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Abstract: Development of a vaccine to limit the impact of antibiotic resistant Neisseria gonorrhoeae is 
now a global priority. Serum bactericidal antibody (SBA) is a possible indicator of protective 
immunity to N. gonorrhoeae, but conventional assays measure colony forming units (CFU), which is 
time-consuming. A luminescent assay that quantifies ATP as a surrogate measure of bacterial 
viability was tested on N. gonorrhoeae strains FA1090, MS11 and P9-17 and compared to CFU-based 
readouts. There was a linear relationship between CFU and ATP levels for all three strains (r > 0.9). 
Normal human serum (NHS) is a common source of complement for SBA assays, but needs to be 
screened for non-specific bactericidal activity. NHS from 10 individuals were used for serum 
sensitivity assays—sensitivity values were significantly reduced with the ATP method for FA1090 
(5/10, p < 0.05) and MS11 (10/10, p < 0.05), whereas P9-17 data were comparable for all donors. Our 
results suggest that measuring ATP underestimates serum sensitivity of N. gonorrhoeae and that the 
CFU method is a better approach. However, mouse anti-P9-17 outer membrane vesicles (OMV) SBA 
titres to P9-17 were comparable with both methods (r = 0.97), suggesting this assay can be used to 
rapidly screen sera for bactericidal antibodies to gonococci.  
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1. Introduction 

Gonorrhoea is a sexually transmitted disease estimated to cause at least 78 million new cases 
worldwide per year [1]. The causal organism, Neisseria gonorrhoeae, is listed as a high priority 
pathogen for research into novel treatments by the WHO [2] due to its ability to rapidly develop 
resistance to antibiotics [3]. Isolates with resistance to the last recommended treatment combining 
ceftriaxone with azithromycin have been detected in several individuals from the United Kingdom 
[4,5] and Australia [6] shortly after overseas travel, emphasising the potential for global spread of 
intractable or even incurable N. gonorrhoeae. Infections are typically self-limiting and restricted to 
mucosal sites, however, untreated infection of females can lead to pelvic inflammatory disease, 
infertility and ectopic pregnancies [7]. Sexually transmitted infections including N. gonorrhoeae have 
also been linked with a significantly greater risk of contracting HIV [8].  

Infection with N. gonorrhoeae results in an initial neutrophilic inflammatory response at the site 
of infection [9,10] and limited, short-lived humoral responses [11]. Experimental infection of human 
subjects [12] and longitudinal studies of high risk individuals [13,14] show that acquisition and 
subsequent clearance of an infection does not protect against further infections with N. gonorrhoeae. 
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Humoral responses to highly variable but abundant cell wall components such as 
lipooligosaccharides (LOS) and pili, as well as cellular responses that are skewed towards T helper 
(Th) 17 and regulatory T (Treg) cells, are reported to be elevated after recent infection (reviewed in 
[15]). Recent studies in mice suggest that skewing mucosal responses away from Th17/Treg axis 
towards Th1/cellular immunity leads to improved clearance of N. gonorrhoeae [16,17]. Multiple pre-
clinical vaccine candidate antigens have been identified as having promising activity in mouse 
models (reviewed in [18]); of note, a peptide mimic that targets a highly conserved epitope of LOS 
shows particular potential but has not yet been tested in humans (reviewed in [19]). To date, those 
vaccines tested in humans have largely failed to stimulate protection from infection [20,21].  

Detection of serum bactericidal antibody (SBA) is a key correlate of vaccine-induced protective 
immunity for N. meningitidis [22], a close relative of N. gonorrhoeae [23], and considered likely to be 
important for protection against N. gonorrhoeae. The SBA assay measures killing of bacteria after 
exposure to an exogenous source of complement and defined dilutions of immune antibodies, which 
leads to cell lysis by activation of the classical complement pathway [24]. Normal human serum 
(NHS) is often used in SBA assays as a source of complement, and a key component of assay 
validation is confirmation that addition of NHS alone does not initiate killing of bacteria. This is 
particularly important because N. gonorroheae clinical isolates show variable sensitivity to NHS, with 
those strains associated with disseminated disease more likely to be serum-resistant [25,26], as are 
those freshly isolated from clinical specimens [27]. The conventional methodology for detection of 
SBA or serum sensitivity of gonococci or meningococci uses enumeration by colony counting, which 
is labour intensive, requires an overnight incubation step and relies on large quantities of agar plates 
[28]. Use of a commercially available reagent for detecting bacterial ATP in microtitre plates using a 
luminescent readout as a surrogate for bacterial viability/colony forming units (CFU) has been 
described for measurement of SBA to N. meningitidis serogroups A and W, as well as several other 
pathogenic bacteria [29,30]. We describe the utility of this approach to measure serum sensitivity and 
SBA to gonococci. 

2. Materials and Methods  

2.1. Culture of Bacteria 

N. gonorrhoeae strains FA1090 (ATCC 700825), MS11 (ATCC BAA-1833) and P9-17 [27] were used 
in this study. Fresh cultures of bacteria were prepared from frozen stocks by streaking onto 
gonococcal agar (GCA) consisting of gonococcal (GC) agar base supplemented with 5 g/L bovine 
dried haemoglobin and 1% v/v IsoVitaleX (BD Biosciences, Franklin Lakes, NJ, USA). Bacteria were 
grown overnight at 37 °C, 5% CO2, then streaked onto fresh GCA and cultured for 6 h to produce 
mid-log cultures. In experiments using cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-
NANA, Sigma C8271), bacteria from overnight cultures were used to inoculate GC-proteose peptone 
broth (GCB) supplemented with 1% v/v IsoVitaleX with/without 4 µg/mL CMP-NANA [31] and 
incubated at 37 °C with shaking for approximately 3 h until an A600 of 0.45 (~2 × 108 CFU/mL) was 
reached.  

2.2. Human and Murine Sera 

Normal human serum (NHS) from healthy human donors was used as a source of complement 
for serum sensitivity and SBA assays. Peripheral blood was obtained by venipuncture under The 
University of Auckland Human Participants Ethics Committee approval, reference 021200. All 
donors gave informed written consent prior to blood sampling. Blood was allowed to clot for a 
maximum of 30 min, serum collected after centrifugation (1250 × g, 20 min, 4 °C) and aliquots stored 
at −80 °C. NHS was diluted to 16.7% v/v for use as a complement source, which is within the 
recommended range of 10%–20% v/v for gonococcal bactericidal assays [32]. NHS was heat-
inactivated at 56 °C for 30 min before use (hiNHS) as a complement inactivated control.  

Anti-sera to gonococcal outer membrane vesicles (OMV) were raised in mice. Preparation of 
detergent-extracted N. gonorroheae OMV extracts from P9-17, FA1090 and MS11 was on the basis of 
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the methodology described for isolation of N. meningitidis OMVs for human vaccination [33], with 
minor adaptations [34]. N. gonorrhoeae was grown overnight in GCB at 37 °C, 5% CO2 with gentle 
shaking, followed by incubation at 40 °C for 2 h. Briefly, bacteria were harvested by centrifugation 
and the pellet treated twice for 30 min with 0.1 M Tris-HCl pH 8.6, 10 mM EDTA and 0.5% w/v 
sodium deoxycholate. The supernatants underwent ultracentrifugation (100,000 × g, 2 h, 4 °C), then 
the pelleted material was suspended in PBS, filter sterilized and stored at 4 °C. The protein content 
of the OMV extracts was quantified with a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, 
Auckland, New Zealand).  

Groups of three female specific pathogen free CD1 mice aged 5–6 weeks were immunised via 
the intra-peritoneal route with 4 µg of N. gonorrhoeae OMV extract adsorbed to alum adjuvant (Alu-
Gel-S, 2%, Serva) on days 0, 14 and 28. Baseline blood samples were collected prior to vaccination 
and immune serum was collected 7 days after the final immunisation. Blood was collected into 
microvette 500 Z-gel tubes (Sarstedt), and serum was harvested after 1 hour and stored at −80 °C. 
Immune sera were pooled for the SBA and were heat-inactivated before use as a source of anti-
gonococcal immune antibodies in the SBA assay.  

Animal work was approved by The University of Auckland Animal Ethics Committee (protocol 
1816) and was conducted in accordance with the university’s Code of Ethical Conduct and the Animal 
Welfare Act 1999. Mice were sourced from the Vernon Jansen Unit (University of Auckland, 
Auckland, New Zealand), monitored daily by qualified staff and suffered no adverse effects from 
these manipulations. 

2.3. Comparison of CFU and ATP Readouts 

N. gonorrhoeae was grown to mid-log on GCA and suspended in Dulbecco’s modification of PBS 
(PBSB) at a UV A260 of 1 (~4.2 × 109 CFU/mL), further diluted to 4 × 108 CFU/mL, then serial diluted in 
PBSB and incubated for 1 h at 37 °C, 5% CO2 in round-bottomed microtitre plates before measurement 
of ATP by luminescence or determination of CFU. The CFU of the starting inoculum was to confirm 
that bacteria numbers remained unaltered after 1 h in PBSB. For enumeration of colonies, 15 µL of 
the initial suspension was diluted, spread onto GCA without haemoglobin in triplicate using a sterile 
loop and incubated overnight at 37 °C, 5% CO2. Quantification of bacteria by measurement of ATP 
was determined with BacTiter-Glo (Promega) prepared as per the manufacturer’s instructions. After 
the 1 h incubation step, the microtitre plate was centrifuged at RT for 10 min at 3220 × g, supernatant 
was removed from each well and the pelleted bacteria was re-suspended in PBSB. Half of this 
suspension was transferred to a 96-well white flat bottom microtitre plate (Greiner Bio-One, 
Kremsmünster, Austria) and an equal volume of BacTiter-Glo reagent added to each well. The 
reaction was incubated for 5–10 min at RT on an orbital shaker before the luminescence signal was 
read using a Victor X Light 2030 Luminescence Reader (PerkinElmer, Waltham, MA, USA). Each 
plate was read three consecutive times and the average counts per second (CPS) for each reaction 
recorded. The background signal from a blank well containing PBSB was subtracted from each 
reading. 

2.4. Measurement of Serum Sensitivity 

N. gonorrhoeae was grown to mid-log on GCA and suspended in Dulbecco’s modification of PBS 
(PBSB) as detailed above. Reaction mixes containing ~1 × 103 CFU N. gonorrhoeae and 16.7% v/v NHS 
or heat-inactivated NHS control for every donor were adjusted to a final volume of 0.1 mL in PBSB-
hiFBS (PBSB-1% v/v heat-inactivated foetal bovine serum (Thermo Scientific, Waltham, MA, USA)). 
The reaction mix was incubated for 1 h at 37 °C, 5% CO2 in round-bottomed microtitre plates and 
bacteria enumerated as per Section 2.3. Reaction mixes for ATP-based measurement of bacterial 
killing were identical to the CFU-based method, except that ~5 × 103 CFU bacteria were used in the 
reaction mix for this assay; downstream processing was as per Section 2.3. Serum sensitivity was 
calculated as a percentage of CFU or CPS signal in the presence of NHS compared to hiNHS. Values 
were reported as zero when bacteria numbers increased in the presence of NHS. 
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2.5. Quantification of SBA 

Measurement of SBA by CFU was determined as previously described [35], with minor 
modifications for quantification of bacterial ATP by luminescence. N. gonorrhoeae was grown to mid-
log on GCA and suspended in Dulbecco’s modification of PBS (PBSB). Reaction mixes containing ~1 
× 103 CFU N. gonorrhoeae (CFU) or ~5 × 103 CFU (ATP), 16.7% v/v NHS and 10% v/v diluted heat-
inactivated murine anti-sera were adjusted to a final volume of 0.1 ml in PBSB-hiFBS. The murine 
anti-sera was diluted to a starting titre of either 1/16 or 1/32, then diluted twofold in PBSB to 1/2048. 
NHS- and hiNHS-only assay control reactions were included in every assay. The reaction mix was 
incubated for 1 hour at 37 °C, 5% CO2 in round-bottomed microtitre plates, and bacteria were 
enumerated as per Section 2.3. Bacterial survival was calculated by expressing test CFU or CPS values 
as a proportion of the maximum CFU or CPS value (i.e., the NHS-only reaction). Survival values 
calculated as >100% were reported as 100%. The titre was defined as the reciprocal of the interpolated 
serum dilution that killed 50% of the bacteria in comparison to the NHS only reaction. Titres were 
log-transformed for plotting and determination of exact SBA titres. These were calculated using 
Opsotiter3, an Excel-based data processing program from The University of Alabama at Birmingham 
reference library (UABRF) and licenced from UABRF [36–38]. 

2.6. Statistical Analysis 

All data were from three independent biological repeats. The results from each biological repeat 
are either shown individually on a single plot or combined to display mean + standard deviation. All 
statistical analyses were carried out in GraphPad Prism Version 7.03 (GraphPad Software, Inc, San 
Diego, CA, USA); the tests applied are indicated in the figure legends. 

3. Results 

3.1. Comparison of Luminescent and CFU Readouts 

To determine whether BacTiter-Glo is a viable choice to quantify N. gonorrhoeae survival, initial 
experiments compared ATP readings from three N. gonorrhoeae isolates across a broad range of CFU 
(~200–107 CFU/well). The ATP (luminescent) signal rose with increased N. gonorrhoeae CFU across the 
range tested (Figure 1). There was a high correlation between CFU and ATP levels for all strains 
across the full range of concentrations tested (r > 0.9), with the most reliable readouts in the range of 
2 × 103–1 × 106 CFU/well for each of the three N. gonorrhoeae strains tested (Figure 1). All subsequent 
experiments used ~5 × 103 CFU bacteria/well for the ATP assay to ensure a strong signal above 
background. 
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Figure 1. Quantification of Neisseria gonorrhoeae by detection of colony forming units (CFU) versus 
ATP. Results show mean values from three independent assays, presented either individually for 
each strain or as combined mean values from all three strains. The correlation between CFU and ATP 
was calculated for each strain using a two-tailed Pearson coefficient (p < 0.001 for each strain). 

3.2. Use of Bioluminescent Assay to Screen for NHS Sensitivity 

Sera from 10 NHS donors were screened for bactericidal activity against N. gonorrhoeae P9-17, 
MS11 and FA1090 using both CFU enumeration and ATP readouts in parallel. Reported levels of 
bacterial killing were either lower or equivalent in the ATP assay relative to enumeration of CFU in 
all three strains (Figure 2). The P9-17 strain had low levels of serum-mediated killing (0%–30%) after 
exposure to sera from all 10 donors and both methods produced similar results (Figure 2). In contrast, 
serum sensitivity results from the two assays diverged significantly for the MS11 strain (p < 0.05 for 
all donors) and the FA1090 strain (p < 0.05 for 5/10 donors). Of particular note, serum from donors 3 
and 4 elicited little or no bactericidal activity in the ATP assay, but between 60%–90% killing after 
enumeration of CFU from both N. gonorrhoeae FA1090 and MS11. On the basis of these results, the P9-
17 and MS11 strains had the best profiles for use in ATP-based SBA assays, representing resistant and 
susceptible strains, respectively. Unless specified otherwise, serum from donor 2 was used as a source 
of complement for all subsequent assays, in combination with the N. gonorrhoeae P9-17 strain. 
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Figure 2. Detection of serum sensitivity of N. gonorrohoeae by enumeration of CFU versus ATP. N. 
gonorrhoeae strains P9-17, MS11 and FA1090 were tested for sensitivity to serum from 10 healthy 
human donors and samples taken to detect bacterial ATP or CFU. Data are combined means + SD 
from three independent experiments. Statistically significant differences in sensitivity between the 
two methods were determined using multiple t-tests with the Holm–Šidák method applied. * p < 0.05; 
** p < 0.01; *** p < 0.001. 
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3.3. Quantification of SBA by Detection of ATP 

Assays to determine the SBA of murine anti-sera raised to N. gonorrhoeae P9-17 OMV extracts 
against N. gonorrhoeae P9-17 were carried out using the CFU or ATP method in parallel to directly 
compare the outcome. Each individual test used the same stock of bacteria and reaction mix. Bacteria 
were re-suspended in a volume of 100 µL buffer and 50 µL of this suspension used for detection of 
ATP in initial feasibility tests for this assay (Figure 1). However further testing showed that 
comparable results were obtained from bacteria re-suspended in 30 µL buffer, with 25 µL of this 
suspension used for detection of ATP (Figure 3). This adjustment meant that a larger proportion of 
bacteria from the reaction mix were used for reading out luminescence (>80% vs. 50%) and yielded 
similar results (r = 0.98). There were no significant differences between any paired sets of data, but 
standard deviations were reduced and detection of bacterial viability at serum dilutions of 1/32 and 
1/64 was improved with the smaller re-suspension volume. This modification reduced the use of a 
costly reagent without affecting the data obtained, and therefore was adopted for all further assays.  

 
Figure 3. Comparison of two different resuspension volumes for quantification of serum bactericidal 
antibody (SBA) by ATP. Pooled anti-sera from mice immunized with N. gonorrhoeae P9-17 OMVs was 
tested for SBA to N. gonorrhoeae P9-17. Data are combined means ± SD from three independent 
experiments with 50 µL (ATP-50) or 25 µL (ATP-25) of re-suspended bacteria used to quantify ATP 
levels. The correlation between the two volumes was calculated using a two-tailed Pearson coefficient 
(p < 0.0001) and significant differences between paired sets of values were determined by multiple t-
tests. 

A comparison of the range of raw values obtained with the ATP method versus colony counting 
readouts is shown in Figure 4A. Detection of ATP via luminescence gave readouts ranging from an 
average of 1552 CPS at a serum dilution of 1/32 through to 6756 at a dilution of 1/2048. Enumeration 
by colony count gave values of 11 to 126 CFU at the same dilutions. Control wells comprising bacteria 
incubated in NHS alone had average values of 6755 CPS and 126 CFU, respectively. There was a 
degree of variability in the range of raw values, particularly for the ATP assay (Figure 4A), but 
importantly readouts of bacterial survival remained consistent between assays (Figure 4B). The 
average SBA titre obtained with the CFU assay was higher than the ATP assay (223 vs. 134) and the 
average maximum killing was also increased in the CFU assay relative to the ATP assay (92% vs. 
78%) (Figure 4B). However, a direct comparison of quantification of SBA titres by CFU and ATP 
showed a strong correlation between the two methods (r = 0.97, p < 0.001). Although bacterial survival 
was higher at all dilutions using the ATP method, a significant difference between the assays was 
only evident at 1/64, p < 0.05 (Figure 4B). The ATP assay was performed with approximately five-fold 
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more bacteria, which may partially account for the trend towards a lower titre and high bacterial 
survival.  

 
Figure 4. Comparison of SBA data obtained using CFU or ATP methods to quantify bacteria. Raw 
ATP (luminescence) values and colony counts obtained in an assay for SBA (A) and a comparison of 
SBA titres using CFU and ATP methods (B). Serial twofold dilutions of murine serum raised to OMV 
extracts from N. gonorrhoeae P9-17 were incubated with live N. gonorrohoeae P9-17. Data are combined 
means ± SD from three independent experiments. ATP values were scaled to the left axis and CFU 
values to the right axis in (A). The correlation between CFU and ATP values was calculated using a 
two-tailed Pearson coefficient. Differences between matched sets of CFU or ATP values were 
determined using multiple t-tests. * p < 0.05. 

Antisera to OMV preparations from the other N. gonorrhoeae isolates were tested for cross-
reactive SBA using the N. gonorrhoeae P9-17 ATP SBA assay; the anti-P9-17 OMV SBA data shown in 
Figure 4 were included as a point of comparison. A twofold titration starting at 1/16 showed no killing 
activity with sera against FA1090 OMVs (bacterial survival >80% at all dilutions tested), whereas anti-
sera against MS11 OMVs had moderate cross-reactive bactericidal activity against N. gonorrhoeae P9-
17 (endpoint titre = 56, maximum killing = 67%) (Figure 5).  
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Figure 5. Measurement of cross-reactive SBA to N. gonorrhoeae P9-17 by detection of ATP. Serial 
twofold dilutions of murine sera raised to OMV extracts from N. gonorrhoeae P9-17, FA1090 or MS11 
were incubated with N. gonorrhoeae P9-17 and bacterial survival measured by ATP (luminescence). 
Data are combined means ± SD from three independent experiments.  

Sialylation of lipooligosaccharides (LOS) is linked with the resistance of N. gonorrhoeae to serum-
mediated killing by preventing activation of the complement cascade [31,39]; this is a critical variable 
to consider when determining potential bactericidal activity of anti-gonococcal immune sera. The 
FA1090 and MS11 strains, both of which showed a degree of sensitivity to sera from donors 1 and 2 
(Figure 2), were chemically sialylated with 4 µg/mL CMP-NANA to verify that reduced bacterial 
killing could be detected using quantification of ATP as a readout. Treatment with CMP-NANA 
prevented killing of N. gonorrhoeae MS11 (Figure 6A; p < 0.05 for donor 1 and p < 0.01 for donor 2) and 
reduced NHS mediated killing of N. gonorrhoeae FA1090 by approximately 50% (Figure 6B; p = 0.203 
for donor 1 and p < 0.05 for donor 2). A reduction in SBA activity after sialylation of the P9-17 strain 
was also detected using the ATP assay (53% vs. 14.5% killing at a serum dilution of 1/64, p < 0.01; 
Figure 6C). 
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Figure 6. Reduction of serum or SBA sensitivity or after sialylation with cytidine-5′-monophospho-
N-acetylneuraminic acid (CMP-NANA). Mid-log broth subcultures of N. gonorrhoeae MS11 (A) or 
FA1090 (B) were incubated with/without the addition of 4 µg/mL CMP-NANA and samples taken to 
detect bacterial ATP. The P9-17 strain (C) was incubated under the same conditions with the addition 
of murine anti-P9-17 OMV anti-sera at a dilution of 1/64 to examine the effect of sialylation on SBA. 
Data are combined means + SD from three independent experiments; statistically significant 
differences in sensitivity were determined using multiple t-tests with the Holm–Šidák method 
applied (A,B) or a paired t-test (C). Values were reported as zero in experiments where bacteria 
numbers had increased in the presence of NHS. * p < 0.05; ** p < 0.01. 

4. Discussion 

Detection and quantification of N. gonorrhoeae ATP using a commercially available luminescent 
substrate showed utility as an alternative approach to manual enumeration of CFU for measuring 
SBA to N. gonorrhoeae. In contrast, screening of NHS from multiple donors using the ATP method 
under-estimated serum sensitivity of the FA1090 and MS11 strains relative to the CFU method, 
suggesting that it is unsuited to this particular assay. These results indicate that detection of bacterial 
viability by ATP is most appropriate for assays where rapid killing of bacteria is expected, such as 
SBA, where killing is initiated by rapid activation of the classical complement pathway, leading to 
formation of C5b9 and lysis of gram-negative bacteria, a process that occurs within minutes of 
exposure [40]. To the best of our knowledge, this is the first report detailing the use of an ATP assay 
to measure SBA to N. gonorrhoeae. In line with an earlier report describing the utility of this reagent 
for other bacteria [29], use of this method to measure SBA offers multiple advantages, including a 
substantially reduced time to acquire results (3 h vs. >24 h), a sizeable decrease in hands-on time by 
laboratory personnel and the capacity to test large sets of samples in a single day. The cost of reagents 
and consumables for the ATP assay is lower than the conventional plate-based method. This assay 
could also be applied to other tests that rely on measuring N. gonorrhoeae viability, such as screening 
of antimicrobials, to streamline testing and identification of new drugs.  

The N. gonorrhoeae strains used in this study were chosen because they are frequently used for 
identification or testing of novel vaccine candidate antigens [35,41,42], for understanding gonococcal 
virulence [43] and for use as challenge strains for murine [44–46] or human models of infection [9,10]. 
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Detection of bacteria using CFU versus ATP readouts produced a similar outcome with all three 
strains, suggesting that comparable results are likely to be obtained with other N. gonorrhoeae isolates. 
Studying clinically relevant strains will be important for determining potential strain-dependent 
variability of SBA in humans. The P9-17 strain was the most tractable strain in this study—it showed 
little or no serum sensitivity to NHS from multiple donors when measured by the CFU or ATP 
methods. In comparison the MS11 and FA1090 strains, both showed sensitivity to many or all of these 
sera under the conditions used, with higher levels of killing observed when bacterial survival was 
quantified by CFU. These results emphasise that NHS donors need to be screened carefully and/or 
that a smaller quantity of NHS should be used as a source of complement for assays using these 
strains. The FA1090 strain showed a surprising degree of serum susceptibility, given it is widely 
reported as a serum-resistant strain [10]. However, serum resistance can be lost with in vitro 
passaging [27,47], which is the most likely explanation for this unexpected result. Alternatively, a 
portion of our NHS donors may have cross-reactive bactericidal antibodies to some strains of N. 
gonorrhoeae. Of note, a large proportion of New Zealand’s population (~1 million) received an OMV-
based vaccine to N. meningitidis serogroup B (MenB) from 2004 to 2008 [48], and some of these 
individuals may have entered our pool of NHS donors. The NHS used in this study was not pre-
treated to eliminate cross-reactive antibodies [28], but is an important consideration for future 
studies. Alternatively, it was demonstrated that serum sensitivity of both these strains could be 
reduced by sialylation with CMP-NANA, with the caveat that this is likely to inhibit SBA mediated 
killing. Reduced susceptibility to SBA-mediated killing was shown with N. gonorrhoeae P9-17 
sialylated with CMP-NANA relative to untreated bacteria. 

Determination of bacterial survival by the ATP method was sufficient to show development of 
higher SBA titres to the P9-17 strain with anti-sera raised to homologous OMVs, compared to an 
intermediate or no detectable cross-reactive SBA with anti-sera against MS11 or FA1090 OMVs, 
respectively. The homologous anti-P9-17 SBA response reported here is similar to a previous study, 
which indicated that vaccination of mice with sodium deoxycholate-extracted OMVs from P9-17 
stimulated a SBA titre of 256 when delivered in alum adjuvant, compared to a titre of >1000 with 
OMVs prepared without detergent [35].  

Some limitations of the ATP approach were observed. Reliable quantification of N. gonorrhoeae 
required the preparation of a reaction mix containing a higher number of bacteria (~5 × 103 CFU) to 
ensure luminescence readouts were well above background. This was partially because a portion of 
the re-suspended bacteria had to be transferred into another plate and combined with an equal 
volume of substrate for detection of ATP by luminescence. Results obtained with this higher number 
of bacteria were compared to a well-established CFU-based SBA that used ~1 × 103 CFU [35]. The 
reduced serum sensitivity and antibody-mediated bacterial killing detected with the ATP assay was 
likely due to the addition of approximately five-fold more bacteria. Use of higher numbers of bacteria 
may have been responsible for the variation in serum-sensitivity between the ATP and CFU readouts, 
potentially by reducing or delaying non-specific serum mediated killing. Therefore, in its current 
format, the ATP assay under-estimates serum sensitivity of N. gonorrhoeae and should not be used in 
place of the traditional CFU-based method. However, despite the addition of higher numbers of 
bacteria for the ATP assay, detection of bacterial survival after incubation with bactericidal anti-sera 
was not significantly altered when compared to the conventional CFU-based method. Successful 
detection of SBA in sera from human subjects infected or recovering from infection with gonorrhoea 
has been reported using up to ~107 CFU without a substantial loss of sensitivity [49].  

Another significant difference between the standard CFU method and measurement of ATP is 
in processing time. N. gonorrhoeae and anti-sera are typically combined for 30–60 minutes prior to 
plating for CFU [28]. Plating for determination of CFU can be time-consuming, particularly if a large-
scale assay is performed. Until transfer to agar plates and incubation, the bacteria remain in sub-
optimal conditions for survival and continue to be exposed to the active components of the reaction. 
In contrast, the bacteria are pelleted and lysed for immediate quantification of ATP, a process that 
takes approximately 15 min, and therefore there is no potential for additional killing to occur. These 
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differences in processing may partially explain the enhanced bacterial survival observed when serum 
sensitivity was compared using both ATP and CFU readouts.  

It has recently been observed that MenB vaccines reduce rates of gonorrhoea at a population 
level [50–53], which now provides the impetus to retrospectively examine historic resources, such as 
samples from trials with New Zealand’s MeNZB vaccine [54], as well as materials generated from 
more recent vaccine trials, to understand possible mechanisms of protection. This assay can be used 
to aid the global effort to develop a vaccine for gonorrhoea by facilitating testing of sera for possible 
cross-reactive SBA conferred by MenB OMV vaccines or for testing novel vaccine candidate antigens 
for bactericidal effects. 

5. Conclusions 

Measurement of N. gonorrhoeae survival by detection of ATP in a luminescent assay produced 
comparable results to manual plating and quantification of bacterial CFU for determination of SBA. 
Luminescent assays have the advantage of being high throughput, with a fast turnaround, offering 
the prospect of being able to screen large banks of samples for bactericidal activity relatively quickly. 
This approach could also be applied to contemporary clinical isolates of N. gonorrhoeae, including 
those with known anti-microbial resistance profiles, for rapid testing of new drugs. The development 
of new assays to study N. gonorrhoeae is a high priority because multi-drug resistant strains are a 
global concern and there is an urgent need to identify alternative treatments such as novel antibiotics 
or a vaccine.   
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