-γR1 were not involved in the synergistic effect (Supplementary Materials Figures S14 and S15). 
Thus, we identified an unappreciated role for IFN-γ/IL-17 synergism in inducing anti-bacterial 
phagosomal activity for the control of Mtb infection in the host, in addition to the existing paradigm 
that IL-17 rapidly promotes cell recruitment, and thereby contributes to early granuloma formation 
in infection sites. 

In summary, our study revealed that HSP90-E6/CIA05 vaccine exerts a durable BCG-boosting 
effect against hypervirulent HN878 Mtb in mice via expansion of IFN-γ/IL-17-producing cells in the 
lungs. The number of IFN-γ-producing T-cells in the lungs was significantly increased in only 
infection group, but decreased in HSP90-E6/CIA05-immunised group. This suggests that IFN-γ-
producing T-cells are necessary, but not sufficient for TB defence, and, more importantly, that an 
increase in the number of cells that produce both IFN-γ and IL-17 is important for protection. Further, 
our results indicate that the presence of both IFN-γ and IL-17 in the lungs upon Mtb challenge may 
be an essential immunological signature of balanced inflammation and protection. The immune 
signatures associated with superior BCG-primed HSP90-E6 booster vaccination provide important 
leads for further investigation of the direct role of IL-17 in protection against TB and a novel strategy 
to improve BCG-booster vaccines. Thus, IFN-γ/IL-17-producing multifunctional CD4+ T-cells are 
determinants of protective efficacy of TB subunit vaccines, and HSP90-E6/CIA05 is an excellent TB 
vaccine candidate that effectively induces such a response. 

5. Conclusions 

Collectively, out study demonstrated that IFN-γ-producing T-cells are necessary, but not 
sufficient for TB defense, and, more importantly, that an increased in the number of cells that produce 
both IFN-γ and IL-17 is essential for protection. This protective immune determinant related with 
BCG-primed HSP90-E6 booster vaccination will pave the way for further investigation of a novel 
strategy to improve BCG-booster vaccines. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-393X/8/2/300/s1, Figure 
S1: Gating strategy for the assessment of intracellular cytokines, Figure S2: Ag-specific multifunctional T-cells 
are induced in the lungs, spleen, and lymph nodes in BCG+HSP90-E6-immunised mice, Figure S3: Induction of 
Ag-specific multifunctional T-cells is accompanied with the production of Th1/Th17-related cytokines after 
challenge with Mtb HN878, Figure S4: Ag-specific multifunctional T-cells are induced in the lungs in 
BCG+HSP90-E6-immunised mice, Figure S5: Induction of Ag-specific multifunctional T-cells accompanied with 
the production cytokines after challenge with Mtb HN878, Figure S6: The protective correlation of protection 
with pre-infection driven immune response in the vaccinated and challenged mice, Figure S7: The protective 
correlation of protection with post-infection driven immune response in the vaccinated and challenged mice, 
Figure S8: IFN-γ/IL-17 inhibits intracellular bacterial growth in Mtb-infected macrophages, Figure S9: IFN-γ/IL-
17 from supernatants of spleen cells from HSP90-E6-vaccinated mice inhibit intracellular Mtb growth, Figure 
S10: IFN-γ/IL-17 from supernatants of lung and spleen cells from ESAT-6-vaccinated mice inhibit intracellular 
Mtb growth, Figure S11: IFN-γ/IL-17 from supernatants of lung cells from infected ESAT-6-vaccinated mice 
inhibit intracellular Mtb growth, Figure S12: IFN-γ/IL-17 from supernatants of spleen cells from infected ESAT-
6-vaccinated mice inhibit intracellular Mtb growth, Figure S13: IFN-γ/IL-17 induces phagosome-lysosome fusion 
in Mtb-infected macrophages, Figure S14: IFN-γ/IL-17 does not affect IFN-γR1 in Mtb-infected macrophages, 
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Figure S15: IFN-γ/IL-17 does not affect ROS or NO production in Mtb-infected macrophages, Table S1: 
Correlations between protection level and vaccine-induced immune responses pre- and post-infection.  
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