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Abstract: Introduction: Diverse algorithms for signal detection exist. However, inconsistent results 
are often encountered among the algorithms due to different levels of specificity used in defining 
the adverse events (AEs) and signal threshold. We aimed to explore potential safety signals for two 
pneumococcal vaccines in a spontaneous reporting database and compare the results and 
performances among the algorithms. Methods: Safety surveillance was conducted using the Korea 
national spontaneous reporting database from 1988 to 2017. Safety signals for pneumococcal vaccine 
and its subtypes were detected using the following the algorithms: disproportionality methods 
comprising of proportional reporting ratio (PRR), reporting odds ratio (ROR), and information 
component (IC); empirical Bayes geometric mean (EBGM); and tree-based scan statistics (TSS). 
Moreover, the performances of these algorithms were measured by comparing detected signals with 
the known AEs or pneumococcal vaccines (reference standard). Results: Among 10,380 vaccine-
related AEs, 1135 reports and 101 AE terms were reported following pneumococcal vaccine. IC 
generated the most safety signals for pneumococcal vaccine (40/101), followed by PRR and ROR 
(19/101 each), TSS (15/101), and EBGM (1/101). Similar results were observed for its subtypes. 
Cellulitis was the only AE detected by all algorithms for pneumococcal vaccine. TSS showed the 
best balance in the performance: the highest in accuracy, negative predictive value, and area under 
the curve (70.3%, 67.4%, and 64.2%). Conclusion: Discrepancy in the number of detected signals was 
observed between algorithms. EBGM and TSS calibrated noise better than disproportionality 
methods, and TSS showed balanced performance. Nonetheless, these results should be interpreted 
with caution due to a lack of a gold standard for signal detection. 

Keywords: tree-based scan statistics; empirical Bayes geometric mean; quantitative signal detection; 
pneumococcal vaccine 

 

1. Introduction 

Algorithms for signal detection have been developed and successfully implemented in medical 
databases for post-marketing drug safety surveillance [1]. These algorithms have demonstrated 
varying degrees of sensitivity and specificity in multiple medical databases, leaving the drug safety 
monitoring authorities to choose from the algorithms that are practical and validated in their regional 
databases. Mostly, the disproportionality methods comprising of proportional reporting ratio (PRR), 
reporting odds ratio (ROR), and information component (IC) are used, and the United States Food 
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and Drug Administration (FDA) uses the empirical Bayes geometric mean (EBGM) [2,3]. Although 
these algorithms have been previously validated, inconsistent signal detection results are often 
encountered within and between the algorithms due to different levels of specificity in defining 
adverse events (AEs) and signal score threshold [4,5]. 

A study by Kulldorff et al. introduced a new signal detection algorithm, the tree-based scan 
statistic, which, unlike other algorithms based on rate ratios or Bayesian shrinkage estimator, is based 
on a log-likelihood ratio-based approach and adjust for multiple-testing. [6,7]. Moreover, this 
quantitative method is suitable for handling hierarchy structured variables such as AE terminology 
and anatomical therapeutic chemical (ATC) classification system [8]. As signal detection through this 
method is fundamentally based on a pre-defined tree structure constructed with the variables of 
interest grouped together at different specificity levels, it can both evaluate a variable alone and a 
group of related variables simultaneously [9].  

Streptococcus pneumoniae is a major pathogen associated with substantial morbidity and 
mortality worldwide [10]. This pathogen can lead to invasive pneumonia, which, in turn, leads to 
high morbidity and mortality, especially in children and the elderly [11]; it was the fourth cause of 
mortality in Korea in 2012 [12]. The regulatory agency of South Korea introduced pneumococcal 
vaccines into the National Immunization Program (NIP) for the elderly (23-valent pneumococcal 
polysaccharide vaccines; PPSVs) and for children (10- and 13-valent pneumococcal conjugate 
vaccines; PCVs) in 2013 and 2014, respectively [13]. Ever since, not only the immunization rate for 
PPSV/PCV [14] but also the volume of AE reports increased substantially upon their introduction in 
the NIP [15].  

Given the limited application of data mining for safety signal detection and post-marketing 
safety data for pneumococcal vaccines in the domestic spontaneous reporting system, we aimed to 
identify potential safety signals of pneumococcal vaccine using the disproportionality methods, 
EBGM, and tree-based scan statistic. Additionally, the performance of each algorithm was evaluated 
using a reference standard to demonstrate the applicability of these algorithms for vaccine safety 
surveillance.  

2. Materials and Methods 

2.1. Data Sources 

We used data from the Korea Institute of Drug Safety & Risk Management-Korea Adverse Event 
Reporting System Database (KIDS-KD). The Korean government introduced the spontaneous 
reporting system for AEs in 1988 [16] and established the Korea Adverse Event Reporting System 
(KAERS) in 2012 to facilitate the reporting and management of AEs after administration of 
medications, therapeutic biologic products, and vaccines [17]. The KIDS-KD is collected through the 
KAERS, and contains the information on demographics, AEs, drug, reporter, and a causality 
assessment. All drugs and AEs were coded according to the ATC code and the World Health 
Organization-Adverse Reaction Terminology (WHO-ART), respectively. The WHO-ART is 
constructed as a tree structure [18], and we used the level of preferred terms (PTs) that represent the 
principal terminology used for documentation.  

2.2. Study Vaccine 

We included all NIP and non-NIP vaccines listed in routine vaccination schedule in Korea for 
this study. The study vaccine was pneumococcal vaccine approved in Korea, and its subtype, 23-
valent PPSV (Prodiax-23®/PNEUMOVAX 23®) and 10- and 13-valent PCV (Synflorix® pre-filled 
syringe and Prevenar 13®, respectively). The other vaccines used as a comparator for signal detection 
are listed in the Table S1.  
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2.3. Selection of AE Reports 

From the entire AE reports in KIDS-KD from 1988 to 2017, we used the initial reports that were 
reported following vaccination. In other words, we excluded AE reports involving pharmaceuticals 
other than vaccine or with unspecified vaccine product and follow-up report for initially reported 
AEs. We also excluded the reports without causality assessment or recorded as “unlikely”, 
“unclassified”, or “unassessable” according to the WHO causality assessment criteria. Lastly, we 
excluded the reports that listed both PPSV and PCV administered at the same date as these can 
complicate the interpretation of the signals.  

2.4. Statistical Analysis 

2.4.1. Descriptive Analysis  

We provided the frequency and proportion of basic characteristics (sex, age group, the type of 
reports, the report source by professions, and report source by affiliation) to compare their 
distributions between pneumococcal vaccines and all other vaccines. In addition, we described the 
list of AEs according to the System Organ Class (SOC) for pneumococcal vaccine, including both 
subtypes, and all other vaccines. Moreover, we conducted subgroup analysis to identify the 
difference of AE distribution according to three age groups: (1) 19 years old or younger; (2) 19–64 
years old (3) 65 years old or older.  

2.4.2. Algorithms for Signal Detection 

Signal is information about a potential relationship between a drug and AE [19]. Although a 
signal does not indicate a causal relationship, it provides preliminary evidence for establishing a 
safety profile. In order to detect the signals for the pneumococcal vaccine and its subtypes, we used 
the tree-based scan statistic and two widely used methods, disproportionality methods, and EBGM.  

2.4.2.1. Disproportionality Method 

In this study, we generated signal scores of all AE-pairs for the pneumococcal vaccine using the 
PRR, ROR and IC, which are the algorithms employed by Korea Institute of Drug Safety & Risk 
Management for routine drug safety surveillance [20]. Thresholds for each measurement were 
established as follow: (a) PRR: ≥2; (b) ROR: ≥2 (c) IC: ≥0. Additionally, chi-square statistics and 
frequency of AEs were considered with the results of disproportionality methods, simultaneously: 
(a) chi-square: ≥2; (b) frequency: ≥3. 

2.4.2.2. Empirical Bayes Geometric Mean (EBGM) 

The EBGM was introduced to detect signals for large counts in contingency tables by using 
observed and expected counts for each AE-pair [21]. It reduces false positive signaling by shrinking 
large measurements with small counts. We defined the threshold as the lower bound of the 90% 
confidence interval of the EBGM greater or equal to 2, which is the previously validated threshold 
employed by the FDA for routine drug safety surveillance [22].  

2.4.2.3. Tree-based Scan Statistic  

The tree-based scan statistic is based on log-likelihood ratio statistics and multiple testing and is 
suitable for analyzing a hierarchical structure variable [23]. We calculated the expected value by 
tabulating a two by two table for each AE-pair under the null hypothesis. The threshold of the p-
value to identify a safety signal was defined as 0.05. Using the unconditional Poisson model, AEs 
were defined as signals when their p-value was lower than 0.05, and p-values were generated with 
Monte Carlo simulation.  
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2.4.3. Performance Evaluation  

We conducted a performance evaluation to identify which algorithm was more suitable for 
detecting safety signals for the pneumococcal vaccines. We established a reference standard by 
reviewing the adverse reaction section of the FDA-approved package inserts and the labeling 
information approved by the Ministry of Food and Drug Safety of South Korea. AEs listed on the 
package inserts [24] or in the labeling information [25] were used to constuct the reference standard. 
We then constructed a confusion matrix for each algorithm, comparing the detected signals with the 
reference standard to calculate: (a) accuracy; (b) sensitivity; (c) specificity; (d) positive predicted value 
(PPV); (e) negative predicted value (NPV); (f) area under the curve (AUC). Detailed formula used for 
the performance evaluation is explained in the Figure S1 [26,27].  

To account for effect modification by age, we also conducted subgroup analyses for the 
following subgroups: (1) 19 years old or younger; (2) 19–64 years old (3) 65 years old or older. All 
statistical analyses were performed using SAS 9.4 for Windows (SAS Institute, Inc., Cary, NC, USA), 
R Statistical Software version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria), and 
TreeScan® software version 1.4. The study protocol was approved by the Sungkyunkwan University 
Institutional Review Board (No. 2019-09-005).  

3. Results 

3.1. General Characteristics 

From a total of 1,341,724 reports in the KAERS, we identified 30,062 (2.2%) reports involving 
vaccination (Figure 1). After applying our study exclusion criteria, 10,380 reports were included in 
this study. Among these, 1135 (10.9%) reports were related to pneumococcal vaccines, of which 668 
(58.9%) were related to PPSV and 467 (41.1%) to PCV.  

Compared to all other vaccines, a higher proportion of pneumococcal vaccine reports were from 
people aged 65 and above (Table 1). The proportion of spontaneous reports was predominant, and 
most of them were from doctors and regional pharmacovigilance centers (RPVCs). According to 
subtype, a higher proportion of the PPSV reports involved the elderly compared to PCV reports 
(32.3% vs. 12.6%, respectively). The proportions of spontaneous reports were 98.0% and 56.1% for 
PPSVs and PCVs, respectively.  

We found 2262 AE-pairs for the pneumococcal vaccine, of which 37.8% were application site 
disorders (Table 2). The proportions of general disorders (24.9%), musculoskeletal system disorders 
(16.3%), skin and appendages disorders (6.3%), and central & peripheral nervous system disorders 
(6.0%) were higher for the pneumococcal vaccine than for all other vaccines. We found 1563 and 699 
AE-pairs for PPSV and PCV, respectively, with application site disorders being predominant for both 
subtypes (36.4% in PPSV and 42.8% in PCV). However, there were differences in the proportions of 
AE-pairs between PPSV and PCV in musculoskeletal system disorders (19.5% and 9.4%, 
respectively), skin and appendages disorders (3.8% and 12.4%, respectively), central and peripheral 
nervous system disorders (7.6% and 2.4%, respectively), and respiratory system disorders (1.9% and 
4.5%, respectively). We also observed a substantial difference between PPSV and PCV under skin 
and appendages disorders, and this difference was also noted in the subgroup analyses by age group. 
(18 years old or younger: PPSV 0.0%, PCV 11.2%; 19–64 years old: PPSV 8.7%, PCV 12.6%; 65 years 
old or older: PPSV 4.9%, PCV 12.6%) (Table S2). 
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Table 1. Characteristics of adverse event reports related to pneumococcal vaccine and all other 
vaccines from 1988 to 2017. 

Characteristics Pneumococcal Vaccine All Other Vaccines 
 ALL PPSV PCV  

 (N = 1135) (N = 668) (N = 467) (N = 9245) 
 Reports % Reports % Reports % Reports % 

Sex 
Female 674  (59.4) 389  (58.2) 285  (61.0) 6346  (68.6) 
Male 455  (40.1) 274  (41.0) 181  (38.8) 2824  (30.5) 

Missing 6  (0.5) 5  (0.7) 1  (0.2) 75  (0.8) 
Age group (years) 

<2 98  (8.6) 0  (0.0) 98  (21.0) 1252  (13.5) 
2-11 16  (1.4) 3  (0.4) 13  (2.8) 531  (5.7) 

12-18 3  (0.3) 3  (0.4) 0  (0.0) 220  (2.4) 
19-64 313  (27.6) 54  (8.1) 259  (55.5) 4246  (45.9) 

65 275  (24.2) 216  (32.3) 59  (12.6) 260  (2.8) 
Missing 430  (37.9) 392  (58.7) 38  (8.1) 2736  (29.6) 

Report type 
Spontaneous report 918  (80.9) 656  (98.2) 262  (56.1) 5700  (61.7) 

Research 190  (16.7) 0  (0.0) 190  (40.7) 3460  (37.4) 
Other 27  (2.4) 12  (1.8) 15  (3.2) 85  (0.9) 

Report source by professions 
Doctor 724  (63.8) 428  (64.1) 296  (63.4) 3654  (39.5) 

Pharmacist 29  (2.6) 5  (0.7) 24  (5.1) 2221  (24.0) 
Nurse 107  (9.4) 30  (4.5) 77  (16.5) 592  (6.4) 

Consumer 13  (1.1) 3  (0.4) 10  (2.1) 848  (9.2) 
Other * 226  (19.9) 183  (27.4) 43  (9.2) 1536  (16.6) 
Missing 36  (3.2) 19  (2.8) 17  (3.6) 394  (4.3) 

Report source by affiliation 
RPVC 677  (59.6) 452  (67.7) 225  (48.2) 4450  (48.1) 

Pharmaceutical company 218  (19.2) 21  (3.1) 197  (42.2) 3742  (40.5) 
Medical institution 60  (5.3) 49  (7.3) 11  (2.4) 52  (0.6) 

Customer † 33  (2.9) 25  (3.7) 8  (1.7) 153  (1.7) 
Other 147  (13.0) 121  (18.1) 26  (5.6) 848  (9.2) 

Abbreviations: PPSV, pneumococcal polysaccharide vaccine; PCV, pneumococcal conjugate vaccine; 
AE, adverse event; RPVC, regional pharmacovigilance center. * Other included lawyer and other 
healthcare professionals. † Other included pharmacy and health center. 
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Figure 1. Flowchart of selection for adverse event reports. Abbreviations: PPSV, pneumococcal polysaccharide vaccine; PCV, pneumococcal conjugate vaccine. 
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3.2. Signal Detection 

There was discrepancy in the number of signals generated for all pneumococcal vaccines by each 
algorithm (Table 2). IC generated the most signals (40 signals out of 101 AEs), while PRR, ROR, and 
tree-based scan statistic generated a similar number of signals, with PRR and ROR both generating 
19 signals and tree-based scan statistic generating 15 signals; EBGM only generated 1 signal. Notably, 
cellulitis was the only AE detected by all algorithms. Results from subgroup analyses were generally 
inconsistent with those from the main analysis, with one additional signal (pharyngitis) detected for 
subgroup of age 19 years or younger; this AE term was known AE listed in the labeling information 
(Table S3). 

Different results were obtained for the two vaccine subtypes using the three methods (Table 3). 
In the PPSV analysis, the tree-based scan statistic generated the highest number of signals (14), while 
IC generated 13 signals and the EBGM generated 7 signals. Moreover, 7 AEs were detected as signals 
using all three methods at the same time. In the case of PCVs, the disproportionality methods 
generated the highest number of signals (15), followed by tree-based scan statistic, which detected 6 
signals and EBGM, which detected 3 signals. Only cellulitis was detected simultaneously from PPSVs 
and PCVs with all statistical methods. 

3.3. Performance Evaluation 

All performance measurements were calculated with the pre-specified reference standard in 
terms of the WHO-ART PT level (Figure 2). The tree-based scan statistic showed the highest values 
for three measurements, namely accuracy (70.3%), NPV (67.4%), and AUC (64.2%), while EBGM 
showed 100% specificity and PPV. Sensitivity was the highest for IC (51.2%), whereas PRR and ROR 
did not show any measurements higher than those for the other algorithms. 
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Table 2. The frequency of adverse events for pneumococcal vaccine and all other vaccines from 1988 to 2017. 

Adverse Event Pneumococcal Vaccine All Other Vaccines 

(WHO-ART System-Organ Class) 
All PPSV PCV  

(N = 2262) (N = 1563) (N = 699) (N = 16295) 
AE-Pairs % AE-Pairs % AE-Pairs % AE-Pairs % 

Application site disorders 855  (37.8) 569  (36.4) 286  (42.8) 6845  (42.0) 
Body as a whole - general disorders 564  (24.9) 384  (24.6) 180  (26.9) 3589  (22.0) 
Musculoskeletal system disorders 368  (16.3) 305  (19.5) 63  (9.4) 1669  (10.2) 

Skin and appendages disorders 142  (6.3) 59  (3.8) 83  (12.4) 763  (4.7) 
Central & peripheral nervous system disorders 135  (6.0) 119  (7.6) 16  (2.4) 833  (5.1) 

Gastro-intestinal system disorders 69  (3.0) 51  (3.3) 18  (2.7) 585  (3.6) 
Respiratory system disorders 60  (2.7) 30  (1.9) 30  (4.5) 724  (4.4) 

Psychiatric disorders 21  (0.9) 12  (0.8) 9  (1.3) 534  (3.3) 
Metabolic and nutritional disorders 12  (0.5) 11  (0.7) 1  (0.1) 184  (1.1) 

Resistance mechanism disorders 7  (0.3) 1  (0.1) 6  (0.9) 39  (0.2) 
Cardiovascular disorders, general 6  (0.3) 6  (0.4) 0  (0.0) 23  (0.1) 
Heart rate and rhythm disorders 5  (0.2) 5  (0.3) 0  (0.0) 10  (0.1) 
Vascular (extracardiac) disorders 5  (0.2) 3  (0.2) 2  (0.3) 4  (0.0) 

Vision disorders 3  (0.1) 2  (0.1) 1  (0.1) 15  (0.1) 
Urinary system disorders 3  (0.1) 2  (0.1) 1  (0.1) 12  (0.1) 

Hearing and vestibular disorders 2  (0.1) 2  (0.1) 0  (0.0) 6  (0.0) 
Liver and biliary system disorders 2  (0.1) 0  (0.0) 2  (0.3) 12  (0.1) 

White cell and RES* disorders 1  (0.0) 1  (0.1) 0  (0.0) 400  (2.5) 
Platelet, bleeding & clotting disorders 1  (0.0) 1  (0.1) 0  (0.0) 14  (0.1) 

Reproductive disorders, female 1  (0.0) 0  (0.0) 1  (0.1) 6  (0.0) 
Abbreviations: WHO-ART, World Health Organization Adverse Reactions Terminology; PPSV, pneumococcal polysaccharide vaccine; PCV, pneumococcal conjugate 
vaccine; AE, adverse event; RES, reticuloendothelial system. 
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Table 3. Signal detection of pneumococcal vaccine using the disproportionality methods, empirical Bayes geometric mean, and tree-based scan statistic from 1988 to 2017. 

Adverse Event * (WHO-ART 
PT Level) 

No. of AE-
Pairs IC PRR ROR EBGM p-Value 

for TSS 
Listed in 

Labeling † 
Signal Detection 

IC ‡ PRR § ROR ‖ EBGM   TSS # 
Pneumococcal vaccine (All) 

Myalgia 314  0.35  1.54  1.62  1.47 0.0010  O O    O 
Fever 304  0.66  2.03  2.19  1.94 0.0010  O O O O  O 

Injection site reaction 201  0.12  1.32  1.35  1.28 0.0010  O O    O 
Injection site discharge 195  0.66  2.09  2.19  1.84 0.0010  O O O O  O 

Rigors 108  0.42  1.81  1.85  1.55 0.0010  O O    O 
Dizziness 57  0.34  1.83  1.85  1.49 0.0010   O    O 

Rash 52  0.10  1.52  1.53  1.29 0.0400  O O    O 
Arthralgia 45  0.46  2.13  2.16  1.59 0.0020  O O O O  O 
Cellulitis 43  2.06  22.13  22.54  4.59 0.0010  O O O O O O 
Urticaria 31  0.29  1.98  1.99  1.47 0.0060  O O    O 
Asthenia 23  -0.15  1.43  1.43  1.03 0.0030  O O    O 
Oedema 19  0.82  3.91  3.94  1.82 0.0030  O O O O  O 

Injection site inflammation 13  0.76  4.26  4.28  1.71 0.0100   O O O  O 
Dyspnoea 13  0.62  3.60  3.62  1.58 0.0260  O O O O  O 

Angioedema 12  1.10  7.20  7.24  1.91 0.0040  O O O O  O 
Pneumococcal polysaccharide vaccine 

Myalgia 256  0.57  1.82  1.98  2.00 0.0010  O O   O O 
Fever 163  0.25  1.45  1.51  1.70 0.0010  O O    O 

Injection site discharge 161  0.89  2.48  2.65  2.52 0.0010  O O O O O O 
Rigors 99  0.82  2.45  2.54  2.34 0.0010  O O O O O O 

Headache 54  -0.03  1.32  1.33  1.32 0.0040  O O    O 
Dizziness 53  0.75  2.53  2.58  2.25 0.0010   O O O O O 
Arthralgia 43  0.91  3.04  3.09  2.43 0.0010  O O O O O O 

Nausea 26  0.19  1.79  1.80  1.49 0.0090  O O    O 
Urticaria 21  0.19  1.86  1.87  1.49 0.0050  O O    O 
Cellulitis 19  1.28  5.44  5.49  2.64 0.0010  O O O O O O 
Asthenia 19  0.07  1.72  1.73  1.31 0.0010  O O    O 

Angioedema 10  1.34  7.77  7.81  2.02 0.0020  O O O O O O 
Pneumococcal conjugate vaccine 

Fever 141  1.17  2.90  3.38  2.06 0.0010  O O O O O O 
Injection site reaction 102  0.76  2.17  2.37  1.49 0.0010  O O O O  O 
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Rash 40  1.37  3.95  4.12  2.18 0.0010  O O O O O O 
Cellulitis 24  2.82  18.58  19.21  4.32 0.0010   O O O O O 
Pruritus 15  0.77  2.95  2.99  1.32 0.1150   O O O  O 

Pharyngitis 13  0.24  2.01  2.03  0.91 0.0190   O O O  O 
Oedema 11  1.61  6.54  6.62  1.77 0.0040  O O O O  O 

Rash erythematous 10  1.02  3.99  4.04  1.30 0.1230   O O O   
Coughing 10  0.57  2.75  2.77  1.04 0.6370   O O O   

Abbreviations: WHO-ART, World Health Organization-Adverse Reactions Terminology; PT, preferred term; AE, adverse events; IC, information component; PRR, 
proportional reporting ratio; ROR, reporting odds ratio; EBGM, empirical Bayes geometric mean; TSS, tree-based scan statistic. * Table showed only the adverse events 
satisfying two conditions as follow: (1) more than 10 frequencies; (2) detected by at least one algorithm. † Adverse events were checked where these were listed in the 
labeling information either in the Food and Drug Administration of United States or the Ministry of Food and Drug Safety of Korea. ‡ Safety signals using IC were defined 
as adverse events where the lower bound of the 95% confidence intervals was greater than zero. § Safety signals using PRR were defined as adverse events where thresholds 
of PRR was greater than two. ‖ Safety signals using ROR were defined as adverse events where thresholds of ROR was greater than two. ¶ Safety signals using tree-based 
scan statistic were defined as adverse events detected at a 0.05 level of significance. # Safety signals using EBGM were defined as adverse events where the lower bound of 
the 90% confidence intervals was greater than or equal to two. 
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Figure 2. Radar chart of performance measurements for signal detection algorithms about pneumococcal vaccine. Abbreviations: IC, information component; PRR, 
proportional reporting ratio; ROR, reporting odds ratio; EBGM, empirical Bayes geometric mean; TSS, tree-based scan statistic; PPV, positive predicted value; NPV, negative 
predicted value; AUC, area under the curve. 
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4. Discussion 

This study identified safety signals for the pneumococcal vaccines using several algorithms. 
Among the signal detection algorithms, both the tree-based scan statistic and the disproportionality 
methods generated a comparable number of signals, whereas EBGM generated the least number of 
signals. Moreover, there were no overall safety concerns associated with pneumococcal vaccines, and 
similar results were observed in the subgroup analysis of the age groups. However, we found a 
possible relationship between PCV and cellulitis in the subgroup analysis of pneumococcal vaccines, 
which warrants further clinical evaluation to confirm the causal relationship. 

Although this is not the first study to implement tree-based scan statistic for safety surveillance, 
it is the first to test the applicability of tree-based scan statistic in the spontaneous reporting system. 
There are two major aspects to consider when using tree-based scan statistic, the first one being the 
construction of tree structured variable for analysis. Health claims databases use the International 
Classification of Diseases (ICD) codes to record medical diagnosis and related procedures [28], and 
it is often not suitable to fully capture drug-induced AEs. On the contrary, the spontaneous reporting 
system utilizes the WHO-ART and the Medical Dictionary for Regulatory Activities to record drug-
induced AEs. Tree-based scan statistic has previously been applied in the health claims databases to 
screen unexpected AEs of pharmaceutical products, and one of its limitation was the use of ICD codes 
through Clinical Classification Software for defining the drug-induced AEs [29]. Our study tested the 
applicability of the tree-based scan statistic in the KAERS, where AEs are coded using the WHO-
ART. As the WHO-ART is constructed as a hierarchical structure at pre-specified granularity, we 
believe that tree-based scan statistic is well-suited for screening unexpected AEs in the spontaneous 
reporting database. 

The second aspect to consider when using tree-based scan statistic is the calculation of expected 
counts for the drug–AE pairs. In a previous study using health claims database [9], expected values 
were calculated using the number of events (as the numerator) and the follow-up time (as the 
denominator). In the case of spontaneous reports, due to a lack of follow-up time, two by two tables 
for each AE-pair are tabulated and then the total number of events, excluding the event of interest, is 
used as an alternative to the follow-up time. Such event counts replace the follow-up time, as 
expected values are routinely calculated using person-time or the number of people exposed in the 
health claims database while such information is not presented in the spontaneous database [23]. 
Even though under-reporting can be a limitation, the denominator used in our study was the most 
suitable to replace the follow-up time in the passive surveillance database. Additionally, the result of 
tree-based scan statistic was similar to that obtained using disproportionality methods, and the 
overall performance of tree-based scan statistic was higher than those for other algorithms. Therefore, 
we believe that the tree-based scan statistic has been applied successfully in the spontaneous 
reporting database. 

Similar findings were observed compared to other studies [30,31]. EBGM was a more 
conservative method compared to the disproportionality methods as it generated the least number 
of signals for the pneumococcal vaccine. However, it should be noted that EBGM generated more 
signals when the signal detection analyses were conducted for PPSV and PCV. This may have 
resulted from differences in the contingency table according to each analysis unit. The EBGM is 
sensitive to the number of rows and columns because the expected values using the empirical Bayes 
method are calculated based on the size of the contingency table. Moreover, our primary result did 
not consider the difference in age distribution between the two subtypes of pneumococcal vaccine. 
This factor could have also diluted the result of the main analysis compared to the subgroup analysis. 

With respect to the overall measurements, the EBGM showed extremely high specificity and 
PPV, but relatively low sensitivity. According to a previous study [32], the EBGM showed low 
sensitivity and high specificity and PPV when using a high threshold. Our results partly support 
these previous findings, although the sensitivity observed in our study was even lower-than-
expected. This algorithm was developed for a large contingency table having millions of cells, and an 
example of the contingency table in an empirical study had approximately 1.3 million cells (with 4.9 
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million counts) [33]. Our database had about 4400 cells with 10,000 counts. The volume of the 
database may not have been enough for the EBGM to show a stable performance for signal detection 
compared to the reference standard. Nonetheless, the performance of EBGM is acceptable given its 
high specificity and PPV. This provides an efficient feature for routine post-marketing 
pharmacovigilance activity [34]. 

Our results are consistent with those of several studies on AEs following pneumococcal vaccine 
conducted in different countries. Post-licensure studies using the US Vaccine Adverse Event 
Reporting System showed that application site disorders including erythema, pain, and swelling 
were predominant in all age groups vaccinated with PPSV and PCV [35,36]. Additionally, AEs 
reported from phase II clinical safety trial in China were mostly AEs at the local injection site and 
non-serious systemic reactions such as myalgia and joint pain [37]. 

Moreover, cellulitis was detected as a safety signal for both PPSV and PCV, of which cellulitis is 
documented as a known AE in the reference standard for PPSV, but not in the reference standard for 
PCV. Whether cellulitis has previously been associated only with PPSV remains unclear. A few case 
reports and case series have introduced suspected cases of systemic inflammatory reactions 
representing the clinical presentation of cellulitis [38,39], whereas only a single study raised a 
potential association between PCV and cellulitis through a 12-year retrospective medical chart 
review. According to a previous study on the impact of the publicly funded PCV immunization 
program on the number of hospitalized cases of orbital cellulitis, a bacterial infection of the post-
septal tissues of the eye, there was an increasing trend from 0.39 cases to 0.90 cases per 1000 
admissions before and after introduction of the immunization program, respectively [40]. Cellulitis 
is an acute pyogenic inflammation of the dermis and subcutaneous tissue accompanied by 
tenderness, warmth, and swelling at the site of infection [41]. Given that the major causative bacteria 
of cellulitis are streptococci, it may be feasible to suspect the cellulitis reports as a disseminated 
infection from PCV. However, we assert this to be highly unlikely as PCV includes a non-virulent 
capsular polysaccharide of Streptococcus pneumoniae. 

Results from both main and subgroup analyses show differential proportion of AEs of skin and 
appendage disorders between PPSV and PCV. Such difference may have been due to the target 
population eligible for pneumococcal vaccination under NIP, as PCV is routinely administered in 
children and adolescents and PPSV is administered in the elderly. The pediatric population generally 
experiences AEs related to the skin more frequently and widely than the adult population [42], and 
indeed, in the US, the most common AEs in children are general disorders and administration site 
conditions [43]. Therefore, the high proportion of skin-related AEs due to PCVs are understandable 
when considering the age distribution. 

Early detection of safety signals using a spontaneous reporting database have been receiving 
growing attention given the importance of post-marketing safety surveillance of the pharmaceutical 
products including vaccines. While traditional pharmacoepidemiological methods have traditionally 
been used to identify and quantify AEs, they are time-consuming, require large databases, and most 
importantly, need a priori hypothesis. Signal detection algorithms used in this study have been 
utilized numerously to generate specific hypotheses for specific drug–event pairs, of which the tree-
based scan statistics is a relatively novel data mining method that has rarely been implemented in 
the spontaneous reporting database. Their application in the spontaneous reporting database is 
practical and enables for early detection of potential safety issues which would be the first of many 
steps in reducing public health burden relating to the AEs following vaccination. Our study has 
several strengths. First, we used a nationwide spontaneous reporting database for all vaccines from 
1988 to 2017. Second, diverse algorithms for signal detection were applied in this study to consider 
different spectrums according to different statistical approaches. Third, this study not only detected 
the safety signals, but also evaluated the performance of the algorithms to identify which is more 
suitable to conduct a post-marketing safety surveillance of pneumococcal vaccines. Finally, we 
identified the safety signal of a possible risk of cellulitis following PCV vaccination. 

However, there are some limitations to this study. First, there is an inherent limitation of under-
reporting in a passive surveillance system [44]. Therefore, our results should be interpreted with 
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caution due to potential selection bias or under-estimation. Second, using the reference standard, 
which includes already known AEs of pneumococcal vaccines, could be an issue as the quantitative 
performance of each algorithm could be over- or under-estimated according to the reference standard 
[45]. However, we believe that the labeling information included all relevant AEs, as pneumococcal 
vaccines have been used for a long period since their approval [46,47]. Furthermore, the objective of 
our study was to identify a possible causal relationship between a vaccine and an AE [48]. Therefore, 
further pharmacoepidemiologic studies are needed to evaluate the association between cellulitis and 
PCV. 

5. Conclusions 

Overall, we identified a discrepancy in the results of signal detection observed among the three 
algorithms. Compared to the disproportionality methods, the EBGM generated the lowest number 
of signals, and the tree-based scan statistic generated either a lower or an equal number of signals. 
Additionally, both methods seemed to calibrate noise. In terms of performance, the tree-based scan 
statistic showed balanced measurements. Moreover, a possible causal relationship between PCVs 
and cellulitis was observed. Nonetheless, the findings should be interpreted with caution due to a 
lack of a gold standard for an algorithm for signal detection. Further pharmacoepidemiologic studies 
are therefore required to confirm the findings of this study. 
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