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Abstract: Since antigens are negatively charged, they combine well with positively charged adjuvants.
Here, ovalbumin (OVA) (0.1 mg·mL−1) and poly (diallyldimethylammonium chloride) (PDDA)
(0.01 mg·mL−1) yielded PDDA/OVA assemblies characterized by dynamic light scattering (DLS) and
scanning electron microscopy (SEM) as spherical nanoparticles (NPs) of 170 ± 4 nm hydrodynamic
diameter, 30 ± 2 mV of zeta-potential and 0.11 ± 0.01 of polydispersity. Mice immunization with
the NPs elicited high OVA-specific IgG1 and low OVA-specific IgG2a production, indicating a Th-2
response. Delayed-type hypersensitivity reaction (DTH) was low and comparable to the one elicited
by Al(OH)3/OVA, suggesting again a Th-2 response. PDDA advantages as an adjuvant were simplicity
(a single-component adjuvant), low concentration needed (0.01 mg·mL−1 PDDA) combined with
antigen yielding neglectable cytotoxicity, and high stability of PDDA/OVA dispersions. The NPs
elicited much higher OVA-specific antibodies production than Al(OH)3/OVA. In vivo, the nano-metric
size possibly assured antigen presentation by antigen-presenting cells (APC) at the lymph nodes, in
contrast to the location of Al(OH)3/OVA microparticles at the site of injection for longer periods with
stimulation of local dendritic cells. In the future, it will be interesting to evaluate combinations of the
antigen with NPs carrying both PDDA and elicitors of the Th-1 response.

Keywords: cationic polymer; poly (diallyldimethylammonium chloride); model antigen; ovalbumin;
antigen/cationic polymer nanoparticles; poly-cation cytotoxicity; dynamic light scattering; scanning
electron microscopy; ELISA assays; delayed-type hypersensitivity assay

1. Introduction

Adjuvants are essential components of modern vaccines; they enhance the magnitude and guide
the type of adaptive immune response to produce the most effective form of immunity for each specific
pathogen [1,2]. Adjuvants act, mostly, as antigen carriers or/and as pattern recognition receptors (PRR)
agonists. The demand for adjuvants in vaccine formulations emerged from the application of purified
antigens, which are poor immunogens due to lack of the danger signals of pathogens’ entire cells,
crucial for activating the innate immune system [1,3,4]. Currently, there are few adjuvants licensed
for human use; aluminum-based adjuvants like Al(OH)3 are the only ones approved worldwide
performing the task of presenting negatively charged antigens due to their positive charge at the pH of
water [5–7]. Other cationic adjuvants based on nanoparticles [8–11], liposomes [12–14], cationic bilayer
fragments [8,15,16] or supported cationic bilayers on polymeric nanoparticles (NPs) [9], silica [17],
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or cationic polymers on superparamagnetic iron oxide NPs [18] have also been proposed as effective
micro or nanomaterials able to effectively interact with antigens and antigen-presenting cells (APC).

Major mechanisms for taking up the cationic assemblies depend on size [19,20]. Nanoparticles
with 20–200 nm mean diameter are like viruses and usually taken up by endocytosis via clathrin-coated
vesicles, caveolae, or their independent receptors, and preferentially ingested by dendritic cells
(DC) [21]. Microparticles with 500–5000 nm diameter are like bacteria, captured by phagocytosis
and primarily ingested by macrophages. All particles used in vaccine formulations are consequently
internalized efficiently by APC by one or a combination of the quoted mechanisms [22,23]. Particles
with diameters smaller than 500 nm, in particular the nano-sized ones with 40–100 nm diameter,
are more efficient to promote CD8 and CD4 type 1 T-helper cells responses than those with diameters
above 500 nm; large particles, more similar to Al (OH)3, usually induce good T-helper cells type 2
improvement in antibody responses [22]. In summary, cationic micro and nanoparticles are effectively
taken up both by macrophages and dendritic cells since electrostatic attraction promotes particle
binding and subsequent internalization [11,14,20,24,25]. Cationic particles and liposomes containing
dioctadecyldimethylammonium bromide (DODAB) cationic lipid [13,26] carrying Mycobacterium
tuberculosis [13,27], Chlamydia trachomatis [11], or Neisseria meningitides antigens enhanced the cellular
and humoral immune response against them [16,28].

Another important class of cationic adjuvants is represented by the cationic polymers despite their
overt cytotoxicity [29–33]. They easily combine with oppositely charged proteins [34]. Particles of poly
(lactic-co-glycolic acid) (PLGA) have been combined with cationic polymers like polyethyleneimine
(PEI) or ε-poly-L-lysine (PLL) for improving antigen adsorption, colloidal stability, and the immune
response [35]. Nanocomplexes of PEI and antigens (influenza hemagglutinin or herpes simplex virus
type-2 glycoprotein D) delivered by the mucosal route activated APC in vivo, promoting dendritic
cell trafficking to draining lymph nodes besides and eliciting a potent immune response against
the viral subunit glycoproteins; a single intranasal administration elicited robust antibody-mediated
protection [36]. Systemic administration of the same antigens with PEI induced both Th1/Th2 immune
responses and higher titers of both antigen-binding and -neutralizing antibodies than alum [37].

The cationic antimicrobial polymer poly (diallyldimethylammonium chloride) (PDDA) is a
poly-cation [38–40] able to combine with bovine serum albumin (BSA), yielding NPs with diameters
around 50 nm [41,42]. In combination with HIV-1 DNA, nanorods of gold yielded particles of gold/

PDDA/DNA, which elicited a Th-2 response that was higher than the one obtained using PEI or
cetyltrimethylammonium bromide (CTAB). Stimulated cellular and humoral immunity, as well as
T cell proliferation, were obtained in comparison with naked HIV-1 Env plasmid DNA treatment
in vivo [43].

In this work, NPs of PDDA/ovalbumin are prepared, characterized by their physical properties,
and evaluated as stimulators of the OVA-specific immune response. The results obtained by means of
dynamic light scattering (DLS) show that cationic PDDA/OVA NPs at 0.01 and 0.1 mg·mL−1 PDDA
and OVA, respectively, have 170 ± 4 nm of hydrodynamic diameter, 30 ± 2 mV of zeta-potential,
and 0.11 ± 0.01 of polydispersity. These NPs used for mice immunization elicited potent Th-2
OVA-specific immune response. There were high OVA-specific IgG1 and low OVA-specific IgG2a
production. Delayed-type hypersensitivity reaction (DTH) was low and comparable to the one elicited
by Al(OH)3/OVA, suggesting again a Th-2 response. PDDA advantages as an adjuvant are simplicity
(a single-component adjuvant), low concentration needed (0.01 mg·mL−1 PDDA) combined with
antigen yielding neglectable cytotoxicity, and high stability of PDDA/OVA dispersions. The NPs
elicited much higher OVA-specific antibody production than Al(OH)3/OVA.
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2. Materials and Methods

2.1. Reagents and Stock Solutions

Poly (diallyldimethylammonium chloride) (PDDA), grade V ovalbumin (OVA), peroxidase-labeled
streptavidin, and o-phenylenediamine (OPD) were purchased from Sigma Chemical Co. (St. Louis,
MO, USA). OVA stock solutions (20 mg·mL−1) were prepared in Milli-Q water (pH = 6.3) and purified
to reduce endotoxin levels by means of a chromatographic procedure using polymyxin B columns
(Pierce Biotechnology, Rockford, IL, USA). The concentration of purified OVA in the stock solution
was determined by the bicinchoninic acid assay (BCA) [44] and adjusted to 10 mg·mL−1. Aluminum
hydroxide (Al(OH)3) was purchased from Sanofi-Synthelabo, RJ, Brazil. PDDA molecular weight was
<100,000 g and it was available as a water solution at 35% PDDA.

2.2. Preparation of the PDDA/OVA Nanoparticles (NPs)

PDDA/OVA NPs were obtained from aliquots of stock PDDA (10 mg·mL−1) and OVA (10 mg·mL−1)
solutions vortexed for 30 s in Milli-Q water at room temperature. The turbid dispersions of NPs with
good colloidal stability were used 1 h after preparation.

2.3. Determination of Physical Properties and Colloidal Stability for NPs Dispersions from Dynamic Light
Scattering (DLS), Turbidimetry, and Scanning Electron Microscopy (SEM)

All dispersions were obtained in Milli-Q water. Size distribution, zeta-average diameter (Dz),
zeta-potential (ζ), polydispersity (P), conductance (G), and colloidal stability for the dispersions were
determined by DLS using a Zeta-Plus Zeta-Potential Analyzer (Brookhaven Instruments Corporation,
Holtsville, NY) equipped with a 677 nm laser. The diameter from DLS is the mean hydrodynamic
(zeta-average) diameter Dz unless otherwise stated. Zeta-potential (ζ) was determined from the
electrophoretic mobility µ and Smoluchowski equation, ζ = µη/ε, where η and ε are the viscosity and
the dielectric constant of the medium, respectively. The physical properties of the dispersions (Dz, ζ,
and polydispersity P) from the DLS technique were determined by applying well-defined mathematical
equations [45]. The colloidal stability of the dispersions (at 0.01 and 0.1 mg·mL−1 of PDDA and OVA
concentrations, respectively) was followed for 48 h by determining the effect of time on Dz, P, ζ, and G.

UV–Vis spectra of the PDDA/OVA dispersions were acquired at 25 ◦C using a Shimadzu UV-1800
spectrophotometer (SSI; Kyoto, Japan) from 200 to 800 nm in appropriate cuvettes against a Milli-Q
blank of pure water.

For SEM experiments, the PDDA/OVA NPs dispersion in Milli-Q water (at 0.01 and 0.1 mg·mL−1

of PDDA and OVA concentrations, respectively) was placed on a round glass coverslip and dried
overnight at room temperature before coating with a gold layer using a Leica EM SCD 050 sputtering
apparatus for observation under a FEI Quanta 250 scanning electron microscope.

2.4. Cell Culture, Preparation of PDDA, OVA, or PDDA/OVA Solutions for Interaction with Cells, and
Determination of Cell Viability in the Interaction Mixtures

L929 fibroblasts and J774A.1 macrophages cell lines were obtained from the American Type
Culture Collection (ATCC; www.atcc.org) and cultured according to standard protocols for mammalian
cells culture under sterile conditions, in an atmosphere of 90% humidity, 5% CO2, at 37 ◦C in RPMI-1640
medium supplemented with 10% fetal bovine serum (FBS), 1 unit/mL of penicillin-streptomycin, and
2 mM L-glutamine. For interaction with cells, PDDA, OVA, and PDDA/OVA solutions were also
prepared in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), 1 unit/mL of
penicillin-streptomycin, and 2 mM L-glutamine. The interaction between cells and solutions to be
tested was performed as follows.

www.atcc.org
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L929 fibroblasts and J774A.1 macrophages were plated into 96-well microtiter plates at a density
of 10,000 cells/well and incubated for 12 h before replacing the culture medium by 100 µL of PDDA,
OVA, or PDDA/OVA solutions. Thereafter, the mixtures were again incubated in a humidified CO2

incubator for 3 and 24 h before determining the in vitro cytotoxicity of PDDA, OVA, and PDDA/OVA
by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay [46]. A MTT stock
solution at 5 mg·mL−1 in PBS was filtered for sterilization and removal of insoluble MTT residues.
Ten microliters of this stock MTT solution was added per well, each well containing 100 µL of the
plated cells interacting with OVA, PDDA, PDDA/OVA. After incubation (37 ◦C/ 2 h), the supernatants
were withdrawn and cells adhered to the wells were mixed meticulously with 100 µL of an isopropanol
solution acidified to 0.04 N HCl in order to dissolve formazan crystals. The absorbance of each well
was recorded at 570 nm on a Multiskan Ex Microelisa reader. As a control, cells mixed with the
culture medium only yielded 100% of cell viability. Cell viability in the presence of OVA, PDDA,
or OVA/PDDA solutions was expressed as % of the control.

2.5. Determination of Cells Morphology in the Presence of PDDA by Scanning Electron Microscopy (SEM)

L929 fibroblasts (ATCC CCL-1) were grown up to 80–100% confluency before taking aliquots
of this culture to counting in a Neubauer chamber to add about 100,000 cells/well in wells that had
received spherical coverslips (one coverslip per well) in plates with 24 wells/plate so that cells were
allowed to adhere on the coverslips for 12 h. The culture medium was replaced by PDDA solutions
at concentrations of 0.01, 0.1, and 1 mg·mL−1, and the samples were incubated in a humidified CO2

incubator for 3 h. Cells were then fixed in the Karnovsky buffer (5% glutaraldehyde, paraformaldehyde
4%, sodium cacodylate 0.1 M, and pH 7.2) for 3h before progressive dehydration was performed
with added ethanol solutions (concentrations ranging from 7.5% to 100%; 15 min interaction with
cells per concentration). Thereafter, the cells on the coverslips were further dried in a Leica CPD
030 critical-point dryer device and covered with gold in a Leica EM SCD 050 sputtering device for
observation in an FEI Quanta 250 scanning electron microscope.

2.6. Immunization Scheme

Groups of five BALB/c mice were immunized subcutaneously at two separate sites on the base
of the tail with a total injection volume of 0.2 mL/animal using solutions or dispersions at the final
concentrations of adjuvants and/or OVA antigen shown in Table 1. A booster using the same dose
employed for priming was carried out at 21 days post-immunization.

Ethical procedures for experimentation with animals were followed and were in accordance with
guidelines approved by the Instituto Butantan’s Committee of Ethics on Animal Research (protocol
number 7912280219).

Table 1. Composition of solutions or dispersions in water used for immunization of four groups of
five mice.

Group Solution or
Dispersion

[OVA]
mg·mL−1

[Al(OH)3]
mg·mL−1

[PDDA]
mg·mL−1

1 Milli-Q water 0 0 0
2 OVA 0.1 0 0
3 Al(OH)3/OVA 0.1 0.1 0
4 PDDA/OVA 0.1 0 0.01

2.7. Determination of OVA-Specific IgG1 and IgG2a Antibodies

For evaluation of the humoral response, five mice per group were bled through the ophthalmic
plexus 14, 21, and 28 days after immunization and the serum individually analyzed by indirect
enzyme-linked immunosorbent assay (ELISA). Briefly, 96-well polystyrene high-binding microtitre
plates (Costar Corning Inc., Mass., USA) were coated overnight at 4 ◦C with 100 µL of OVA solution
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(10 µg/mL in 0.01 M phosphate buffer saline (PBS), pH 7.2). The wells were blocked with 3% gelatin
in PBS for 2 h and then incubated (1 h/37 ◦C) with serum samples serially diluted. In each well,
100 µL of goat anti-mouse biotin-conjugated IgG1 (1:1000) or IgG2a (1:500) (Southern Biotechnology
Associates, AL, USA) were added to the corresponding plates and incubated for 1 h at 37 ◦C. Then,
peroxidase-labeled streptavidin (100 µL of a 1:3000 dilution) was added and incubated for 1 h at
37 ◦C. Plates were washed three times after each incubation step with PBS containing 0.05% Tween
20 (PBST). Finally, 100 µL OPD substrate solution (1 mg·mL−1) and H2O2 (1 µL/mL) diluted in 0.1 M
citrate-phosphate (pH 5.0) were added to each well and incubated for 15 min at room temperature.
The reaction was stopped by adding 50 µL of 2 M H2SO4 to each well. Absorbance was determined at
492 nm for individual wells using an ELISA plate reader (Multiskan Ex, Thermo Electron Corporation).
The results were expressed for diluted serum samples as the mean absorbance ± standard deviation.
The primary response of IgG1 was presented at dilution of 1/256 and the secondary response at 1/16348.
The primary response of IgG2a was presented at dilutions 1/8 and the secondary response at 1/128, the
dilutions chosen correspond to the linear part of the titration curve.

2.8. Determination of Delayed-Type Hypersensitivity Reaction (DTH)

For evaluation of the delayed-type hypersensitivity reaction, five mice/group on the fifth day
post-immunization were injected at the left-hind footpad with a previously heated (1 h/80 ◦C) and
denaturated OVA solution (30 µL, 2 µg/µL in saline). As a control, the same volume of saline was
injected at the right-hind footpad of each animal. Differential footpad swelling was determined 24 h
after injection with a Mitutoyo digital micrometer and considered as the difference between swelling
of left and right paws for the same animal. The results were represented as arithmetic mean footpad
swelling ± standard deviation.

2.9. Statistical Analysis

To compare results for different groups, two-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparisons test was used. P-values below 0.05 were considered significant. Statistical
analysis was performed using the Origin 2018 program (Origin Lab Corporation, Northampton, USA).
Statistical analyses for IgG1 or IgG2a were performed separately.

3. Results and Discussion

3.1. Characterization of PDDA/OVA Dispersions Regarding Formation of Nanoparticles, Their Size, Surface
Potential, Polydispersity, Morphology, and Colloidal Stability.

In order to ascertain the formation of nanoparticles from PDDA/OVA dispersions, the first
property of the mixtures inferred by visual observation was the occurrence of a turbid appearance.
The interaction between OVA and PDDA was driven by their opposite charges. OVA isoelectric point
is around 4.5 [47]; its charge at the pH of water (6.3) is negative. PDDA, as a cationic antimicrobial
polymer [40], is expected to interact electrostatically with OVA. In fact, PDDA and BSA and other
negatively charged proteins interacted in dispersion to yield nanoparticles [41,42,48]. Figure 1 shows
micrographs of PDDA/OVA dispersions obtained by SEM. These revealed the occurrence of NPs with
a mean diameter (D) of dried NPs of D = 234 ± 42 nm as derived from ImageJ software. Typically,
some aggregation due to the drying process (required by the SEM technique) might have slightly
increased the mean size of the NPs. Indeed, using a method as DLS, the mean hydrodynamic diameter
of the same NPs dispersion was Dz = 170 ± 4 nm (Figure 2a). The NPs at 0.1 mg·mL−1 OVA and
0.01 mg·mL−1 PDDA displayed a positive net charge (ζ = 30 ± 2), and the dispersion of NPs exhibited
a relatively low polydispersity of P = 0.11 ± 0.01.



Vaccines 2020, 8, 105 6 of 16

Vaccines 2020, 8, x FOR PEER REVIEW 5 of 16 

 

Corporation). The results were expressed for diluted serum samples as the mean absorbance ± 

standard deviation. The primary response of IgG1 was presented at dilution of 1/256 and the 

secondary response at 1/16348. The primary response of IgG2a was presented at dilutions 1/8 and the 

secondary response at 1/128, the dilutions chosen correspond to the linear part of the titration curve. 

2.8. Determination of Delayed-Type Hypersensitivity Reaction (DTH)  

For evaluation of the delayed-type hypersensitivity reaction, five mice/group on the fifth day 

post-immunization were injected at the left-hind footpad with a previously heated (1 h/80 °C) and 

denaturated OVA solution (30 μL, 2 μg/μL in saline). As a control, the same volume of saline was 

injected at the right-hind footpad of each animal. Differential footpad swelling was determined 24 h 

after injection with a Mitutoyo digital micrometer and considered as the difference between swelling 

of left and right paws for the same animal. The results were represented as arithmetic mean footpad 

swelling ± standard deviation.  

2.9. Statistical Analysis 

To compare results for different groups, two-way analysis of variance (ANOVA) followed by 

Tukey’s multiple comparisons test was used. P-values below 0.05 were considered significant. 

Statistical analysis was performed using the Origin 2018 program (Origin Lab Corporation, 

Northampton, USA). Statistical analyses for IgG1 or IgG2a were performed separately. 

3. Results and Discussion 

3.1. Characterization of PDDA/OVA Dispersions Regarding Formation of Nanoparticles, Their Size, Surface 

Potential, Polydispersity, Morphology, and Colloidal Stability. 

In order to ascertain the formation of nanoparticles from PDDA/OVA dispersions, the first 

property of the mixtures inferred by visual observation was the occurrence of a turbid appearance. 

The interaction between OVA and PDDA was driven by their opposite charges. OVA isoelectric point 

is around 4.5 [47]; its charge at the pH of water (6.3) is negative. PDDA, as a cationic antimicrobial 

polymer [40], is expected to interact electrostatically with OVA. In fact, PDDA and BSA and other 

negatively charged proteins interacted in dispersion to yield nanoparticles [41,42,48]. Figure 1 shows 

micrographs of PDDA/OVA dispersions obtained by SEM. These revealed the occurrence of NPs with 

a mean diameter (D) of dried NPs of D = 234 ± 42 nm as derived from ImageJ software. Typically, 

some aggregation due to the drying process (required by the SEM technique) might have slightly 

increased the mean size of the NPs. Indeed, using a method as DLS, the mean hydrodynamic 

diameter of the same NPs dispersion was Dz = 170 ± 4 nm (Figure 2a). The NPs at 0.1 mg·mL−1 OVA 

and 0.01 mg·mL−1 PDDA displayed a positive net charge (ζ = 30 ± 2), and the dispersion of NPs 

exhibited a relatively low polydispersity of P = 0.11 ± 0.01. 

5 mm 1 mm

(a) (b)

 
Figure 1. Scanning electron microscopy (SEM) of poly (diallyldimethylammonium chloride) (PDDA)/
ovalbumin (OVA) nanoparticles (NPs) at [PDDA] = 0.01 mg·mL−1 and [OVA] = 0.1 mg·mL−1 under
low (a) and high magnification (b). The mean diameter (D) of dried NPs from ImageJ software was
D = 234 ± 42 nm.
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Figure 2. Intensity of light scattered by PDDA/OVA NPs in water obtained at 0.01 PDDA and
0.1 mg·mL−1 OVA: (a) as a function of the hydrodynamic diameter (Dz) determined by dynamic light
scattering (DLS); (b) as a function of wavelength of the incident light (λ) determined from turbidimetry.
Mean Dz, zeta potential (ζ), and polydispersity (P) for this dispersion are also given. The relationship
between turbidity and λ−4 was linear with a regression coefficient of 0.90 (insert).

Curiously, the concentration of the OVA stock solution used to prepare the PDDA/OVA dispersions
was important to define the PDDA/OVA NPs size (not shown). The lower the OVA stock solution
concentration, the lower the size of PDDA/OVA NPs, possibly due to variable degrees of intermolecular
OVA/OVA aggregation. At high concentrations, OVA/OVA aggregation in the stock solution would
be higher than at low concentrations. In the literature, OVA/OVA aggregation with increasing OVA
concentration has already been observed by other authors [49].

The nano-size of all PDDA/OVA NPs in water dispersion was reconfirmed by determining the
dependence of turbidity on the wavelength of the incident light (λ). Rayleigh scattering by turbid
dispersions of NPs means a linear dependence of turbidity with 1/λ4 as the one shown in Figure 2b.
Usually, Rayleigh scattering occurs for spherical particles in water dispersion with diameters very
small compared with λ [50,51], showing that the PDDA/OVA NPs are indeed spherical and nano-sized.

We defined 0.1 and 0.01 mg·mL−1 as the OVA and PDDA concentrations, respectively, to be used
throughout this study based on the experiments described next.
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In order to evaluate the effect of [PDDA] on the physical properties of PDDA/OVA NPs at
0.1 mg·mL−1 OVA, the concomitant change in size (Dz), zeta-potential (ζ), polydispersity (P), and
conductance (G) was obtained using the DLS apparatus. NPs size initially increased with PDDA
concentration attaining a maximal value when ζ was zero meaning that absence of electrostatic
repulsion between the NPs would cause loss of their colloidal stability (Figure 3a,b). Further increasing
PDDA concentration to 0.01 mg·mL−1 re-stabilized the dispersion, yielding positive and relatively
high zeta-potential (around 30 mV). This was the highest zeta-potential obtained over all ranges of
PDDA concentrations tested. However, increasing [PDDA] above 0.01 mg·mL−1, an increase in the
conductance (G) of the dispersions revealed that further incorporation of PDDA onto NPs did not
occur (Figure 3d). Additional PDDA remained in the bulk solution increasing G. The poly-cation
nature of PDDA has indeed been shown to result in increasing conductance with increases in PDDA
concentration in water solutions [52]. Over a range of high [PDDA], above 0.2 mg·mL−1 PDDA,
the polydispersity (P) of the dispersions increased (Figure 3c), possibly due to PDDA-induced bridging
flocculation and PDDA/OVA NPs aggregation [39].
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Figure 3. Effect of PDDA concentration on: (a) hydrodynamic diameter (Dz); (b) zeta potential (ζ);
(c) polydispersity (P); (d) conductance (G) of PDDA/OVA NPs at [OVA] = 0.1 mg. mL−1. The dashed
line indicates zeta-potential (ζ) = 0 occurring around [PDDA] = 0.004 mg·mL−1.
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From the results in Figure 3, the best conditions for obtaining positively charged, stable, and
nano-sized PDDA/OVA NPs became clear, namely, 0.1 and 0.01 mg·mL−1 for OVA and PDDA
concentrations, respectively. At these concentrations, the usual cytotoxicity of cationic polymers is
minimized [29]. The smallest concentration possible of the cationic polymer PDDA for obtaining
the desired properties of the NPs was determined as 0.01 mg·mL−1 at 0.1 mg·mL−1 OVA (Figure 3).
In Figure 4, using these same concentrations, the colloidal stability for the PDDA/OVA NPs in water
was determined over the time remaining excellent during all the observation period (48 h) and possibly
beyond (from visual and macroscopic observation). The NPs were stable colloids. Paul Dubin and
co-workers also found good colloidal stability for PDDA/BSA NPs over 4 months [42].
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3.2. Cytotoxicity of PDDA/OVA NPs Against Mammalian Cells in Culture

The cytotoxicity of the PDDA0.01/OVA0.1 formulation meaning 0.01 and 0.1 mg·mL-1 of PDDA
and OVA concentrations was evaluated against two cell lines in culture, fibroblasts and macrophages,
using two different techniques, the MTT assay and SEM.

In Figure 5, significant cytotoxicity for PDDA against the mammalian cells was obtained only
above 0.01 mg·mL−1 for the two time points (3 and 24 h), and serum concentrations were tested
(2% and 10% FBS). This agrees with data by Fischer and coworkers who determined low cytotoxicity
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for 0.01 mg·mL−1 PDDA against fibroblasts. Along similar lines, hemolytic effects of PDDA did not
occur at such low concentration [53].

The use of two serum concentrations aimed at finding an eventual effect of serum proteins
neutralization of the positive charges on PDDA contributing to diminished cytotoxicity. The results
in Figure 5 showed that both serum concentrations had a similar effect on cytotoxicity against the
two cell lines. Possibly, at 0.01 mg·mL−1 PDDA, BFS at 2% was enough to combine with all PDDA
molecules so that PDDA alone was not available to combine with the cells. On the other hand,
at higher [PDDA], PDDA molecules that did not combine with BFS would attach to the cells exerting
their cytotoxic activity. The hemolytic activity of PDDA was reported as important only above
[PDDA] = 1 mg·mL−1 [29,33,53].

In agreement with the present findings, Fischer and co-workers also reported low cytotoxicity of
PDDA against fibroblasts at 0.01 mg·mL−1 using the MTT assay besides showing that PDDA was less
toxic against the cells than PEI or PLL [29].
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Figure 5. Cell viability (%) of macrophages (J774A.1) or fibroblasts (L929) in culture from the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay after incubation for 3
(a,c) or 24 h (b,d) with PDDA, OVA, and PDDA/OVA NPs. Concentrations are given in mg·mL−1.
One should notice that the formulation used for the immunology experiments were 0.01 and 0.1 mg.
mL−1 of PDDA and OVA, respectively.

The effect of PDDA on morphology of the fibroblasts is presented in Figure 6. Holes could be
seen on the cells indicating that the many debris observed in the SEM micrographs stemmed from
the cell membrane, apparently withdraw from the cell by the cationic polymer PDDA. Similar cell
debris were observed by Martinez et al. with 10 mM poly(allylamine hydrochloride) [31] and with
linear or ramified PEI or PLL [30], suggesting a general feature of poly-cations acting by disruption of
cell membranes. This also took place for multi-resistant bacteria submitted to PDDA assemblies with
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anionic carboxymethylcellulose (CMC) for which both the cell wall and the cell membrane were lysed
allowing the leakage of intracellular compounds [32].
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Figure 6. Scanning electron microscopy (SEM) of fibroblasts L929 incubated for 3 h with: (a) culture
medium; (b) 0.01; (c) 0.1; (d) 1 mg·mL−1 PDDA. The red arrows indicate holes on the cells at
0.1 mg·mL−1 PDDA.

3.3. Immunoadjuvant Properties of PDDA/OVA NPs.

Adjuvants as Al(OH)3 usually improve the antigen-specific production of IgG1, whereas adjuvants
as the cationic lipid dioctadecyldimethylammonium bromide (DODAB) dispersed as bilayer assemblies
usually implement the antigen-specific production of IgG2a [8,15,20,25,27]. Figure 7 shows the
humoral responses of mice challenged with Al(OH)3/OVA0.1 dispersion and PDDA0.01/OVA0.1 NPs
as determined by ELISA for detection of IgG1 and IgG2a antibodies. The NPs displayed an immune
response profile qualitatively very similar to the one of Al (OH)3 [54] yielding an expressive increase
in IgG1 and a discrete increase in IgG2a production as usual for a Th-2 implemented response by an
adjuvant. However, in quantitative comparison with Al(OH)3, PDDA as an adjuvant the NPs were
more effective than Al(OH)3/OVA for implementing OVA-specific IgG1 production. In the literature,
the size histogram for Al(OH)3 dispersion alone or carrying an antigen showed a broad size distribution
with high polydispersity and low colloidal stability as depicted from the presence of precipitated
material [17]. There was a much higher production of IgG1 than IgG2a, as depicted from the serum
dilutions used to determine by ELISA both antibodies. Whereas the serum dilution used to determine
the primary IgG1 production was 1/256, the one used to determine primary IgG2a production was
1/8 only. This means that the serum contained much larger IgG1 concentration than the one of IgG2a
(Figure 7).
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Figure 7. Humoral responses induced by OVA, Al (OH)3/OVA, or PDDA/OVA NPs at concentrations
given in Table 1. Mean absorbance at 492 nm± standard deviation related to anti-OVA IgG1 and
IgG2a antibodies production was determined over time after immunization of BALB/c mice from sera
collected on days 14 and 21 post-immunization (primary response) or on day 28 (secondary response).
The primary IgG1 production was determined at 1/256 serum dilution whereas the secondary one was
obtained at 1/16348 dilution. The primary IgG2a production was determined at 1/8 serum dilution
whereas the secondary one was obtained at 1/128 dilution. p < 0.05 compared to naive group (#),
p < 0.05 compared to OVA group (o), p < 0.05 compared to Al(OH)3/OVA group (∆).

The advantages of the PDDA/OVA NPs are their nano-size (Figures 1 and 2), high colloidal
stability (Figure 4), and visual absence of precipitated material. Possible consequences in vivo would
be the optimization of antigen presentation by APC at the lymph nodes. Indeed, Manolova and
co-workers [55] found that nano-sized adjuvant/antigen assemblies directly delivered the antigen to
the APC in the lymph nodes, whereas micro-sized ones stayed longer at the site of injection becoming
mostly associated with dendritic cells (DC) from the site of injection. This could explain the higher
production of IgG1 induced by PDDA/OVA NPs in comparison to Al(OH)3 /OVA.

Other cationic polymers carrying antigen also improved the humoral response above the one
obtained with the traditional Al(OH)3. Diverse forms of PEI elicited potent mucosal adjuvant activity
for viral subunit glycoprotein antigens; a single intranasal administration of influenza hemagglutinin
or herpes simplex virus type-2 (HSV-2) glycoprotein D with PEI elicited robust antibody-mediated
protection also superior to the one by existing experimental mucosal adjuvants [36].

Using other injection modes, PEI administered subcutaneously with viral glycoprotein
(HIV-1 gp140) also enhanced antigen-specific serum IgG production. PEI elicited higher titers
of both antigen-binding and -neutralizing antibodies than alum in mice and rabbits, and induced
an increased proportion of antibodies reactive with native antigen. In an intraperitoneal model, PEI
recruited neutrophils followed by monocytes to the site of administration and enhanced antigen uptake
by antigen-presenting cells [37].

Gold nanorods modified with cationic CTAB, PDDA, and PEI were used as promising DNA
vaccine adjuvants for HIV-1 treatment and, curiously, also yielded high ratios IgG1/IgG2a. Among these
three cationic molecules, PDDA was the one yielding the higher ratios [43]. Plebanski and coworkers
designed magnetic lipoplexes for enhanced DNA vaccine delivery combining PEI, superparamagnetic
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iron oxide nanoparticles (SPIONs) with the mucoadhesive hyaluronic acid (HA) and a plasmid
encoding a malaria antigen increasing IgG1, IgG2a, and IgG2b [10,18].

In order to ascertain the cell-mediated immunity induced by the PDDA/OVA NPs, the delayed-type
hypersensitivity reaction in immunized mice was determined. The DTH response induced by PDDA/OVA
was low and equal to the one observed in mice for Al(OH)3/OVA (Figure 8). This reconfirms the Th-2
profile induced by PDDA/OVA NPs. Other Th-1 inducers such DODAB/OVA or DODAB/CpG/OVA gave
footpad swellings above 1.25 mm in contrast to the value lower than 0.5 mm obtained for PDDA/OVA or
Al(OH)3/OVA [8,9,12,15,17]. Thus, the low DTH response agreed with the predominant Th-2 profile for
PDDA/OVA NPs.

Recently, we described hybrid NPs made of poly (methyl methacrylate) (PMMA) in the presence of
poly (diallyl dimethyl ammonium) chloride (PDDA) using dioctadecyl dimethyl ammonium bromide
(DODAB) as an emulsifier and found that DODAB remains attached to the NPs core [56–59]. This system
might bring interesting applications for antigen presentation since DODAB might eventually add the
missing Th-1 response to the antigen-presenting NPs.
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Figure 8. Mean footpad swelling ± standard deviation related to delayed-type hypersensitivity reaction
of BALB/c mice immunized with OVA, Al(OH)3/OVA, or PDDA/OVA NPs at concentrations given on
Table 1. p < 0.05 compared to naive group (#), p < 0.05 compared to OVA group (o).

4. Conclusions

PDDA/OVA at 0.01 and 0.10 mg·mL−1 assembled as stable cationic nanoparticles in water with
Dz = 170 nm ± 4, ζ = 30 mV ± 2, and P = 0.11 ± 0.01 effectively presented OVA to the immune system
inducing a Th-2 type (humoral) response superior to the one induced by Al(OH)3. One of the most
important advantages of the PDDA system as an adjuvant is its simplicity; it is a single-component
adjuvant. In addition, at the low PDDA concentration used, cytotoxicity of the cationic polymer
became neglectable. At and above 0.1 mg·mL−1, significant PDDA cytotoxicity against fibroblasts
and macrophages in culture induced holes and cellular debris observable in SEM micrographs of the
mammalian cells. PDDA/OVA NPs were nano-sized, stable, and well-dispersed in water without
precipitated material. These properties would lead to in vivo optimization of antigen presentation by
APC at the lymph nodes in contrast to the micro-sized Al(OH)3/OVA dispersion that would remain
at the site of injection staying longer at the site of injection and stimulating local dendritic cells.
Determination of delayed-type hypersensitivity (DTH) reaction from footpad swelling revealed the low
cellular response induced by PDDA/OVA similarly to Al(OH)3 /OVA. In the future, it will be interesting
to evaluate combinations of the antigen with NPs carrying both PDDA and elicitors of the Th-1 response
such as cationic lipid and/or CpG. For continuing this work, the mechanism of PDDA-induced cell
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death might be investigated from the morphology of the cell nucleus using a fluorescent label to
discriminate between necrosis or apoptosis. The location of nanoparticles inside the cell will have to
be assessed using an ovalbumin fluorescent label and the CD8+/CD4+ cell proliferation from flow
cytometry and cytokines profile determination will reconfirm the Th-1/Th-2 response induced by
PDDA/OVA NPs.
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